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Abstract. A Teichmüller map is a quasiconformal homeomorphism of C so that
f is conformal outside the closed unit disk, denoted ∆∗, and in the unit disk ∆ the
complex dilatation of f is of the form kϕ̄/|ϕ| where 0 ≤ k < 1 and ϕ is holomorphic.
We consider sequences of such Teichmüller maps fj whose complex dilatations are of
the form kjϕ̄j/|ϕj | where kj → 1 and ϕj are holomorphic mappings such that ϕj tend
toward a holomorphic mappings ϕ uniformly on compact subsets. We assume that
the L1-norms of ϕj and ϕ are uniformly bounded. If fj are suitably normalized, it is
possible to pass to a subsequence so that fj tend toward a conformal limit outside the
unit disk. Since fj are not uniformly quasiconformal, such a limit need not exist in ∆̄
but we show that a modified form of limit in ∆̄ exists for a subsequence. We call it the
extended limit and it is constructed using a partition of ∆̄, denoted D, whose elements
are closed sets constructed from vertical trajectories of ϕ as well as some closed arcs
and points of ∂∆. The extended limit, denoted also f , is defined on ∆∗∪D and satisfies
a continuity condition called semicontinuity. The image fD = {f(X) : X ∈ D} is a
family of closed sets of C which is partition of C \ f∆∗. The extended limit is a limit
of fj’s in a sense which we call semiconvergence. If sets of D are collapsed to points,
and similarly likewise f(X), X ∈ D, are collapsed to points, then the quotient spaces
are homeomorphic to C and f is a homeomorphism between them.

1. Introduction

One considers in Teichmüller space theory quasiconformal maps f of the C =
C ∪ {∞} which are conformal in the exterior ∆∗ = {∞} ∪ {|z| > 1} of the unit disk
∆ = {|z| < 1} and in the unit disk the complex dilatation µf of f is given by

(1) µf = k
ϕ̄

|ϕ| (0 ≤ k < 1)
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where ϕ is holomorphic and not identically zero in ∆; we will call such maps Teichmüller
maps. If there is compatibility with the action of a Kleinian group, then ϕ satisfies
a quadratic type relation and hence the holomorphic map ϕ in (1) is often called
a quadratic differential . However, we will not consider here this situation although
quadratic differential will be a synonym for a holomorphic map. We will obtain results
for integrable holomorphic mappings, that is maps ϕ such that the L1-norm

(2) ||ϕ||1 =

∫

∆

|ϕ|dm <∞

where dm is the euclidean area element.
The universal Teichmüller space can be identified with the space of such quasi-

confomal mappings which are suitably normalized. We are interested in what happens
when k → 1, that is, we approach the boundary of the Teichmüller space. If ϕ is fixed
in (1), then these maps are on a Teichmüller geodesic though we will also consider the
situation that we have sequences kj and ϕj vary so that kj → 1 and ϕj → ϕ; the maps
ϕ and ϕj are assumed to be integrable and we will later state the exact conditions. Let
fj be such a sequence. If we are outside the unit disk, then a suitable normalization,
for instance f fixes 0, 2 and ∞, guarantees that there is a subsequence tending toward
a conformal map f outside the unit disk. On the other hand, the maximal dilatation
Kj =

1+kj

1−kj
tends to ∞. Hence the normal family arguments working in the conformal

case cannot be used.
We can say something of the situation inside the unit disk in terms utilizing the

trajectory structure of ϕ to be defined below. On pointwise level, the distortion becomes
too strong for the pointwise structure to be preserved in the limit but we can construct
a coarser structure based on vertical trajectories of ϕ and this structure is mapped
onto a similar structure by a map which can be described as a limit of a subsequence
of fj ’s. We denote this limit by f and it is continuous if continuity is defined as in
Theorems 1 or 3.

We now define this trajectory structure. It differs from the usual definition in that
we allow zeroes of ϕ into trajectories and the trajectory branches at such a point. A
non-critical vertical trajectory arc of ϕ is an open arc τ outside the zeroes of ϕ and is
an arc such that argϕdz2 = ±π on τ when dz is an infinitesimal to the direction of τ .
If τ ⊂ U ⊂ ∆, then we say that τ is a trajectory of U . We often omit the word vertical
when considering such arcs.

If z0 is a zero of order n of τ , then sufficiently small neighborhoods U of z0 contain
n+2 disjoint vertical non-critical trajectory arcs of U \{z0} such that the closure of the
trajectory is a closed arc with endpoint z0; in that case we say that the trajectory has
endpoint z0, cf. Fig. 1 for the flow of trajectories. We now extend the definition of a
vertical trajectory so that it may include zeroes of ϕ and that τ is a vertical trajectory
if any two points z and w of τ can be connected by a sequence τ1, .., τn where a ∈ τ1
and b ∈ τn and each τj is either a non-critical trajectory arc or a zero of ϕ with the
property that either τj ∩ τj+1 6= ∅ or one of them is a zero of ϕ and the other is a
non-critical trajectory arc whose endpoint the other is. In addition, we require that
τ is a maximal set of this kind; we include the maximality in the definition since we
consider only maximal trajectories. Again, the word vertical may be omitted.
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Fig.1

According to our definition, a vertical trajectory branches at zeroes of ϕ. Now,
ϕ has only a countable number of zeroes and hence most trajectories do not contain
zeroes of ϕ. We call such trajectories simple and one can show (Lemma 3.1) that the
closure of a simple trajectory of an integrable ϕ is a cross cut of ∂∆, that is, it is
obtained by adding two points on ∂∆ so that we obtain a closed arc with endpoints on
∂∆. A trajectory is always simply connected and is locally like the middle trajectory
in Fig. 1 (if ϕ(z0) 6= 0, then n = 0 in Fig.1), cf. [T1, Lemma 2.3].

We need still to extend the definition of a trajectory so that we can go to the
boundary and beyond. The above definition are valid for any holomorphic ϕ but now
we assume that ϕ is integrable. We will extend a trajectory τ to a set called complete
trajectory and denoted τ∗. Its definition is somewhat more technical and involves the
ϕ-metric dϕ defined by the element of length

√

|ϕ||dz| as well as the variant of ϕ-metric
called the horizontal length whose element of length is |Re

√
ϕdz| and which defines

a pseudometric dhϕ of ∆. The horizontal distance of two points on the same vertical

trajectory is zero and dhϕ(z, w) is constant when z varies in one vertical trajectory and
w in another.

Using the horizontal distance, we can define that a complete trajectory starting
from a trajectory τ and let τ∗, the completion of τ , consists of points z ∈ ∆̄ such that
τ and z are not separated in ∆̄ by the closure of any simple trajectory σ such that the
horizontal distance dhϕ(τ, σ) > 0. Complete trajectories are sets of this form. Section
3 contains a more detailed definition and the following. A complete trajectory ν is a
closed and connected subset of ∆̄ such that ν ∩∆ is a union vertical trajectories which
are locally finite in ∆ and two distinct complete trajectories are disjoint (Theorem 3.6).
Usually the completion of a trajectory τ is just the closure τ̄ of τ and is homeomorphic
to a closed arc and in this case we say that τ̄ is a simple complete trajectory. There are
only a countable number of exceptions (Lemma 3.8). Note that a simple trajectory is
not the same as a simple complete trajectory.

The reason why vertical trajectories are important for us is that if z is not a zero
of ϕ, then the differential of f at z maps infinitesimal circles centered at z to ellipsoids
so that the direction of the vertical trajectory gives the direction which is mapped onto
the minor axis of the image ellipsoid as can be seen of the formula for the derivative
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∂αf of f to the direction eiα which is

(3) ∂αf = (1 + µfe
−2iα)fz = (1 + k

ϕ

|ϕ|e
−2iα)fz.

This gives reasons to suspect that if fj is a Teichmüller sequence satisfying (1) with
k = kj and fixed ϕ, then, given a trajectory, there would be a subsequence which
would tend toward a constant on the trajectory. This is indeed often the case. Perhaps
surprisingly, if there is no subsequence with constant limit, then there is a subsequence
tending toward an embedding of τ . Cf. [T1] for these results.

Horizontal trajectories are defined similarly using the condition argϕdz2 = 0
but the vertical trajectories are more important for us. Therefore, in the sequel a
trajectory , if not specified, means a vertical trajectory though we will often emphasize
the verticality and include the word.

The paper [T1] considered pointwise convergence on a trajectory τ , obtaining the
above mentioned dichotomy that a subsequence tends pointwise either to a constant
or to an embedding or τ . It would be desirable to find the conditions under which fj
would have a continuous limit f which is conformal outside ∆ and such that f maps
vertical trajectories of ϕ to points. Our results in this paper are inspired by this aim
and we will obtain results in this direction under the assumption that ϕ is integrable.

We will show that under the integrability assumption, assuming the existence of
a conformal limit f on ∆∗, we can extend the limit f from the exterior ∆∗ of ∆̄ to ∆
so that the extension is a map not onto C but to the family C of closed and non-empty
subsets of C. The set C is topologized by means of the Hausdorff metric obtained using
the spherical metric of C. It is also better to consider the extension to ∆ not as a map
of points but as a map defined on the set whose elements are complete trajectories as
well some subsets of ∂∆. We denote this set by D and the precise definition is

D = T ∪ V

where T is the set of complete trajectories of V is the set of components of ∂∆ \ (∪T ).
We will show that D is a partition of ∆̄ by closed sets (Lemma 3.11). We can regard
C in a natural way as a subset of C so that x ∈ C is identified with {x} and then the
topologies given by the spherical metric of C and the Hausdorff metric coincide. In the
sequel, it will be convenient to interpret x as a one-point set {x} as required. Thus we
regard the limit of fj in ∆∗ as a map ∆∗ → C ⊂ C and extend f to ∆∗ ∪ D.

We will show this extension of f to D is in a certain sense continuous. It is
continuous if we pass to suitable quotients (Theorem 3) but considered as a map of C
into C it need not be continuous in the Hausdorff metric of C. However, it satisfies a
weaker condition called semicontinuity. We say that f : ∆∗ ∪D → C is semicontinuous
if, given x ∈ ∆∗ ∪D and a neighborhood U of f(x) in C, there is a neighborhood V of
x in C so that f(y) ⊂ U whenever y ⊂ V , y ∈ ∆∗∪D. Similarly, if xn ∈ C is a sequence
and x ∈ C, we say that xn semiconverges to x if, given a neighborhood U ⊂ C of x,
then xn ⊂ U beginning from some n. Note that such a semiconvergent limit x is not
well defined. The notion of semicontinuity is an extension of the notion of continuity
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in the sense that if f maps points onto points, then f is continuous if and only if it is
semicontinuous.

We can now state our main theorem. Let ϕj and ϕ 6≡ 0 be integrable holomorphic
maps in ∆ such that ||ϕj ||1 are uniformly bounded and that ϕj → ϕ uniformly on
compact subsets of ∆. If ϕj → ϕ in L1, then these conditions are true as follows using
the Cauchy formula. Let D be defined as above with respect to ϕ so that its elements
are complete trajectories of ϕ as well as some subsets of ∂∆.

Theorem 1. Suppose that fj converge toward a conformal map f in the exterior ∆∗

of ∆. Then there is a subsequence so that f admits a semicontinuous extension to
a map ∆∗ ∪ D → C as a map into the family C of closed non-empty subsets C of C.
The extended map f is the limit of fj in the sense that if x ∈ ∆ ∪ D, then fj(x)
semiconverges to f(x). The families D and fD = {f(x) : x ∈ D} are partitions of ∆̄
and of C \ f∆∗, respectively, and f is a bijection of D onto fD.

We remark that if fj(τ), τ ∈ D, have the Hausdorff limit ν, then ν ⊂ f(τ)
(Theorem 2.4).

The convergence of fj to f on ∆∗ is uniform on compact subsets. Uniform conver-
gence on a compact set in the continuous case is equivalent to the fact that if xj tend
to x, then fj(xj) tend to f(x). This makes possible to formulate a uniform convergence
result for this situation:

Theorem 2. The map f of Theorem 1 has the following property. If xj ∈ ∆∗∪D and
xj semiconverge to x ∈ ∆∗ ∪ D, then fj(xj) semiconverge to f(x).

We have above thought the extension as a map of C into C. This is useful since
then we can express f as kind of limit of fj ’s by means of semiconvergence. If we
are interested only of the limit f , then passing to suitable quotients, f becomes a
homeomorphism. We note that D is a partition of ∆̄ and hence we can form the
quotient space of C, denoted by C/D. A similar remark applies to fD. Thus we can
also regard the limit f as a map of C/D into C/fD and have

Theorem 3. The spaces C/D and C/fD are homeomorphic to C and f is a homeo-
morphism between them.

The part concerning homeomorphicity is based on a theorem of R.L. Moore [M]
on upper semi-continuous decompositions of the plane. The proof is completed in the
end of Section 4.

It is useful at this point to comment on the connection to [T1] where we considered
the situation with fixed ϕj = ϕ and with kj tending to 1. We proved that given
a trajectory τ , there is a subsequence so that fj tend on τ toward a constant or an
embedding of τ . The latter would seem to be exceptional (cf [T1, Theorem 2]). Suppose
that fj converge on τ toward a constant a. Then a ∈ f(τ∗), τ∗ ∈ D the completion of
τ , but we cannot conclude that f(τ) is a one-point set. A similar remark applies if fj
converge toward an embedding of τ .

Quadratic differentials for Fuchsian groups. If ϕ is a non-trivial quadratic differ-
ential of an infinite Fuchsian group, then ||ϕ||1 = ∞. Thus our results do not apply
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in the Fuchsian case. However, it might be possible to obtain similar results if ϕ is a
quadratic differential for a cocompact Fuchsian group G of ∆. We think that analogues
of our theorems are true at least in the case that fj define points in the Teichmüller
space projecting into a compact set in the moduli space. Since the compactification of
the moduli space is well understood, it might be that this restriction is not necessary.

Since ||ϕ||1 = ∞ in this case, we cannot use
√

|ϕ| as a substitute for ̺ in (2.1) and
(2.2) but using more complicated methods it might be possible to obtain the essential
Lemma 2.1. The situation would seem to be simpler in the respect that the closure of
a trajectory is already its completion. If τ and σ are distinct trajectories, they define a
ring R(τ, σ) as in (2.7) and Theorem 2.3 should be valid for this ring. This is all that
is needed for the construction of the extended limit.

It is expected that the limit set of a limit group of this kind is locally connected
and if the limit group is totally degenerate, that is the discontinuity set has just one
component, then the sets of fD are one-point sets which make up the limit set L(H)
of the limit group H. Thus we do not need collapse sets of fD to points but C/fD is
actually C and not only homeomorphic to C. Thus the the map of Theorem 3 becomes
a homeomorphism C/D → C so that fD = L(H). Note however, that the limit group
is not necessarily totally degenerate. If there is a trajectory τ such that the stabilizer
of τ in G is non-elementary, then τ will be mapped in the limit onto a component of
Ω(H) distinct from f∆∗, see [T2].

We remark still that it H is a totally degenerate with locally connected limit set,
not necessarily a limit group in the sense discussed above, then it is possible to define
a geodesic lamination L invariant under a Fuchsian group G and that of ∆ so that the
natural action of H is topologically conjugate to the action of G on the space obtained
by collapsing elements of the lamination to points so that the image of these collapsed
elements is homeomorphic to L(H) minus the endpoints of L(H); endpoints of L(H)
are points of L(H) not separating L(H), cf. Abikoff [A, Theorem 3].

Organization of the paper. Section 2 contains the main ideas and outlines the
proof. Section 3 is independent of Section 2 and contains the general properties of
trajectories needed. Section 4 gives the exact construction of the extended limit and
contains proofs of Theorems 1, 2 and 3, and it assumes the results of Sections 2 and
3. Finally, Section 5 contains the technicalities needed to complete proofs of Theorems
2.1 and 2.2 outlined in Section 2; this section is based on Section 3 and is independent
of Section 4.

Definitions and notation. The Hausdorff distance is defined in the the family
C of closed and non-empty subsets of C and the Hausdorff distance of X, Y ∈ C is
defined using the spherical metric of of C and is the infimum of numbers δ such that
Y ⊂ Uδ(X) and X ⊂ Uδ(Y ) when Uδ(Z) is the δ-neighborhood of Z consisting of
points whose spherical distance from Z is less than δ. The spherical metric is obtained
by means of the stereographic projection and is denoted by q.

The following definitions assume that a fixed quadratic differential ϕ on ∆ is
given, that is a holomorphic map of ∆ not vanishing identically. These definitions do
not assume the integrability condition (2).

The canonical coordinate Φ for ϕ is a branch of
∫ √

ϕdz and is defined in D
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whenever D is a simply connected subdomain of ∆ outside zeroes of ϕ. It maps arcs
of U contained in a vertical/horizontal trajectory arcs onto vertical/horizontal line
segments.

The ϕ-metric dϕ of ∆ is given by the element of length
√

|ϕ||dz| and the horizontal
distance is defined by the element of lengths |Re

√
ϕdz| and is denoted dhϕ; the element

|Re
√
ϕdz| is at first defined in smaller sets where ϕ has a branch but it is independent

of the chosen branch and can be extended also to zeroes of ϕ. If Φ = u + iv is the
canonical coordinate, then |Re

√
ϕdz = |du|. The corresponding lengths of a path γ are

denoted |γ|ϕ and |γ|hϕ. Thus dϕ(z, w) is the infimum of |γ|ϕ when γ is a rectifiable path

joining z and w in ∆ and the definition of dhϕ is analogous; |γ| denotes the euclidean
length.

The metric dϕ is Riemannian outside zeroes of ϕ and hence defines areal measure
in ∆ denoted mϕ; the euclidean areal measure is m.

A vertical/horizontal arc is an arc contained in a vertical/horizontal trajectory. It
may contain zeros of ϕ; if it does not contain zeroes, we say that the arc is non-critical.
When we say that two subsets X and Y of ∆ of ∆ are joined by a horizontal arc γ we
assume that one endpoint of γ is in X and the other in Y but otherwise γ is disjoint
from X and Y ; usually, this could be obtained by passing to a subpath but we include
this in the definition.

We will make use of closed neighborhoods of a closed set X of C and U is a such
a neighborhood if the interior intU of U is a neighborhood of X , that is, an open set
containing X . A family U of closed subsets of C is a basis of closed neighborhoods of X
if each U ∈ U is a closed neighborhood of X and if every neighborhood of X (that is an
open set containing X) contains some U ∈ U . This is a modification of the definition
of a basis of neighborhoods U of X which satisfies the same conditions except that each
U ∈ U is a neighborhood of X that is an open set containing X .

Usually then closure cl and the boundary ∂ are taken in C but if taken in some
other set, this is indicated by an appropriate subscript like ∂∆A.

2. Main ideas and the definition of the extended map

Our method is the estimation of moduli of rings. A ring is an open subset R of C

such that C \ R has two components. The modulus of M(R) of the ring R is defined
as the infimum of the area integrals

(2.1) M(R) = inf
̺

∫

R

̺2dm

over all non-negative Borel maps ̺ : R→ R ∪ {∞} such that the path integral

(2.2)

∫

γ

̺ds ≥ 1

for all paths γ joining the two components of C\R; thus the endpoints of γ are outside
R but we set ̺ = 0 outside R and so (2.2) is defined for all paths. We usually use
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the euclidean metric but if ∞ ∈ R, we need to use the spherical metric. In situations
where both metrics can be used they give the same result by the conformal invariance
of the modulus. We will use also other Riemannian or similar metrics and denote

Md(R) = the modulus of R with respect to d

and M(R) is the modulus with respect to the euclidean or the spherical metric.
The modulus is a conformal invariant can be expressed in two ways: if f is a

conformal homeomorphism of R, then M(fR) = M(R). Another way to express this is
that if d is a Riemannian metric conformally equivalent to the euclidean (or spherical
if it is used), then the modulus can also be expressed using the distance and area
defined by d in (2.1) and (2.2); the conformal equivalence of two Riemannian metrics
means that the angles defined by the two metrics are the same and is equivalent to
the fact that the element of length of the one metric can be obtained from the element
of length of the other metric by multiplying with a positive function. Our situation
is more general than that and the metric in our case would be Riemannian outside
zeroes of a quadratic differential and outside R ∩R. The exact situation can be found
in Section 5.

The conformal invariance of the modulus under conformal change of metric form
the basis of the following observation which was the starting point of this paper. If f
is a quasiconformal map of R, then it is possible to estimate M(fR) knowing only the
the complex dilatation µf of f . Assuming enough regularity, this can be explained as
follows. Let f be a quasiconformal map of R. Then we can define a metric df on R
so that the infinitesimal length element corresponding to the euclidean length element
|dz| is

|Df(z)dz|,
Df(z) denoting the derivative of f at z. This gives a metric on R so that f is a
local isometry of (R, df) onto (fR, d) where d is the euclidean metric. This metric is
Riemannian outside the set where Df is non-singular. If this set is not too large, then

(2.3) Mdf
(R) = M(fR).

If we multiply |Df (z)| by a positive, sufficiently regular, function we obtain a metric
conformally equivalent to df . For instance, another natural metric is obtained if we
multiply by the inverse of the Jacocian and obtain the length element

(2.4) |J−1
f (z)Df(z)dz|.

and the metric qf obtained from this is conformally equivalent to df and hence (2.3)
is valid also for this metric; at points where Jf (z) = 0, we set the length element to 0.

The expression (2.4) can be estimated from the shape of the dilatation ellipsoid
of f at z. The dilatation ellipsoid is the image of an infinitesimal circle centered at
z and the information we need to estimate (2.4) is the ratio of the major and minor
axes, well as the directions which are mapped on the major and minor axes of the
dilatation ellipsoid. This is exactly the information which we can obtain from the
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complex dilatation µf (z), cf. the formula (3) for the directional derivative. Thus µf
determines qf and M(fR) can be determined from qf .

This is applied as follows. Let ϕ be a quadratic differential on ∆ and let τ and
σ be two distinct simple trajectories. The closure of such a simple trajectory is a
closed arc with endpoints on ∂∆ and otherwise contained in ∆ (Lemma 3.1). Thus
τ and σ bound a subset of ∆ which is a Jordan domain. In addition, we assume
that there is a horizontal arc κ joining them. Thus κ is a closed arc contained in
a horizontal trajectory. If z ∈ κ, let τz be the vertical trajectory through z. Since
ϕ has only countably many zeroes, τz is simple except for countably many z. Let
κ◦ = κ \ {endpoints of κ}.

Suppose that γ is a path joining a point of τ to a point of σ. Let z ∈ κ◦ be a
point such that τz is simple so that τ̄z is a closed arc with endpoints on ∂∆. Thus
γ must intersect τz. Let w be the point of intersection and let α be the subarc of
τz with endpoints z and w. In this situation, there is a closed neighborhood W of α
so the canonical coordinate Φ =

∫ √
ϕdz maps W isometrically onto a quadrilateral

Q = [a, b] × [c, d] when W is provided with the ϕ-metric and Q with the euclidean
metric. We can assume that Φ(W ∩ κ) = Q ∩ R and that Φ(α) is a subset of the
imaginary axis. We can transform the situation to Q by means of Φ and can assume
that γ contains a subpath γ0 so that Φγ0 joins a point on the left boundary {a}× [c, d]
to a point on the right boundary {b}× [c, d]. Now the euclidean length of |Φγ0| of Φγ0

is at least |a − b|. Thus |Φγ0| = |γ0|ϕ is at least |κ0|ϕ = |a − b| when κ0 = Φ−1[a, b].
The path γ contains subpaths γj so that to each γj corresponds such an arc κj as above
so that κj ’s cover κ minus the set z ∈ κ such that τz contains z zero of ϕ. This latter
set is countable and hence

|γ|ϕ ≥ |κ|ϕ
for any such path.

Actually more is true. The horizontal length of ϕ is defined by the element of
length |Re

√
ϕdz|. We can define the horizontal length of paths using using this element

length. Now, Φ maps the horizontal element of length |Re
√
ϕdz| to |du| if Φ = u+ iv.

Thus the above argument actually shows that

(2.5) |γ|ϕ ≥ |γ|hϕ ≥ |κ|hϕ = |κ|ϕ > 0.

The proof of Lemma 3.3 gives the details. In particular, it follows that the horizontal
distance dhϕ(τ, σ) = |κ|ϕ.

A consequence of (2.5) is that if two simple trajectories τ and σ are joined by a
horizontal arc, then the closures τ̄ and σ̄ are disjoint: if there is z0 ∈ τ̄ ∩ σ̄, then, using
(2.5), we could show that rings 0 < |z − z0| < m, m small, have positive modulus,
contradicting the fact that the degenerate rings have zero modulus. Details are given
in the proof of Lemma 3.4.

Let r(z) = 1/z̄ be the reflection on ∂∆. Define the doubles of τ and σ by

τ̃ = τ̄ ∪ r(τ) and σ̃ = σ̄ ∪ r(σ̄);

these are Jordan curves since τ̄ and σ̄ are arcs and since we now that they are disjoint,
there is a ring R = R(τ, σ) so that ∂R = τ̃ ∪ σ̃. Let 0 ≤ k < 1 and let fk be a
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quasiconformal map of C which is conformal in ∆∗ and satisfies (1) with the parameter
k in ∆. We will use (2.5) to estimate the moduli of fkR and will obtain an estimate
independent of k. The quadratic differential will sometimes vary and to mark the
dependence of fk on the quadratic differential we may denote fϕk.

Let γ be path joining τ and σ in ∆. We will start by considering the case k = 0 in
which case we have a conformal map and hence it is enough to estimate M(R). Now,
(2.5) gives that

(2.6)

∫

γ

√

|ϕ||dz| = |γ|ϕ ≥ |κ|ϕ > 0.

So
√

|ϕ|/|κ|ϕ would seem to be a good candidate for ̺ in ∆. Going to ∆∗, we simply
reflect ϕ to ∆∗ by means of the reflection r to obtain a quadratic differential ϕ∗ of ∆∗.
details, see Section 5. We denote simply by ϕ the combined quadratic differential on ∆∪
∆∗. The reflection r is an isometry of the ϕ-metric and it preserves horizontal/vertical
trajectories. Thus, if γ joins r(τ) and r(σ) in ∆∗, formula (2.6) is still true.

Of course, we would need to extend ϕ still to ∂∆ and consider paths joining the
components of C \R which need not be contained ∆ or in ∆∗. We can do this by some
technical juggling, see Section 5. One gets perhaps a better picture of the situation if
one notes that if z ∈ κ and τz is a simple trajectory, then τ̃z = τ̄ ∪r(τ̄z) is a topological
circle and these form a family of disjoint concentric Jordan curves so that the value
of the path integral

∫

γ

√

|ϕ||dz| along γ increases at least by dhϕf(z, w) when γ moves
from τ̃z to τ̃w.

Assuming that ̺ =
√

|ϕ|/|κ|ϕ will do the job, we would have the estimate

M(R) ≤ mϕ(∆ ∪ ∆∗)/|κ|2ϕ = 2||ϕ||1/|κ|2ϕ
where mϕ is the area with respect to ϕ.

If k > 0, then we define a metric, denoted dk, on ∆ ∪ ∆∗ conformally equivalent
to dfk

in (2.3) outside zeroes of ϕ which can be ignored as an isolated set of ∆ ∪ ∆∗.
Since fk is conformal on ∆∗, we can use the ϕ-metric (or more precisely, the ϕ∗-metric)
on ∆∗. On ∆, we use the fact that fk decreases infinitesimal distance to the vertical
direction by the factor K = (1 + k)/(1 − k) when compared to infinitesimal distance
to horizontal direction. Thus we define a new metric on ∆ so that the lengths of
horizontal arcs are unchanged but lengths of vertical arcs are divided by K. This
condition defines a unique metric on ∆, which is Riemannian outside zeroes of ϕ and
conformally equivalent to dfk

. Leaving again aside the problem of ∂∆, we have a metric
dk on ∆ ∪ ∆∗, conformally equivalent to dfk

outside zeroes of ϕ.
We have changed the ϕ-metric on ∆ to obtain dk. Note that horizontal distances

were not changed. Thus we can still define horizontal length by the element of length
|Re

√
ϕdz| and we have that dhϕ ≤ dk. Thus if γ joins τ to σ in R∩∆, and denoting the

length of γ with respect to dk by |γ|k, we have |γ|k ≥ |γ|hϕ ≥ |κ|ϕ. If mk is the areal
measure associated to dk, the above argument is valid, modulo some details supplied
in Section 5, and hence

|κ|2ϕM(fkR) ≤ mk(∆ ∪ ∆∗) = mϕ(∆∗) +mk(∆) ≤ 2||ϕ||1 <∞

10



where we have used the facts that the area mk with respect to dκ satisfies mk ≤ mϕ

and that mϕ(∆∗) = mϕ(∆) = ||ϕ||1.
We sum up what we have proved (modulo details to be supplied in Section 5). We

have above explained the situation in the simplest case and assumed that τ and σ are
simple trajectories but it is useful to drop this assumption. If τ and σ are any two
distinct trajectories such that dhϕ(τ, σ) > 0, then there is a component D of ∆ \ (τ ∪ σ)
such that ∂∆D ∩ τ = α and ∂∆D ∩ σ = β where α ⊂ τ and β ⊂ σ are arcs such
that ᾱ and β̄ are disjoint cross cuts of ∂∆ (Lemmas 3.1 and 3.2). Thus there is a ring
R = R(τ, σ) of C such that

(2.7) ∂R(τ, σ) = ᾱ ∪ β̄ ∩ r(α) ∪ r(β)

and we will call this ring the ring defined by τ and σ. We formulate the next lemma
in this situation; if κ joins τ and σ, then dhϕ(τ, σ) = |κ|ϕ > 0 (Lemma 3.3).

Lemma 2.1. If τ and σ are trajectories whose horizontal distance dhϕ(τ, σ) > 0, then
τ̄ and σ̄ are disjoint and if f = fϕk

satisfies (1) with fixed ϕ but with varying k, then
the ring R(τ, σ) defined by τ and σ satisfies

M(fϕk(R(τ, σ)) ≤ 2||ϕ||1/dhϕ(τ, σ)2.

In particular, this estimate is true for M(R(τ, σ)).

This is our starting point. Using it, we can extend it to the situation that the
quadratic differential varies, though not far from a fixed ϕ. We have the following
lemma. Note that we still have the fixed quadratic differential ϕ and trajectories τ and
σ are ϕ-trajectories.

Lemma 2.2. Let ϕ, τ , and σ be as in Lemma 2.1. Let m > 0. Then there are ε > 0
and a compact set K ⊂ ∆ as well as c > 0 with the following property. Let ψ be a a
quadratic differential such that ||ψ||<m and |ϕ− ψ| < ε in K. If fψk satisfies (1) with
ϕ = ψ, then M(fψk(R(τ, σ)) ≤ c independently of k.

The proof will be given in Section 5 and is based on the fact that if ψ satisfies the
conditions of the lemma, then R(τ, σ) contains a ring R(τ ′, σ′) where τ ′ ad σ′ are ψ-
trajectories whose horizontal ψ-distance is bounded from below by a positive constant
(Lemma 5.4).

We do not need so much this results than the following consequence of it. We
assume that we have the situation of Theorem 1, that is fj = fkj

are quasiconformal

maps of C conformal on ∆∗ and on ∆ they satisfy (1) with k = kj and ϕ = ϕj such
that kj → 1 and ϕj → ϕ uniformly on compact sets and the L1-norms of ϕ and ϕj are
bounded by a constant m > 0,

Corollary 2.3. Let τ and σ be as in Lemma 2.2 and assume that fj tend toward a
conformal embedding on ∆∗. Then there is c > 0 independent of i such that whenever x
and y are in different components of the complement of the ring R(τ, σ), their spherical
distance satisfies

(2.8) q(fj(x), fj(y)) ≥ c > 0

11



for all j > 0.

Proof. Let R = R(τ, σ). Both components of C \ R contain an open non-empty
subset of ∆∗ and since fj tend toward a conformal embedding on ∆∗, it follows that
the fj-images of these components have spherical diameter bounded from below by a
positive constant independently of i. Since the moduli of the rings are bounded from
above by Lemma 2.2, known properties of the moduli imply (2.8), cf. [V, 12.7]. We
have given a simple normal family proof in the Appendix.

Remarks. 1. We have used ||ϕ||1 in the estimate for M(R) since this is all we need
but it could be replaced by mϕ(R∩∆) =

∫

R∩∆
|ϕ|dm where R = R(t, σ) If τ and σ are

joined by the horizontal trajectory κ, then ||ϕ||1 could be replaced by mϕ(V ) when V
is the union of trajectories intersecting κ.

2. If τ and σ are joined by a horizontal arc κ, then an unessential modification of
the proof in section 5 (involving Lemma 5.4) shows that, given ε′ > 0, we can choose
ε and K in Lemma 2.2 so that M(fψk(R(τ, σ)) ≤ 2m/dhϕ(τ, σ)2 + ε′. Here m is the
upper bound for the L1-norms of ϕ and ψj and could be replaced by an upper bound
for mψj

(R∩D) The assumption that τ and σ are joined by a horizontal arc is probably
not necessary for this kind of estimate but this seems to require lengthy arguments.

Construction of the extended limit. The first idea is that we find a subse-
quence so that fj(τ) have the Hausdorff limit for any complete trajectory τ and this
Hausdorff limit will be f(τ). This does not work for two reasons. The first is that we
cannot assume that the Hausdorff limit exists for uncountably many sets τ ∈ T ∪V, T
and V as in the Introduction. We must also take into account what happens outside ∆
and consider instead τ the double τ̃ = τ ∪ r(τ̄) of τ̄ . We construct the extended limit
as follows.

Recall that if τ is a trajectory, the completion τ∗ is a simple complete trajectory
if τ∗ is a closed arc which is the closure of τ . The countability of the zeroes of ϕ
implies that τ is simple, i.e. ϕ 6= 0 on τ , except for countably many τ but to see that,
apart from a countable set, τ̄ is already the completion of τ requires slightly more
complicated argument, see Theorem 3.8. Next, we choose a countable dense set S of
trajectories so that τ̄ is a simple complete trajectory. The density of S means that if
κ is a horizontal arc, then {κ ∩ τ : τ ∈ S} is a dense subset of κ. Using the fact that
τ̄ = τ∗ except for countably many τ , we see that there is such a set S; remember that
∆ \ {zeroes of ϕ} can be covered by countably many closed sets which the canonical
coordinate maps to quadrilaterals with sides parallel to the coordinate axes.

We need a few properties for τ ∈ S. First, we need that τ̄ is closed arc with
endpoint on ∂∆ but otherwise contained in ∆, cf. Lemma 3.1. We need also the fact
that the horizontal distance dhϕ(τ, σ) > 0 for distinct τ, σ ∈ S and hence {τ̄ : τ ∈ S} is
a family of disjoint closed arcs (Theorem 3.6).

The double σ̃ = σ̄ ∪ r(σ̄), σ ∈ S, is a Jordan curve and {σ̃ : σ ∈ S} is a family
of disjoint Jordan curves. Let Ũ consist of the closures of the sets C such that C is a
component of C \ (∪F) where F ⊂ {τ̄ : τ ∈ S} is finite. Thus Ũ is a countable family
of compact sets. We will see (this is a consequence of Lemmas 3.5 and 3.9) that if ν is
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a complete trajectory, then

(2.9) Ũν = {U ∈ Ũ : ν ⊂ intU}

is a basis of closed neighborhoods of the double ν̃ of ν; that is intU ⊃ ν and every
open set containing ν contains some U ∈ Ũν . Here ν ∈ T but this formula defines also
a basis of closed neighborhood for ν if ν ∈ V (in which case ν̃ = ν).

Let fj be as in Theorem 1 and suppose that and assume that fj tend on ∆∗ toward
a conformal embedding of ∆∗. Since the family of closed subsets of ∆̄ is compact in
the Hausdorff metric, given U ∈ U , it is possible to pass to a subsequence so that fj(U)
have a limit in the Hausdorff metric. Since U is countable we can assume that fj(U)
have a Hausdorff limit, denoted U∞, for every U ∈ U . This is the subsequence for
which the extended limit exists.

Let now ν be a complete trajectory. We define the extended limit of ν̃ = ν ∪ r(ν)
as the intersection

(2.10) f(ν̃) =
⋂

{U∞ : U ∈ Ũν}

and the extended limit of ν is

(2.11) f(ν) = f(ν̃) \ f(∆∗).

Note that we have the natural relation f(ν̃) = f(ν) ∪ {f(z) : z ∈ ν̃ \ ∆∗}. If ν ∈ V,
then the extended limit f(ν) is simply the intersection (2.10).

We have now defined the extended limit. The proof that the extended limit has
the properties claimed is much based on the fact that {U∞ : U ∈ Ũν} is a basis of
closed neighborhoods of f(ν̃) and of a similar basis of closed neighborhoods for f(ν)
(Lemmas 4.3 and 4.4). Details can be found in Section 4.

We have the following connection to the Hausdorff limit. If Xj is a sequence of
closed subsets of C, denote by lim supXj the set X such that x ∈ X if and only if every
neighborhood of x intersects infinitely many Xj ; this is the Hausdorff limit of Xj if it
exists. The next theorem assumes that we have passed to the subsequence constructed
above.

Theorem 2.4. If ν ∈ T ∪ V, then lim sup fj(ν) ⊂ f(ν).

Proof. Suppose that x ∈ lim sup fj(ν) where ν ∈ ∆∗ ∪D. The case that ν ∈ ∆∗ is
obvious and the case that ν ∈ V similar to the case that ν ∈ T which we now treat. If
ν ∈ T , then x ∈ lim sup fjU = U∞ for every U ∈ Ũν , implying that x ∈ ⋂

U∈Ũν
U∞ =

f(ν̃). If x ∈ f∆∗, then x ∈ fj∆
∗ for large n and hence x has neighborhood W such

that W ∩ fj(ν) = ∅ for large n and hence x 6∈ lim sup fj(ν), a contradiction. Thus
x ∈ f(ν̃) \ f(∆∗) = f(ν).

Remark. Once we have found the subsequence so that fjU have the Hausdorff
limit for all U ∈ U , it is easy to check (use Lemmas 4.1 and 4.4) that if we use replace
S by another countable dense set of simple vertical trajectories, we arrive to the same
extended limit.

13



3. Complete trajectories and partitioning ∆̄ by means of trajectories

We now start the detailed treatment. This section is independent of section 2.
We first study what happens when a trajectory approaches boundary. The basic

situation is straightforward: A trajectory τ is simple if it does not contain zeroes of
ϕ. If τ is such a trajectory, then τ̄ is homeomorphic to a closed interval so that τ̄ \ τ
consists of two points of ∂∆. Here we need only to refer to Strebel’s book (which uses
somewhat different terminology; Strebel does not allow branching at zeroes of ϕ and
so our trajectories are trajectories in Strebel’s sense if they do not contain zeroes of ϕ,
that is, they are simple).

We only use here vertical or horizontal trajectories but it is useful to recall the
notion of a geodesic. A (closed) geodesic arc is a closed arc which is locally isometric to a
closed interval of R, with respect to the ϕ-metric and the euclidean metric, respectively.
A geodesic ray of ϕ is the image of an injective map j : [0, a[→ R, 0 < a ≤ ∞, which
is a local isometry (with respect to these metrics) and so that j cannot be extended
from [0, a[ to any larger interval which would still be a local isometry. Similarly, a
geodesic is a local isometry in these metrics ]b, a[→ ν where −∞ ≤ b < a ≤ ∞ and
which cannot be extended to any larger interval as a local isometry. We remark that
in our situation these are actually global isometries [S, 14.2]. Thus, in particular, we
cannot have closed geodesics.

If γ is a geodesic arc contained in an open set U where there is a branch of the
canonical coordinate Φ =

∫ √
ϕdz, then Φγ is a line segment. All simple trajectories

are geodesics and an arc contained in a trajectory is a geodesic arc. If τ is a vertical
or horizontal trajectory and z ∈ τ , it is obvious (see Fig. 1) that there is an arc γ ⊂ τ
containing z which is a geodesic arc and, using local considerations appealing to Fig.
1, and remembering that τ is simply connected [T1, Lemma 2.3], we see that γ can be
extended to a geodesic contained in τ ; this fact will be needed later.

The next lemma is contained in Theorems 19.4 and 19.6 of Strebel [S].

Lemma 3.1. If τ is a simple trajectory (i.e. does not contain zeroes of ϕ), then τ̄ is
a cross cut of ∂∆, i.e. τ̄ is homeomorphic to a closed interval so that τ̄ \ τ consists of
two points of ∂∆, and this is also true if τ is a geodesic.

This implies the following

Lemma 3.2. If τ is a trajectory, then τ̄ \ τ is a subset of ∂∆ and contains at least
two points and if τ is simple, it contains exactly two points. If D is a component of
∆̄ \ τ̄ , then D is a Jordan domain whose boundary is the union of an arc of ∂∆ and of
a geodesic contained in τ .

If τ and σ are two distinct trajectories, then there is a unique component D of
∆ \ (τ ∪ σ) such that D is a Jordan domain and ∂∆D = α ∪ β where α and β are
geodesics so that α ⊂ τ and β ⊂ σ.

Proof. As we have seen, τ contains a geodesic and hence by Lemma 3.1, τ̄ ∩ ∂∆
contains at least two points. If τ is simple, then τ is a geodesic and hence τ̄ ∩ ∂∆
contains two points.
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To prove the remainder, we note that every z ∈ ∆∩ τ has a neighborhood U such
that U ∩ τ consists of one vertical arc, or if z is a zero of ϕ, of the point z and a finite
number of non-critical vertical arcs with endpoint z, that is we have the situation of
Fig. 1. This follows since otherwise there would be a horizontal trajectory intersecting τ
more than once and this is not possible [T1, Lemma 2.3]. It follows that ∂∆τ = τ . If D
is a component of ∆\τ and z ∈ ∂∆D, then it follows from above by local considerations
(see Fig. 1) that ∂∆D contains a geodesic α ⊂ τ such that z ∈ α. We know by Lemma
3.1 that ᾱ is a closed arc such that ᾱ∩∂∆ consists of two points. Thus D is contained
in one of the components of ∆ \ α, call it D′. If there is w ∈ ∂∆D \ α, then w ∈ β
where β ⊂ τ is another geodesic. If α ∩ β = ∅, then τ could not be connected. Hence
α∩β 6= ∅. Now, τ is simply connected [T1, Lemma 2.3 (b)] and hence α∩β is either a
point or an arc and hence there is a ray contained in β and which divides D′ into two
pieces and D is contained in one of them. It would follow that α cannot be contained
in ∂∆D. It follows that α = ∂∆D and D is one of the components of ∆ \ α.

The second paragraph is an obvious consequence of the first.

Next, we give in exact form the fact already outlined in Section 2 that if two
trajectories are joined by a horizontal arc, then the ϕ-length of this arc gives the
horizontal distance of the trajectories:

Lemma 3.3. Let τ and σ be trajectories joined by a horizontal arc κ. If γ is a path of
∆ joining τ and σ, then |γ|ϕ ≥ |γ|hϕ ≥ |κ|ϕ = |κ|hϕ and thus dϕ(τ, σ) = dhϕ(τ, ϕ) = |κ|ϕ.

Proof. Let κ◦ be κ minus the endpoints. If z ∈ κ◦, let τz the maximal non-
critical vertical trajectory contained containing z. Thus we go from z to both vertical
directions as far as we can without meeting a zero of ϕ; if z is a zero of ϕ, then set
τz = ∅. Set

V =
⋃

z∈κ◦

τz

where κ◦ is the set of interior points of κ. Obviously, it is a subset of ∆ \ (τ ∪ σ).
We claim that that V is open. Suppose that w ∈ V . Thus w ∈ τz for some z ∈ κ◦.

Let α be the closed subarc of τz with endpoints z and w. There is a simply connected
neighborhood U ⊂ ∆ of α not containing zeroes of ϕ. Thus there is a branch of the
canonical coordinate Φ =

∫ √
ϕdz on U and we can choose it so that Φα is contained

in the imaginary axis and that ΦU contains a quadrilateral with sides parallel to the
coordinate axes whose interior contains Φα. If β is a vertical line segment of Q joining
opposite sides of Q, then Φ−1β is contained in some τw, w ∈ κ. Thus Φ−1Q ⊂ V and
since the interior of Φ−1Q contains α, it follows that V is open.

We can use Q and Φ also to obtain the following. Let π be the projection V → κ
so that π(ζ) = z if ζ ∈ τz. We can move from Φ−1Q by means of the canonical
coordinate Φ to Q and then π is transformed to the projection π0 : x + iy 7→ x of Q
and thus Φπ = π0Φ = u if Φ = u+ iv. The horizontal length element |Re

√
ϕdz| is sent

to |du| by Φ = u + iv and hence |Re
√
ϕdz| = |dπ0Φ(z)| = |du|. On the other hand,

|du| = |dπ0Φ(z)| = |dΦπ(z)| = |
√

ϕ(π(z))dπ(z)|. Hence if β is a path in Φ−1Q,

|β|hϕ =

∫

β

|Re
√
ϕdz| =

∫

π0Φβ

|du| =

∫

Φπβ

|du| =

∫

πβ

|√ϕdζ| =

∫

πβ

√

|ϕ||dζ| = |πβ|ϕ.
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Every z ∈ V is contained in such a set Φ−1Q and hence |β|hϕ = |πβ|ϕ whenever β is
a path of V . If β is such a path, let κβ be the set of points covered by πβ which is a
subarc of κ. We have

|β|hϕ = |πβ|hϕ ≥ |κβ|ϕ.
Let J be the parameter interval of γ and thus γ−1V is a union of disjoint subin-

tervals of J . We denote these intervals by Jj and let γj = γ|Jj.
Let z ∈ κ0 and assume that the vertical trajectory through z does not contain

zeroes of ϕ. Then we know by Lemma 3.1 that τ̄z is a closed arc with endpoints on ∂∆
but otherwise contained in ∆. Let U be the component of ∆ \ (τ ∪ σ) whose boundary
contains a geodesic α ⊂ τ and β ⊂ σ as in Lemma 3.2. Thus τz ⊂ U and since τ̄z is
a crosscut of ∂∆ it divides ∆ into two pieces which we call V1 and V2. Since τz is a
vertical arc and κ0 horizontal arc intersecting at z, κ contains points both in V1 and
V2. Since τz ∩ κ can contain at most one point [T1, Lemma 2.3], it follows that τz
divides κ into two pieces, one of which is contained in V1 and the other in V2. Thus
V1 contains one of the trajectories τ and σ and V2 the other. Thus τz separates τ and
σ and hence γ must intersect τz. It follows that z is in some κj . There are only a
countable number of z such that the vertical trajectory through z contains zeroes of ϕ
and hence the set of such points z is a nullset for the linear ϕ-measure of κ. Thus

|γ|hϕ ≥
∑

j

|γj|hϕ ≥
∑

j

|κj |ϕ ≥ |κ|ϕ

and the lemma is proved.

If τ and σ are distinct trajectories, then τ ∩σ = ∅ but their closures can intersect.
However, if their horizontal distance is positive, the closures are disjoint.

Lemma 3.4. If τ and σ are two trajectories such that dhϕ(τ, σ) > 0, then τ̄ and σ̄ are
disjoint. In particular, this is true if τ and σ are joined by a horizontal arc.

Proof. Let D be the domain of ∆ bounded by τ and σ. Thus (Lemma 3.2)
∂∆D = α ∪ β where α ⊂ τ and β ⊂ σ are geodesics and thus ᾱ and β̄ are closed arcs
with endpoints on ∂∆. It follows that if τ̄ ∩ σ̄ 6= ∅, then there is z0 ∈ ᾱ ∩ β̄ ∩ ∂∆

We can now proceed as follows. There is R > 0 such that the circle |z − z0| = r
intersects both α and β if 0 < r < R. We derive a contradiction as follows.

Let A be the ring 0 < |z − z0| < R. This ring is degenerate and hence the
modulus M(A) = 0. We can show, using ϕ, a positive lower bound for M(A) which is
a contradiction.

We use the following alternate definition for the modulus of a ring. We have

1

M(A)
= inf

∫

A

̺2dm,

where dm is the area element and where the infimum is taken over all non-negative
Borel functions ̺ on A such that

∫

γ

̺|dz| ≥ 1
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for all closed paths of A whose winding number with respect to z0 is 1. Each such
closed path γ contains a subpath γ0 joining a point of τ to a point of σ but otherwise
contained in the domain D of ∆ bounded by τ and σ and thus, by the preceding lemma,

∫

γ0

√

|ϕ||dz| ≥ c

where c = dϕ(τ, σ) > 0. If we extend ϕ by 0 to all of A, this is still true and we can
replace γ0 by γ. Thus

1

M(A)
≤ 1

c2

∫

A

|ϕ|dm ≤ 1

c2

∫

∆

|ϕ|dm <∞

and the lemma is proved.

If τ and σ are two vertical trajectories are joined by a horizontal arc κ, then
we know that |κ|ϕ gives the horizontal distance dhϕ(τ, σ). However, not all distinct
trajectories can be joined by a horizontal arc. The next lemma addresses this situation
if dhϕ(τ, σ) > 0.

The horizontal distance of τ and σ is the infimum of |γ|hϕ where γ is a rectifiable
path joining τ and σ. It is not difficult to see by passing to suitable coordinate neigh-
borhoods that we can take in the above infimum defining the horizontal distance of τ
and σ only such paths γ which are composed of horizontal and vertical arcs alternating;
thus |γ|hϕ is simply the composition of the ϕ-lengths of the horizontal arcs in the com-
position. We call such paths horizontal/vertical paths. If we have such a composition
to horizontal and vertical arcs, it is simple to see that we can remove parts from γ so
that γ is an arc with the original endpoints; we call such arcs horizontal/vertical arcs.
If τ and σ are distinct trajectories, Lemma 3.2 implies that τ and σ bound a domain V
of ∆. A simple argument adds the property that dhϕ(τ, σ), τ 6= σ, is the infimum of |γ|hγ
of horizontal/vertical paths with one endpoint on τ and the other on σ and contained
except for endpoints in V .

Lemma 3.5. Let τ and σ be two trajectories such that dhϕ(τ, σ) > 0. Then there is

a simple trajectory ν such that ν̄ separates τ̄ and σ̄ in ∆̄ and that dhϕ(τ, ν) > 0 and

dhϕ(σ, ν) > 0. Furthermore, there is a horizontal arc κ so that this is true whenever ν
is a simple trajectory intersecting κ and ν is distinct from τ or σ.

If τ and σ are joined by a horizontal arc κ′, we can take κ = κ′.

Proof. Let V the subdomain of ∆ bounded by τ and σ so that ∂∆V ⊂ τ ∪ σ.
As we have seen, there is a horizontal/vertical arc γ joining τ and σ in V . Thus γ is
the product γ1...γn of arcs so that so that horizontal and vertical arcs alternate in the
sequence; the first and last are horizontal.

At this point we need to introduce the following terminology. The subdomain V
of ∆ bounded by τ and σ bound is a Jordan domain since both τ ∩ ∂V and σ ∩ ∂V
are geodesics (Lemma 3.2) and hence their closures are closed arcs with endpoints on
∂∆ but otherwise contained in ∆. Thus the arc γ divides V into two parts V1 and V2

which are also Jordan domains. The intersection Jj = V̄j ∩ ∂∆ is either a closed arc or
a point; by the preceding lemma, it must actually be an arc.
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We will prove the lemma by induction on n. If n = 1, then γ = γ1 and our theorem
is true in view of Lemmas 3.3 and 3.4; we can take κ = γ1. If z ∈ κ is not an endpoint
of κ (i.e. τ 6= τz 6= σ) and τz is a simple vertical trajectory through z, then τz contains
points both in V1 and V2 and hence one endpoint of τ̄z is in V̄1 ∩ ∂∆ and another in
V̄2 ∩ ∂∆. It follows that τ̄z separates τ̄ and σ̄ in ∆̄.

In particular, we see that if the horizontal arc κ′ joins τ and σ, we can take κ = κ′.
Suppose then that the lemma is true for n ≤ k − 1. We will show that it is true

also if n = k.
We order γ so that the point of γ on τ is the first point of γ and denote this order

by <. We say that x ∈ γ is smaller (or larger) than y ∈ γ if x < y (or y < x) with
respect to this order.

So suppose that there are exactly k horizontal arcs in the composition γ1...γk. The
first arc γ1 is horizontal and we let a and b be the endpoints of γ1 so that a < b. Let
τz be the vertical trajectory through z and define, using the order we have defined,

c = inf{z ∈ γ1 : τz ∩ γ3...γk 6= ∅};

note that τb ⊃ γ2 and hence τb ∩ γ3 6= ∅ and so the above infimum is well defined.
If c > a, let κ0 be the subarc of γ1 with endpoints a and c. The points z ∈ κ0\{a, c}

such that τz is simple are dense in κ0. Let z be such a point. Now dϕ(z, a) = dhϕ(τz, τ)

by Lemma 3.3 and hence, if z is close to a, then both dhϕ(τz, τ) > 0 and dhϕ(τz, σ) > 0.
It follows by Lemma 3.4 that τ̄z is disjoint from τ̄ ∪ σ̄ and it can be seen as in the case
n = 1 that τ̄z separates τ and σ. We can take for the arc κ any horizontal subarc of κ0

a but whose points are so close to a that both dhϕ(z, τ) > 0 and dhϕ(z, σ) > 0 if z ∈ κ.
Thus we are done if c 6= a. If c = a, we use the inductive assumption as follows.

We choose a sequence of points zj tending to c = a so that τzj
intersects γ3...κk at

wj ; by [T1, Lemma 2.3] this intersection can contain at most one point. We pass to
a subsequence so that that wj → d ∈ γ3...γk. Let τ ′ be the the vertical trajectory
through d. Then dhϕ(τ, τ ′) = 0 and hence dhϕ(τ ′, σ) > 0. Thus γ contains a subarc
γ′ joining τ ′ and σ but distinct form τ ′ ∪ σ except for endpoints. We easily obtain
from the horizontal/vertical decomposition of γ a horizontal/vertical decomposition of
γ′ with fewer arcs. Thus the inductive assumption is true for the horizontal/vertical
arc γ′ joining τ ′ and σ and hence γ′ contains a horizontal arc κ so that if ν is a simple
vertical trajectory intersecting κ, and τ ′ 6= ν 6= σ, then ν̄ separates τ̄ ′ and σ̄ and both
dhϕ(ν, τ ′) and dhϕ(ν, σ) are positive. Since dhϕ(τ, ν) = dhϕ(τ ′, ν) > 0, ν̄ and τ̄ are disjoint.

Furthermore, τ̄ and τ̄ ′ must be in the same component of ∆̄ \ ν̄ since their horizontal
distance is zero but they have positive horizontal distance to ν. The lemma is proved.

Complete trajectories. Even if we have extended the notion of a trajectory so
that it may include critical points, we still need to extend this notion further so that
a trajectory may be extended across the boundary. The reason is that we need that
the closures of two trajectories are disjoint but this need not be always the case. For
instance, suppose that ϕ is defined and holomorphic in a neighborhood of ∆̄. Then ϕ
may have a zero on ∂∆ so that they are two trajectories of ∆ meeting at the zero which
are disjoint in ∆. Then the closures of these trajectories intersect and it is natural,
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and also necessary, to join these trajectories. Also, it is possible that ϕ has two zeroes
on ∂∆ so that an arc of ∂∆ joining these zeroes is is a trajectory arc. In this case, we
would join the trajectories going to these zeroes by adding this trajectory arc on ∂∆.

These examples illustrate what may happen although our definition includes much
more complex situations. The idea is that we can join trajectories by going through
boundary and thus we include boundary points in the trajectories so that they will be
closed subsets of ∆̄. We call these trajectories complete trajectories.

Another way to think about complete trajectories is to use the horizontal distance
between two trajectories. The horizontal distance dhϕ(τ, σ) is a pseudometric in the set
of all vertical trajectories. Thus there may be many trajectories at zero distance from
a given trajectory τ . We want to extend a trajectory τ to include all these trajectories
at zero distance as well as some points on the boundary joining them. This trajectory
the complete trajectory defined by τ , denoted τ∗ and called the completion of τ . The
following definition is convenient. If σ is a simple trajectory such that σ̄ is disjoint
from τ̄ , let

(3.0) Dσ = Dσ(τ)

be the closure of the component of ∆̄\σ̄ containing τ̄ . We can now define the completion
of τ as

(3.1) τ∗ =
⋂

σ

Dσ(τ)

where the intersection is taken over all simple trajectories σ such that dh(τ, σ) > 0; by
Lemma 3.4 this condition implies that τ̄ and σ̄ are disjoint. A complete trajectory ν
is a trajectory which is the completion τ∗ of some trajectory τ . Note that although a
trajectory is a subset of ∆, a complete trajectory is a subset of ∆̄.

The following properties of complete trajectories will be needed.

Theorem 3.6. Let ν be a complete trajectory. Then ν is a closed and connected subset
of ∆̄ not separating C (i.e. C \ ν is connected). If ν′ is another complete trajectory
distinct from ν, then ν and ν′ are disjoint. If ν = τ∗ is the completion of a trajectory
τ , then

(3.2) ν ∩ ∆ = ∪{σ : σ is a vertical trajectory such that dh(τ, σ) = 0}.

Let z ∈ ν ∩ ∆. Then z has a neighborhood V such that ϕ 6= 0 in V except possibly
at z and such that V ∩ ν consists of one trajectory arc if ϕ(z) 6= 0. If ϕ(z) = 0, then
ν ∩∆ consists of z and of a finite number of trajectory arcs of V \ {z} with endpoint z.

Thus locally ν ∩ ∆ is like in Fig. 1; the number of trajectory arcs is n + 2 if n is
the order of ϕ at z (n = 0 if ϕ(z) 6= 0).

Proof. Obviously, ν is closed and to show that it is connected it is enough to show
that every finite intersection of the sets Dσ(τ) in (3.1) is connected. This can be seen
easily since the boundary of Dσ(τ) in ∆̄ is σ̄ which crosscut ∂∆ and these are disjoint.
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Thus each finite intersection of the sets Dσ(τ) in (3.1) is homeomorphic to a closed disk
and hence is connected. Similarly, the complement in C of each finite intersection of
the sets in (3.1) is connected and it follows that also the complement of the intersection
(3.1) is connected.

We then prove (3.2). Let ν = τ∗. If σ is a trajectory such that dhν(τ, τ
′) > 0,

then Lemma 3.5 implies that there is a simple trajectory σ so that dhϕ(τ, σ) > 0 and

σ̄ separates τ̄ and τ̄ ′ in ∆̄. Thus τ ′∗ is disjoint from τ∗. On the other hand, if τ ′ is a
trajectory such that dhϕ(τ, τ ′) = 0, there cannot be a simple trajectory σ such that σ̄

separates τ̄ and τ̄ ′ and dhϕ(τ, σ) > 0 as this would imply that dhϕ(τ, τ ′) ≥ dϕ(τ, σ) > 0.
Let then z ∈ ∆ ∩ ν, ν = τ∗. Let V be a canonical neighborhood of z as shown in

Fig. 1. If z is a zero of ϕ, z is the point in Fig. 1 where the vertical trajectory through
z has n+ 2 branches at z when n is the order of the zero. Let τz be the trajectory of
V through z. Thus τz ⊂ ν. Each point w ∈ V \ τz can be joined to by a horizontal arc
to τz and hence dhϕ(τz, w) = dϕ(τ, w) > 0 (Lemma 3.3) and consequently ν ∩ V = τz.
This implies the last paragraph.

Finally, let ν = τ∗ and ν′ = τ ′∗. If ν 6= ν′, then we have seen that dhϕ(τ, τ ′) > 0
and thus, by Lemma 3.5, there is a simple trajectory σ such that σ̄ separates τ̄ and τ̄ ′

and hence σ̄ separates ν and ν′. It follows that ν̄ and ν̄′ are disjoint.

Lemma 3.7. Let ν be a complete trajectory. Then components of ∆ \ ν are Jordan
domains and if D is such a domain then (∂∆ ∩ D̄) \ ν is an open arc.

Proof. Let D be a component of ∆ \ ν. The set ν ∩ ∆ is a union of trajectories
τj , j ∈ I. It follows from Lemma 3.6 that {τj} is locally finite in ∆. Let Dj be the
component of D\τj containing D. We know (Lemma 3.1 and Corollary 3.2) that ∂∆Dj
is an open arc δj whose closure is a closed arc with endpoints on ∂∆. Remembering
that {τj} is locally finite in ∆, it easily follows that either δj ⊂ ∂∆D or δj ∩ ∂∆D = ∅.
Since ∂∆D ⊂ ν, it follows that there is J ⊂ I so that ∂∆D =

⋃

j∈J δj where {δj}j∈J is
a locally finite family.

Pick some δj , j ∈ J . We can find a horizontal arc κ ⊂ ∆ with one endpoint in
ν but otherwise contained in D. There is a simple trajectory σ traversing κ, then we
see using Lemma 3.3 that dhϕ(ν, σ) > 0. This fact implies that ν is contained in a

component of ∆̄ \ σ̄. Now, σ̄ is a crosscut of ∂∆ and hence ∂∆ ∩ D̄ contains one of
the components of ∂∆ \ σ̄. Thus (∂D ∩ D̄) \ ν contains at least one arc. If it contains
another, ν could not be connected. So it remains to show that D is a Jordan domain.

The set D is the subdomain of ∆ bounded by the arcs δj , j ∈ J . Each δ̄j is a cross
cut of ∆ and there is a well-defined closed subarc αj of ∂∆ with the same endpoints
than δ̄j and such that the Jordan domain bounded by δ̄j ∪ αj is contained in ∆ and
does not intersect D. Thus αj, j ∈ J , are disjoint except possibly for the endpoints.

There is a homeomorphism fj : αj → δj which keeps the endpoints fixed. If we set
f = fj on αj and and f(x) = x elsewhere we obtain a bijective mappings ∂∆ → ∂D.
If the number of δj ’s is finite, we are done. If it is infinite, we take J to be the set
of natural numbers and f is a homeomorphism if we can show that the euclidean
diameters

(3.3) d(δj) → 0
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as j → ∞; since the arcs αj are disjoint, we have d(αj) → ∞ as j → ∞.
We now prove (3.3). The proof is similar to the proof that a maximal geodesic ray

converges to a well-defined boundary point [S, 19.6].
Let aj and bj be the endpoints of δj . If (3.3) is not true, we can find a subsequence

jk and points djk ∈ δjk so that |a
k
− djk | ≥ r > 0. We can pass to a subsequence so

that ajk → a, bjk → b, and djk → d as k → ∞. Here a, b ∈ ∂∆ and since d(αj) → 0,
we have that a = b. We chose the subsequence so that d 6= a. Since {δj} is locally
finite in ∆, it follows that d ∈ ∂∆.

Choose a point z0 ∈ D. If x ∈ ∂∆, let Ix be the line segment with endpoints z0
and x. Let π : ∆̄ \ {z0} → ∂∆ be the projection so that π(y) = x if y ∈ Ix. We can
assume that z0 is so chosen that there is w in the interior of the arc D̄ ∩ ∂∆ such that
Iw \ {w} ⊂ D. Thus Iw intersects no δj . Let κ be the subarc of ∂∆ with endpoints a
and d not containing w. Then, given x ∈ J \ {a, d}, π(δjk) contains x for large k since
w 6∈ π(δj). Hence Ix ∩ δjk contains at least two points for large k.

The set of points x ∈ κ such that Ix has finite ϕ-length has full linear measure in
κ (the proof of Lemma 19.6 of [S] contains this result; Strebel assumed that z0 = 0 but
this is not essential) and hence we can fix two points x, y ∈ κ \ {a, d} so that Ix and
Iy have finite ϕ-length. We choose the notation so that x is between a and y on κ. As
noted above, Ix intersects infintely many δjk so that the intersection contains at least
two points. We can assume that this is true of all δjk ’s and that the same is true also
of Iy.

Let D′
k be the component of ∆ \ δjk not intersecting D. Then D′

j is a Jordan
domain and Ix ∩D′

j contains a subsegment whose closure is a cross-cut of D′
k. It may

contain several such subsegments, but we can find at least one, denoted Jk, so that
Jk intersects Iy. Thus, if the endpoints of Jk are uk and tk, then uk and tk are the
endpoints of a subarc δ′k of δjk so that δ′k ∩ Iy contains at least one point. We choose
one of them and call it vk. We let δ′′k be the subarc of δ′k with endpoints uk and vk.
The family {δj} is locally finite in ∆ and hence uk → x and vk → y as j → ∞.

Now
|Jk|ϕ ≥ |δ′k|ϕ ≥ |δ′′k |ϕ

where the first inequality is due to the fact δj ’s subarcs of geodesics and the second
since δ′′k ⊂ δ′k. Since Jk’s are disjoint and |Ix|ϕ < ∞, it follows that |Jk|ϕ → 0 as
j → ∞. Hence also |δ′′k |ϕ → 0.

It is possible to define ϕ-distance for the points x, y ∈ ∂∆ so that dϕ(x, y) =
lim inf dϕ(u, v) when u → x and v → y. This distance is always positive [S, Lemma
19.6] if x 6= y. However, we have seen that dϕ(uk, vk) = |δ′′k |ϕ → 0 and this would
imply that dϕ(x, y) = 0. This contradiction shows that (3.3) is true.

Recall that a complete trajectory ν is simple if ν = τ̄ for some simple trajectory
τ . Thus ν is a closed arc with endpoints on ∂∆.

Lemma 3.8. There are only a countable number of complete trajectories which are
not simple complete trajectories.

Proof. Since the number of zeroes of ϕ is countable, we need to consider only such
complete trajectories ν which do not contain zeroes of ϕ. Thus each component of
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ν ∩ ∆ is a simple trajectory. If ν is not the closure of a simple trajectory, then ν ∩ ∆
contains at least two trajectories τ and σ. Now, τ̄ and σ̄ are closed arcs and they
can have at most one common endpoint since otherwise they would bound a Jordan
domain D such that D̄∩ ∂∆ consists of two points. However, D contains a component
of ∆ \ ν and we know by the preceding lemma that the closure of such a component
contains an arc of ∂∆. This is a contradiction.

Thus ν∩∂∆ contains at least three points. Hence the hyperbolic convex hull of Hν

of ν∩∂∆ is well defined and contain interior points. If ν′ is another complete trajectory,
then ν′ is connected and hence ν′ ∩ ∂∆ is contained in a component ∂∆ \ ν. Thus Hν

and Hν′ are disjoint and so the family of Hν , ν a complete non-simple trajectory, is a
family of disjoint sets with non-empty interior. Hence this family is countable and our
lemma is proved.

The following lemma shows how we can find a neighborhood basis for a complete
trajectory using simple trajectories. A basis of closed neighborhoods of a set C is a
family F of closed sets such that C ⊂ intV for all V ∈ F and that if W is an open set
containing C, then W contains some V ∈ F .

Lemma 3.9. Let τ be a trajectory. Let F be the family of finite intersections

(3.3)

n
⋂

j=1

Dσj
(τ)

where Dσj
is the set Dσj

as in (3.0) and where σj is a simple trajectory such that
dhϕ(τ, σj) > 0. Then F is a basis of closed neighborhoods of the completion τ∗ of τ

in ∆̄. If F ′ is the family of intersections of this form where σ̄j are complete simple
trajectories, then F ′ is another basis of closed neighborhoods of τ∗ in ∆∗.

Proof. Suppose that σ is a simple trajectory such that dhϕ(τ, σ) > 0. Using Lemma

3.5, we find a simple trajectory σ0 such that σ̄0 separates τ̄ and σ̄ and both dhϕ(ν, τ) > 0

and dhϕ(ν, σ) > 0. Thus τ∗ ⊂ Dσ0
and Dσ0

⊂ intDσ. Using this fact we see that τ∗ is
in the interior of every intersection (3.3).

So, to conclude that F is a family of closed neighborhoods of τ∗, it is enough to
show that if W is a neighborhood of τ∗, then W contains some V ∈ F . We note that
the family E consisting of W and sets ∆̄ \Dσ such that σ is a simple trajectory with
dhϕ(τ, σ) > 0, is an open cover of ∆̄ since if z ∈ ∆̄ and z is in every Dσ, then z ∈ τ∗

by the definition of τ∗. Thus there is a finite subcover, consisting of W and some sets
∆̄ \Dσj

, j ≤ n. Thus W ⊃ ⋂n
j Dσj

∈ F .
The claim concerning F ′ follows similarly since, by Lemma 3.5, we can choose

the trajectory σ0 in the first paragraph of the proof from complete simple trajectories
intersecting a horizontal trajectory κ and since all but countable number of trajectories
intersecting κ are such that the closure is a complete simple trajectory. The second
paragraph of the proof is modified similarly.

As a corollary we have the following characterization of a trajectory. If ν is a
complete trajectory, then dhϕ(ν ∩∆, σ) > 0 for any trajectory σ not contained in ν and
then ν ∩ σ̄ = ∅ and we have
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Corollary 3.10. If ν is a complete trajectory, then

ν =
⋂

Dσ

where Dσ is as in (3.0) and the intersection is taken over simple trajectories σ such
that ν ∩ σ = ∅ or equivalently that ν ∩ σ̄ = ∅.

Recall that T was the family of complete trajectories and V was the family of
components of ∂∆ \ (∪T ).

Lemma 3.11. The family T ∪ V is a partition of ∆̄ such that each τ ∈ V is either a
point or a closed interval of ∂∆. If χ ∈ V, then χ has a closed neighborhood basis in
∆̄ whose elements are closures of components of ∆̄ \ σ̄ where σ̄ is a complete simple
trajectory.

Proof. It follows from Theorem 3.6 that the set T ∪V is a disjoint family. Obviously,
every z ∈ ∆̄ is on some τ ∈ T ∪ V. The following argument shows that if χ is a
component of ∂∆ \ (∪T ), then σ is closed and hence a point or a closed interval.

If χ is not a closed interval or a point, then it is an open or a half-open interval.
Thus there is an endpoint z of χ such that z 6∈ χ. In this case z ∈ τ∗ where τ∗ is the
completion of a trajectory τ . Let now σ be a simple trajectory such that dhϕ(τ, σ) > 0.
We know that σ̄ and τ∗ are disjoint and so are and σ̄ and χ. Since τ∗ ∪χ is connected,
it follows that τ and χ are contained in the same component of ∆̄ \ σ̄ for any such σ.
It follows that χ ⊂ τ∗, contrary to the assumption. So χ is closed.

If σ is a simple trajectory, then obviously there is a component of ∆\ σ̄ containing
χ. We denote the closure of this component by Dσ. Obviously, χ ⊂ intDσ . We will find
a sequence of complete simple trajectories σj so that if Dj = Dσj

, then Dj+1 ⊂ intDj
and that setting

(3.4)
⋂

j

Dj = D′,

then D′ = χ and it follows that {Dj} is a closed basis of neighborhood of χ.
Let the endpoints of χ be a and b (possibly a = b). There is a sequence of complete

trajectories νj containing a point zj ∈ νj ∩ ∂∆ such that zj → a. We can assume that
the points zj converge monotonously to a. We can find, using Lemma 3.5, a complete
simple trajectory σj separating νj and νj+1 in ∆̄. Hence we can assume that νj are
complete simple trajectories. Let Dj be the closure of the component D̄\νj containing
χ. We now claim that the intersection D′ of (3.4) is χ.

If D′ 6= χ, pick a point z ∈ D′ \ χ. We claim that we can choose z so that z ∈ ∆.
If this is not the case, then D′ would be a subarc of ∂∆ properly containing χ and
there would be a complete trajectory ν′ such that ν′ ∩D′ 6= ∅. Thus ν′ ⊂ Dj for every
j and hence ν′ ⊂ D′. This is a contradiction and so ∂∆D

′ 6= ∅ and there is such a z as
claimed and we can further assume that z ∈ ∂D′. Then dϕ(z, νj ∩ ∆) → 0 and hence
dhϕ(z, νi ∩ ∆) → 0.

Let τ be the trajectory through z. We claim that χ ⊂ τ∗. To prove this we must
show that if σ is a simple trajectory such that dhϕ(τ, σ) > 0 and Dσ is the closure of
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the component of ∆̄ \ σ̄ containing τ , then Dσ ⊃ χ, implying that χ ⊂ τ∗ contrary to
the assumption. We note that dhϕ(τ, νi ∩∆) → 0, and hence νj ⊂ Dσ for large j. Since
the endpoints of σ̄ are not points of χ and since zj ∈ νj tend toward the endpoint a of
χ, the sets χ and νj are in the same component of ∆̄ \ σ̄ for large j. These facts imply
that χ ⊂ Dσ. The lemma is proved.

4. The extended limit and semiconvergence

We now give the detailed construction of the extended limit whose construction
was outlined in Section 2 “Main ideas”.

We recall the notation. Let r(z) = 1/z̄ be the reflection on the unit circle. If τ
is a (vertical) trajectory, the complete trajectory τ∗ defined by τ is given by (3.1). If
ν = τ∗ is a complete trajectory, its double is ν̃ = ν ∪ r(ν); more generally, the double
Ã of a set A is

(4.1) Ã = A ∪ r(Ā)

and so, if σ is a simple trajectory, σ̃ is a Jordan curve.
First, we need a suitable neighborhood system for complete trajectories and their

doubles. We now go through the construction in the end Section 2 in a more precise
fashion. We first found a countable set S of simple complete trajectories, that is
trajectories ν such that ν = τ̄ for some simple trajectory τ and thus ν is a closed arc,
and such that S is dense in the set of trajectories which means that if γ is a horizontal
arc, then points of the form σ ∩ γ where σ ∈ S form a dense subset of γ.

Next, we define U to be the countable family of sets U such that U is the closure
of a components of ∆̄ \ (∪F) where F ⊂ S is finite. If ν ∈ T , we define Uν by

Uν = {U ∈ U : ν ⊂ intU}.

Lemma 3.9 implies now that Uν is a countable basis of closed neighborhoods of ν in ∆̄.
This implies that

Ũν = {Ũ : U ∈ Uν}
is a countable basis of closed neighborhoods of ν̃ in C. (Note that the definition of Ũν
was slightly different in Section 2 since we went directly to Ũν without considering Uν .)
We obtain a countable basis of closed neighborhoods for ν in C if we set

Ur = Ũ ∩ {|z| ≤ r}

and
U∗
ν = {Ur : U ∈ Uν , r > 1 rational}.

Not all points of ∆̄ are on some complete trajectory but some points of ∂∆ are in
some component of ∂∆ \ (∪T ), that is, they are in some ν ∈ V (in which case ν̃ = ν).
We need similar bases for ν ∈ V. If σ ∈ S, we let Dσ be the closure of the component
of ∆̄ \ σ̄ containing ν. As above, it follows from Lemma 3.11 using Lemma 3.5, that if
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we set Uν = {Dσ : σ ∈ S}, then Uν is a closed basis of neighborhoods of ν in ∆̄. If we
set Ũν = {Ũ : U ∈ Uν}, we obtain a basis of neighborhoods of ν in C. It is useful to
set U∗

ν = Ũν if ν ∈ V, since we can later treat simultaneously the cases that ν ∈ T and
ν ∈ V.

We now assume that we have a sequence fj of quasiconformal mappings as in
Theorem 1. In particular, fj tend toward a conformal map f in ∆∗. Since the set U
us countable, we can pass to a subsequence so that all the Hausdorff limits fjU , fjŨ ,
and fjUr as j → ∞ exist for all U ∈ U and rational r > 1. We denote the Hausdorff
limit by V∞ if V is one of these sets. Thus we can define, if ν ∈ V, f(ν̃) and f(ν) by
(2.10) and (2.11).

We have now defined the extended limit. In order to show that the extended
limit has the properties we have claimed, we need some lemmas. The main one is the
following which is based on Corollary 2.3.

Lemma 4.1. Let νj and ν2 6= ν1 be elements of T ∪ V. Then ν̃1 and ν̃2 have closed
neighborhoods Vj ∈ Ūνj

such that the spherical distances q(fjV1, fjV2) have positive
lower bound independent of j.

Proof. Since ν̃1 and ν̃2 are disjoint closed sets they have disjoint closed neighbor-
hoods. It follows that there are Vj ∈ Ũνj

so that V1 and V2 are disjoint. The boundary
of Vj consists of a finite number of Jordan curves of the form σ̃ where σ is a complete
simple trajectory and hence their horizontal distance is positive (Theorem 3.6). Hence
Lemma 2.3 implies that if σ̃ and σ̃′ are two such boundary curves, the spherical dis-
tances q(fj(σ̃), fj(σ̃

′)) are bounded from below by a positive constant independent of
i. This implies the lemma.

Theorem 4.2. The sets f(τ), τ ∈ D = T ∪ V, together with the one point sets f(z),
z ∈ ∆∗ form a partition of C by closed sets. In addition, if U ∈ Uν , ν ∈ D, then
Ũ∞ = ∪{f(τ̃) : τ ⊂ U , τ ∈ D}

Proof. We first show that the sets f(τ); τ ∈ D∪∆∗ are disjoint. Disjointedness is
a consequence of the preceding lemma since if ν1 and ν2 are distinct elements of T ∪V,
and V1 and V2 are as in the lemma, then f(νk) is a subset of the Hausdorff limit V∞

k

of fj(Vk) as j → ∞. By Lemma 4.2, V∞
1 and V∞

2 are disjoint. If ν1 ∈ T ∪ V and
ν2 ∈ ∆∗, then we note that f(νj) ⊂ C\f∆∗ and disjointedness is true also in this case.
Obviously it is true also if both νj are points of ∆∗.

To show that the union of these sets is C, we pick w ∈ C and note that each fj is
a homeomorphism and hence there is zj such that fj(zj) = w. Pass to a subsequence
so that zj tend to z ∈ C. If z ∈ ∆∗, we are done since fj → f locally uniformly in ∆∗

and hence f(z) = w. Otherwise, z ∈ ν for some ν ∈ T ∪ V. If V ∈ Ũν , then zj ∈ V

for large i, and hence w ∈ V∞. This is true for all V ∈ Ũ and the definition of f(ν)
implies that w ∈ f(ν̃). If w ∈ f(∆∗), then this would imply that z ∈ ∆∗, and we know
that in this case f(z) = w. Otherwise, w ∈ f(ν). This implies that the union is C.

Stated in other words, we have shown that C = f∆∗ ∪ (∪{f(τ) : τ ∈ D}). Hence,
in order to get the second paragraph, it is enough to show that that if τ ∈ D and
τ 6⊂ U , then f(τ̃) is disjoint from U . But this is a consequence of Lemma 4.1 since if
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τ 6⊂ U , then τ ∩ U = ∅ and hence τ has a neighborhood V ∈ Uτ which is disjoint from
U . Thus Ũ∞ and Ṽ∞ ⊃ f(τ̃) are disjoint.

Lemma 4.3. Let ν ∈ T ∪ V. Then W̃ν = {Ũ∞ : U ∈ Uν} is a basis of closed
neighborhoods of f(ν̃) and W∗

ν = {U∞
r : U ∈ Uν , r ∈ Q, r > 1} is basis of closed

neighborhoods of f(ν).
Given U ∈ Uν and rational r > 1, there are W ∈ Uν , rational s > 1 and n0 such

that

(4.2) fj(W̃ ) ⊂ int Ũ∞ and fj(Ws) ⊂ intU∞
r

for all i ≥ n0.

Proof. We first prove that W̃ν = {Ũ∞ : U ∈ Uν} is a basis of closed neighborhoods
of f(ν̃). We first show that f(ν̃) ⊂ int Ũ∞ for every U ∈ Uν . We prove this in the case
that ν ∈ T ; the modifications are obvious if ν ∈ V. Fix U ∈ Uν . Thus

U =

n
⋂

j=1

Dj

where σj ∈ S are such that dhϕ(σj, ν ∩ ∆) > 0 and Dj = Dσj
is the closure of the

component of ∆̄ \ σ̄j containing ν. Using Lemma 3.5 (apply it to a suitable component
of ν∩∆), we can find another σ′

j ∈ S so that dhϕ(σ′
j, ν∩∆) > 0, dhϕ(σ′

j , σj) > 0 and that

σ̄′
j separates ν and σj in ∆̄. Thus if we let D′

j be the component of ∆̄ \ σ̄j containing
ν, then

W =

n
⋂

j=1

D′
j ⊂ intU

is an element of Vν . Since σ̄, σ ∈ S, are simple complete trajectories, their horizon-
tal distance is positive and so Theorem 2.3 implies the existence of c > 0 such that
q(fj(σ̃p), fj(σ̃

′
k)) ≥ c > 0 for all p and k independently of j. Now, ∂W̃ =

⋃

k σ̃
′
k and

∂Ũ =
⋃

p σ̄p and hence (boundaries taken in ∆̄), and it follows that

(4.3) q(fjW̃ , fj∂Ũ) ≥ c > 0

for all j. These facts imply that the Hausdorff limit W̃∞ of fjW is in the interior of

Ũ∞ and (4.3) also implies the existence of n0 such that the first inequality of (4.2) is
true. Thus f(ν̃) ⊂ W̃∞ ⊂ intU∞.

Thus, in order to show that W̃ν is a basis of closed neighborhoods of f(ν̃), it is
enough to show that if V0 is a neighborhood of f(ν̃), then it contains some W ∈ Ũν .
This follows if we can show that {V0} ∪ {C \W : W ∈ Ũν} is an open cover of C and
this is true if {C \ W : W ∈ W̃ν} is an open cover of C \ f(ν̃). This would imply
that there are finitely many Wk ∈ Ũv so that W = W1 ∩ ... ∩Wn ⊂ V0. However, the
definition of Ũν , and consequently of W̃ν , is such that finite intersections of members
are still members.
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This can be seen as follows if ν ∈ T ; the case that ν ∈ V is similar.

If w ∈ C\f(ν̃), then w ∈ f(τ̃) for some τ ∈ T ∪V such that τ 6= ν and hence τ̃ and
ν̃ are disjoint. There are disjoint closed neighborhoods Uν ∈ Ũν of ν and Uτ ∈ Ũτ of
τ . The boundaries ∂Uτ and ∂Uν consist of a finite number of Jordan curves σ̃, σ ∈ S.
Thus there is σ ∈ S so that σ̃ ⊂ ∂Uν and such that σ̃ separates ν and τ . Let Dσ be
the component of ∆̄ \ σ̄ containing ν̄. Thus f(ν̃) ⊂ D̃∞

σ . On the other hand there is
also σ′ ∈ S such that σ̄ separates ν and τ . Corollary 2.3 implies that the spherical
distances q(fj(σ̃), fj(τ̃)) have a positive lower bound independent of j. Hence D̃∞

σ and

D̃∞
σ′ are disjoint when D∞

σ′ is the closure of the component of ∆̄\ σ̄′ containing τ . Thus
w ∈ f(τ̃) ⊂ D∞

σ′ ⊂ C \D∞
σ .

We need not add much to get the results for W̃∗
ν . We note that fj(C \ {|z| ≤ r})

converge toward a set which is a neighborhood of f(∆̄) (which we interpret as the
union of f(τ), τ ∈ D = T ∪ V, or equivalently, as C \ f∆∗) and any point not in
f(∆∗) is contained in some such set. Using these facts, and applying what we have
proved above, one easily sees first that each element of W̃∗ is a closed neighborhood of
f(ν) and that the second inequality of (4.2) is true. Then, using a similar compactness
argument as above, one shows that W̃∗

ν is a basis of closed neighborhoods of ν.

Proofs of Theorems 1 and 2. Since elements of T are disjoint (Theorem 3.6), D
is obviously a partition of ∆̄. That fD is a partition of C \ f∆∗ and f is a bijection
D → fD follows by Lemma 4.2. What we need in addition is mainly contained in the
preceding lemma. The definition of f(ν̃) implies immediately, together with (4.2), that
fj(ν̃) semiconverge to f(ν̃) and this implies easily that fj(ν) semiconverge to f(ν). If
νj ∈ ∆∗ ∪ T ∪ V semiconverge to ν̃, then the proof that fj(νj) semiconverge to f(ν) is
similar: if ν ∈ T , one shows first that fj(ν̃j) semiconverge to f(ν̃) and that this implies
the semiconvergence to f(ν).

We need to refine Lemma 4.3 for Theorem 3. We denote below the interior of a
set X by X◦ for brevity; if confusion is possible, we may denote it also intX . We also
say that a set U ⊂ C is D-saturated if ν ∩U 6= ∅ implies ν ⊂ U for ν ∈ D = T ∪V; the
definition of a fD-saturated set is similar; here fD = {f(τ) : τ ∈ D}.

Lemma 4.4. If ν ∈ D, let Fν = {U◦ : U ∈ U∗
ν }. Then Fν is a basis of (open)

neighborhoods of ν such that each U ∈ Fν is D-saturated.
Let fFν = {fU : U ∈ Fν} where fU is interpreted as ∪{f(τ) : τ ⊂ U, τ ∈ D∪∆∗}.

Then fFν is a basis of (open) neighborhoods of f(ν), ν ∈ D, such that each W ∈ fU ,
U ∈ Fν , is fD-saturated.

Proof. The definition of Ur, U ∈ Uν , is such that ν ⊂ U◦
r and since U∗

ν is a basis
of closed neighborhoods of ν (Lemma 3.9), Fv is a basis of neighborhoods of ν. Since
Ur ∩∆ = U is a closed set of ∆ bounded by a finite number of σ̄, σ ∈ S, it follows that
Ur is D-saturated.

To prove the second paragraph, we pick first U ∈ Uν and consider the set f(Ũ◦)
defined as ∪{f(τ̃), τ ∈ D, τ ⊂ U◦}. We claim that f(Ũ◦) is open. If z ∈ f(Ũ◦), then
z ∈ f(τ̃) for some τ ∈ D, τ ⊂ U◦. Thus Ũ∞ ∈ W̃τ which is a closed neighborhood of
τ by Lemma 4.3. Hence there is V ∈ Ũτ so that Ṽ∞ ⊂ int Ũ∞. We can assume that
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V ⊂ U◦. However, Lemma 4.2 implies that Ṽ∞ = ∪{f(σ̃) : σ ∈ D, σ ⊂ V } ⊂ f(Ũ◦)
since V ⊂ U◦. Now, Ṽ∞ is a closed neighborhood of τ and hence f(Ũ◦) is open.

Since fj → f uniformly on compact subsets of ∆∗, we have that U∞
r = Ũ∞\f{|z| >

r} (note that we regard ∞ as a point of {|z| > ∞}). If τ ∈ D, set τr = τ ∪ {z ∈
τ̃ ∩ ∆∗, |z| < r} = τ̃ \ {|z| ≥ r} and set f(τr) = f(τ) ∪ {f(z) : z ∈ τr ∩ ∆∗} =
f(τ̃) \ f{|z| ≥ r}. Thus

fU◦
r = ∪{f(τr) : τ ∈ D, τ ⊂ U} = ∪{f(τ̃) : τ ∈ D, τ ⊂ U} \ f{|z| ≥ r}

⊂ Ũ∞ \ f{|z| > r} = U∞
r .

where the inclusion is true because of Lemma 4.2. The equalities in this chain imply
that fU◦

r is open since we have shown that f(Ũ◦) = ∪{f(τ̃) : τ ∈ D, τ ⊂ U} is open.
The second is implies that fU◦

r ’s form a basis of neighborhoods of ν since U∞
r ’s form

a basis of closed neighborhoods of ν.

Proof of Theorem 3. Theorem 1 implies that f is a bijection C/D → C/fD.
Lemma 4.4 implies that Fv and fFν project to neighborhoods of ν and f(ν) in the
quotients C/D and C/fD, respectively. Hence f is a homeomorphism in the quotient
topologies.

The fact that C/D and C/fD are homeomorphic to C is Theorem 22 of Moore
[M]. One need only to translate this theorem into modern language and to add a few
simple arguments. We note that (∆∗ \ {∞}) ∪ D (here points of ∆∗ or of f∆∗ are to
be understood as one-point sets) is an upper semi-continuous collections of continua in
the terminology of Moore. The partition E of C is an upper semi-continuous collection
of the plane C if each G ∈ E is a compact connected set not separating C, i.e. its
complement is connected. In addition, if U is a neighborhood of G, then G has a
smaller neighborhood V such that whenever F ∈ E and F ∩ V 6= ∅, then F ⊂ U . We
call this last condition the semicontinuity condition.

That (∆∗ \ {∞}) ∪ D satisfies these conditions is seen as follows. If ν ∈ T , then
ν ⊂ C and is closed in C by the definition (3.1). Hence ν is compact. By Theorem 3.6,
it is connected and does not separate C and hence does not separate C. If ν ∈ V, then
ν is either a point or a close arc (Lemma 3.11) and hence compact and connected and
does not separate C. The case that x (identified with {x}) is in ∆∗\{∞} is trivial. Now,
Fν is a neighborhood basis for ν which is D-saturated. This implies the semicontinuity
condition. Hence Moore’s theorem implies that C/D is homeomorphic to the plane
and so C/D is homeomorphic to C. Since we now know that f is a homeomorphism of
C/D onto C/fD, the same is true of C/fD.

5. Missing details in the section “Main ideas”

We now complete the outline given in Section 2. We complete the proofs of Lemmas
2.1 and 2.2 making use of the results of Section 3 which was independent of Section 2.
Section 4 is not needed.

Completion of the proof of Lemma 2.1 First, we transform the situation by a
Möbius transformation g so that ∆ is mapped onto the upper halfplane U and ∆∗ to
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the lower halfplane L. The quadratic differential ϕ is replaced by ϕ(g(z))g′(z)2. The
ϕ-length and area are unchanged and neither is the L1-norm ||ϕ||1. The advantage is
that now some steps are slightly easier to describe. For instance, we can extend ϕ to a
quadratic differential of U ∪L by the simple rule ϕ(z̄) = ϕ(z). Defined in this manner,
the reflection r(z) = z̄ on R is an isometry of the ϕ-metric of U onto that of L which
preserves horizontal and vertical trajectories.

We will consider rings R which are symmetric with respect to the reflection on R.
Both components of the complement of R will be Jordan domains and it is possible to
choose the Möbius transformation conjugating ∆ onto U so that ∞ is in the interior
of one component of the complement. We assume in the following that we have this
slightly simpler situation.

Let now the situation be as in Lemma 2.1. Thus we have two trajectories τ and σ
of U such that dhϕ(τ, σ) > 0. Thus τ̄ and σ̄ are disjoint (Lemma 3.4) and they contain
geodesics τ ′ and σ′ τ ∪σ′ bound a component of ∆\(τ ∪σ). Thus τ̄ ′ and σ̄′ are disjoint
closed arcs (Lemma 3.1) and hence their doubles τ̃ ′ = τ̄ ′ ∪ r(τ̄ ′) and σ̃′ are disjoint
Jordan curves and so they bound the ring R = R(τ, σ) of (2.7).

We will now derive the estimate of Lemma 2.1 for M(R). The proof was outlined
in Section 2 and we now complete it. If we extend ϕ to U ∪L as indicated above, then
the the extension may be very irregular near ∂∆. The basic idea is still valid and what
we do here can be regarded as technical juggling.

If t > 0, let Ut = {Im z > t}, Lt = {Im z < t} and Rt = {Im z = t}. We let fkt
be the normalized quasiconformal map which satisfies (1) in Ut but is conformal in Lt.
A normalized map is a map fixing three given points; it does not matter what these
points are but we fix three points which all normalized maps fix. We let fk be the
normalized solution which satisfies (1) in U and is conformal in L. Since µfkt

→ µfk

a.e. as t→ 0, the good approximation theorem of quasiconformal mappings will make
possible to estimate fk and M(fkR) by means of fkt and M(fktR).

If t is small, then τ ′ and σ′ have closed subarcs τt and σt whose endpoints are on
Rt but otherwise lie on Ut. Although they might be several choices for fixed t, we can
choose them so that τt and σt contain a fixed point of Ut∩ τt or of Ut∩σt, respectively.
So we can assume that they increase monotonously as t→ 0 and that their unions are
τ ′ and σ′, respectively.

Let rt be the reflection on Rt, that is rt(z) = z − it+ it. Then τ̃t = τt ∪ rt(τt) and
σ̃t = σt ∪ rt(σt) are Jordan curves bounding a ring Rt. As t → 0, Rt tend toward the
ring R bounded by τ̃ and σ̃ in the sense that the complement of Rt tends toward the
complement of R in the Hausdorff metric, taken with respect to the spherical metric.
We will see that the same is true of the rings fktRt and this fact makes possible to
estimate M(fkR) by means of M(fktkRt).

Starting from the quadratic differential ϕ, defined on U , we form a new function
ϕt which is holomorphic in Ut ∪Lt so that ϕt = ϕ in Ūt and satisfies ϕt(z) = ϕt(rt(z))
in Lt. Although ϕt cannot be extended continuously to Rt, the absolute value |ϕ| and
the real part can be extended continuously to Rt. The element of horizontal length
satisfies |Re

√

ϕ(z)dz| = |Re
√

ϕt(rt(z) dz| and thus the ϕt-length and the horizontal
ϕt-length well-defined and they are invariant under the reflection rt. We denote the
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ϕt-length and its horizontal variant of a path γ as usual by |γ|ϕt
and |ϕ|hϕt

. Thus

|γ|hϕt
=

∫

γ

|Re
√
ϕtdz|

and we have |γ|hϕt
= |rtγ|hϕt

.
Let now γ be a path in Rt joining the components of the complement. Define a

new path γ∗ so that γ∗(s) = γ(s) if γ(s) ∈ U t but otherwise let γ∗(a) = rt(γ(s)). Thus
γ∗ is path in U t where ϕ = ϕt and hence |γ∗|hϕt

= |γ∗|hϕ ≥ dhϕ(τ, σ). Since the element
of horizontal length is unchanged by the reflection, we obtain

|γ|hϕt
= |γ∗|hϕt

≥ dhϕ(τ, σ).

Fix now k and let K = (1 + k)/(1− k). We define a new metric dtk from ϕt. The
image of this metric under ftk in ftkR will be conformally equivalent to the euclidean
metric (at least outside some irregular points) and can be given by a metric density but
dtk itself is not conformally equivalent to the euclidean metric but it will be Riemannian
outside zeroes of ϕ and the line Rt. We let ϕtk be unchanged in Lt. However, in U t,
the metric is not conformal (with respect to the euclidean metric) but is obtained from
ϕt so that horizontal distances are unchanged but vertical distances are divided by K.

We can explain this more precisely as follows. We denote by |dz|kt the element of
length of this metric which is defined as follows. If z ∈ Lt, set |dz|tk =

√

|ϕt(z)||dz|. If
z ∈ U t, then we can express dz as the sum dz = dxh+dyv where dxh is the infinitesimal
change in the horizontal direction and dyh the change in vertical direction. We now set

|dz|tk =
√

|ϕt|(|dxh|2 + |dy|2h/K2).

The dtk-length of a path γ is

|γ|tk =

∫

γ

|dz|tk.

The important thing is that there is still associated to dtk the element of horizontal
length which is

√

|ϕt||dxh| and it equals the horizontal length element |Re
√

|ϕt|
√
ϕtdz|

associated to ϕt. Thus, if γ joins in Rt the components of the complement, denoting
the horizontal length of γ with respect to dtk by |γ|htk, we have

(5.1) |γ|tk ≥ |γ|htk =

∫

γ

√

|ϕ||dxh| = |γ|hϕt
≥ dhϕ(τ, σ).

Denote w = ftk(z). We will calculate |dw| as a function of |dz|tk. Note first that
ft is differentiable with non-vanishing Jacobian outside zeroes of ϕt in C\Rt. If z ∈ Lt
is not a zero of ϕt, then |dz|tk =

√

|ϕt(z)| |dz| and hence |dz|tk = ̺(w)|dw| where

̺(w) =
√

|ϕt(z)|/|f ′
t(z)| since ft is conformal in Lt. If z ∈ Ut is not a zero of ϕt, let

fα be the directional derivative to the direction α. Thus |fα| attains its maximal value
when α = αh = the direction of horizontal trajectories and minimal when α = αv =
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the direction of vertical trajectories. If dz = eiαhdt, then |dz|tk =
√

|ϕt(z)||dz| and
thus

(5.2) |dz|tk = ̺(w)|dw|
where ̺(w) =

√

|ϕt(z)|/|fαh
(z)|. If dz = eiαvdt, then |dz|tk =

√

|ϕt(z)|/K and |fαv
(z)|

= |fαh
(z)|/K. It follows that (5.2) is still true with the same ̺. These facts imply

that (5.2) is true in Ut ∪Lt whenever z is not a zero of ϕt. It does not matter how ̺ is
defined on zeros on ϕ and on Rt ∩Rt, we can, for instance, set ̺ = 0 at these points.

Let Γ0 be the path family whose elements are rectifiable paths of Rt joining the
components of the complement of Rt such that also fktγ is rectifiable. In addition, we
assume that if γ ∈ Γ0 is parametrized by the arc length, then the linear measure of
parameter values t such γ(t) ∈ Rt vanishes. These assumptions imply that

∫

fktγ

̺(w)|dw| =
∫

γ

|dz|tk ≥ dhϕ(τ, σ).

for all γ ∈ Γ0. The family of paths of fktRt joining the components of the complement
which are not of the form fktγ for some γ ∈ Γ0 has vanishing modulus (use Fuglede’s
theorem [V, 28.2] and remember that the areal measure of ftRt vanishes). This implies
that

dhϕ(τ, σ)2M(ftRt) ≤
∫

fktRt

̺2dm.

However, (5.2) implies that
∫

fktRt
̺2dm = mtk(Rt) where mtk is the area with respect

to dtk. We defined dtk from ϕt so that the area was decreased (horizontal distances
were unchanged but vertical distances divided by K) and hence mtk ≤ mϕt

when mϕt

is the area with respect to the ϕt-metric. Thus

dhϕ(τ, σ)2M(fktRt) ≤ mtk(Rt) = 2mtk(Ut) ≤ 2||ϕ||1 <∞.

Our maps are normalized and hence we can find a sequence tj decreasing to zero so
that ftjk tend toward a quasiconformal map g. The complex dilatations of ftjk tend a.e.
to the complex dilatation of fk. The good approximation theorem of quasiconformal
mappings [LV, IV.5.6] implies that g and fk have the same complex dilatation. Since
they are normalized in the same manner, we conclude that fk = g. Thus ftjk → fk
as i → ∞ and, moreover, the convergence is uniform on compact subsets. Now, Rtj
tend toward R in the sense that complements converge with respect to the Hausdorff
metric. In view of the uniform convergence, also ftjRtj tend toward fkR. It follows
by a theorem of Gehring [G, Lemma 6] that M(ftjkRtj ) tend toward M(fkR). We
conclude that 2||ϕ||1/dhϕ(τ, σ)2 is an upper bound for M(fkR) independently of k.

Proof of Lemma 2.2. We now have a fixed ϕ and consider another quadratic differ-
ential ψ such that ψ varies in a neighborhood of ϕ. We return to the original situation
from the upper half-space, where we completed the proof of Lemma 2.1, and so ϕ and
ψ are a integrable holomorphic maps of ∆. We assume Lemma 2.1, whose proof is now
complete, and prove some lemmas.

Since we now have several quadratic differentials, we specify that a trajectory τ
or an arc is a trajectory or an arc for a specific ψ, by saying that τ is a ψ-trajectory
(or an arc, etc). If no quadratic differential is specified, ϕ is meant.
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Lemma 5.1. Let κ0 be a closed horizontal ϕ-arc so that ϕ 6= 0 on κ0. Let ε > 0.
Then there are a compact subset K of ∆ and δ > 0 such that whenever ψ is integrable
and holomorphic in ∆ and |ϕ−ψ| < δ in K, then the following is true. If c, d ∈ κ0 are
distinct, then

(5.3) 1 − ε <
dhψ(c, d)

dhϕ(c, d)
< 1 + ε.

There is a ψ-horizontal trajectory arc κψ (not depending on d and c) such that if τc
and τd are the ψ-vertical trajectories through c and d, respectively, then κψ intersects
τc and τd and hence a subarc of κψ is ψ-horizontal arc joining τc and τd.

Let κ1 be a ϕ-horizontal arc containing κ0 without common endpoints with κ0

such that ϕ 6= 0 on κ1 and suppose that κ1 joins ϕ-trajectories τ and σ. Then K, δ,
and κψ can be so chosen that κψ can be extended to a horizontal ψ-trajectory arc κ′ψ
joining τ and σ.

Remark. Actually, we can take for K any compact set such that κ0 ⊂ intK, or,
in the second paragraph, that κ1 ⊂ intK. Also, the holomorphic maps ϕ and ψ need
not be integrable in this lemma.

Proof. This is mainly a question of continuity. We can always slightly extend κ0

to such a ϕ-trajectory κ1 as mentioned in the lemma if it is not already given. Thus
we assume that κ1 exists.

Since ϕ > 0 on κ1, there are a closed neighborhood U of κ1 and a branch of the
canonical coordinate Φ =

∫ √
ϕdz on U so that intΦU contains a quadrilateral Q1 with

sides parallel to coordinate axes and that Φκ1 = [0, b] ⊂ R. We fix an endpoint z0 of
κ1 and assume that Φ(z0) = 0. There is a smaller quadrilateral Q0 ⊂ intQ1 with sides
parallel to the coordinate axes such that Φκ0 = Q0 ∩ R.

We take K = U and choose δ so small that ψ 6= 0 on U if |ϕ− ψ| < δ in K and
choose a branch of the canonical coordinate Ψ =

∫ √
ψdz so that intΨU contains a

fixed quadrilateral Q (independent of ψ) with sides parallel to coordinate axes such
that Ψ(κ0) ⊂ intQ.

If now c, d ∈ κ, then Ψ(c),Ψ(d) ∈ Q and hence, if τc and τd are the trajectories
mentioned in the theorem, Ψτd ∩ Q and Ψτc ∩ Q are vertical line segments. There is
a horizontal line segment of Q which intersects these vertical line segments. Choosing
one and transporting this segment back by Ψ−1, we get the ψ-horizontal subarc of κψ
whose subarc joins τc and τd. If δ is small enough, another subarc can be taken for the
arc κψ in the second paragraph.

To prove (5.3), we note that if c, d ∈ κ0, and if κ′ is the subsegment of κ0

with endpoints c and d, then dhϕ(c, d) = dϕ(c, d) =
∫

κ′
|Re

√
ϕdz| and dhψ(c, d) =

∫

κ′
|Re

√
ψdz|; this latter equality assumes that Re

√
ψdz does not change sign when

moving monotonously from c to d on κ0 which is true if δ is small enough and (5.3)
follows.

We now fix such a horizontal arcs κ0 and κ1 not containing zeroes of ϕ as in
Lemma 5.1. We consider a sequence ϕj of integrable holomorphic mappings of ∆ so
that ||ϕj ||1 are uniformly bounded and that ϕj → ϕ uniformly on compact subsets.
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We assume that |ϕ− ϕj | < ε in K where ε and K are as in Lemma 5.1. If z ∈ κ0, we
let τz be the vertical ϕ-trajectory through z and τjz the ψj-trajectory through z. We
now fix two distinct points z and w of κ0.

Lemma 5.2. Suppose that τ̄zj and τ̄wj have the Hausdorff limits χz and χw, respec-
tively. Then χz and χw are disjoint and if τz and τw are simple, then τ̄z ⊂ χz and
τ̄w ⊂ χw.

Proof. We first prove that τ̄z ⊂ χz if τz is simple. We can argue as in Lemma 5.1.
If τ is simple, given closed subarc α of τz, then α has a closed neighborhood U not
containing zeroes of ϕ so that the canonical coordinate Φ is defined in a neighborhood
of U such that int ΦU contains a quadrilateral Q so that Φα is contained in a vertical
line segment σz joining opposite sides of Q. For large j, there is a canonical coordinate
Ψj for ψj is defined in U so that Ψj → Φ uniformly on U and that ΨjU contains
Q. Thus σzj = Ψj(τzj ∩ U) ∩ Q is a vertical line segment passing through Q. Since
Ψj → Φ uniformly, the line segments σzj tend toward the line segment σz in the
Hausdorff metric. Since also Ψ−1

j → Φ−1 uniformly, Ψ−1
j σzj tend toward Φ−1σz in

the Hausdorff limit. It follows that α ⊂ Φ−1σz is contained in the Hausdorff limit χz.
Since α was an arbitrary subarc of τz, it follows tat τ̄z ⊂ χz. Similarly, τ̄w ⊂ χw if τw
is simple.

We then prove that χz and χw are disjoint. Let Rj = R(τjz, τjw) be the ring
defined by τ and σ as in (2.7). Lemma 5.1 implies that τjz and τjw are joined by a
horizontal arc κj for large j and that |κj |ψj

= dhψj
(z, w) → dhϕ(z, w). Hence m(Rj)

are bounded from above (Lemma 2.1). Let Cj and Dj be the components of C \ Rj.
The spherical diameters of Cj are bounded from below by the spherical distance of κ0

to ∂D. Hence (cf. the Appendix) also the spherical distances q(Cj , Dj) ≥ c for some
c > 0 indepedent of j. It follows that q(χz, χw) ≥ c > 0. ⊃
Lemma 5.3. Let τ and σ be the ϕ-trajectories through the endpoints of κ0 and let
m > 0. Pick z ∈ κ0 which is not an endpoint of κ0. Then there are a compact
set K ⊂ ∆ and ε > 0 with the following property. Let ψ be holomorphic such that
||ψ||1 ≤ m and such that |ψ−ϕ| < ε in K. If ν be the ψ-trajectory through z, then ν̄,
τ̄ and σ̄ are disjoint and ν̄ separates τ̄ and σ̄ in ∆̄,

Proof. Arguing as in the proof of Lemma 5.2, we can assume that τ and σ are
simple.

We first show that there are ε and K such that if ν, τ and σ are as in the theorem,
then ν̄, τ̄ and σ̄ are disjoint; note that in any case τ̄ and σ̄ are disjoint since they are
joined by a horizontal arc (Lemma 3.4). If there are not such K and ε as claimed,
we can find ψj so that ||ψj ||1 are uniformly bounded and such that ψj → ϕ uniformly
on compact subsets with the property that if νj is the ψj-trajectory through z, then
ν̄j intersects τ̄ or σ̄. We can assume that ν̄j ∩ τ̄ 6= ∅. Let w be the endpoint of κ0

such that τ passes through w and let τj be the ψj-trajectory through w. Pass to a
subsequence so that ν̄j has the Hausdorff limit χz and τ̄j have the Hausdorff limit χw.
By Lemma 5.2, χz and χw are disjoint. By this same lemma, τ̄ ⊂ χw and hence χz
and τ̄ are disjoint. But we assumed that all the intersections ν̄j ∩ τ̄ are non-empty and
this implies that ∅ 6= χz ∩ τ̄ ⊂ χz ∩ χw. So our claim is proved.
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We claim that K and ε can be so chosen that, in addition, ν̄ separates τ̄ and σ̄.
To see this we note that we can choose K and ε by Lemma 5.1 (apply it so that the
present κ0 is κ1 of Lemma 5.1 and κ0 of Lemma 5.1 is a subarc containing z) so that
if |ψ − ϕ| < ε in K, then there is a ψ-horizontal arc κψ intersecting ν and which joins
τ and σ. Since τ and σ are simple, they bound a Jordan domain D of ∆ and κψ is a
crosscut of D with one endpoint on τ and the other on σ. Thus κψ divides D into two
subdomains D1 and D2.

If ν is simple, then ν̄ is a crosscut of ∂∆ and hence divides ∆ into two components
C1 and C2. Since ν is a vertical and κψ a horizontal arc which intersect, κψ contains
points both in C1 and C1. Since κψ ∩ ν cannot contain more than one point ([T1,
Lemma 2.3]), it follows that ν divides κψ into two pieces of which one is contained in
C1 and the other in C2. This implies that ν̄ separates τ and σ̄.

If ν is not simple, the situation is basically the same. As above, ν ∩ κψ is a point
{z}. Since κy is a horizontal arc intersecting the vertical trajectory ν at a point, we
can find vertical arcs ν1 and ν2 contained in ν so that νj have endpoint z but otherwise
are νj ⊂ Dj . It is now obvious that νj can be completed to a ray νj so that still
νj ⊂ ν and νj ⊂ Dj (remember that νj is simply connected, cf. [T1, Lemma 2.3]).
Thus ν′ = ν1 ∪ ν2 is a geodesic and hence ν̄′ is a cross cut of ∂∆ (Lemma 3.1). Since
κ divides ν into two pieces of which are in different components of D \ κ, we see that
ν divides κ into two pieces which are in different components of ∆̄ \ ν̄′ and hence ν̄′,
and consequently ν̄, separate τ̄ and σ̄.

If R1 and R2 are two rings, we say that R1 properly contains R2 if R1 ⊃ R2 and if,
in addition, the components of C\Rj can be denoted as Cj and Dj so that C1 ⊂ C2 and
D1 ⊂ D2. Thus M(R1) ≤ M(R2) if R1 properly contains R2. Note that if R1 = R2,
then R1 properly contains R2 according to our definition.

Recall the notation R(τ, σ) in (2.7).

Lemma 5.4. Let τ and σ be two ϕ-trajectories such that dhϕ(τ, σ) > 0. Let m > 0.
Then there are a compact set K ⊂ ∆, ε > 0 and c > 0 and such that if ψ is holomorphic
such that ||ψ||1 < m and |ϕ − ψ| < ε in K, then there are ψ-trajectories τψ and σψ
such that R(τ, σ) properly contains R(τψ, σψ) and that τψ and σψ are joined by a
ψ-horizontal arc κψ such that |κψ|ψ = dhψ(τ, σ) ≥ c.

Proof. Let κ be the horizontal arc given by Lemma 3.5. Choose consecutive points
z1, z2, z3, z4 on κ0 so that z1 and z4 are endpoints and let χ1 be the subarc of κ with
having endpoints z1 and z2, χ2 has endpoints z2 and z3 and finally χ3 has endpoints
z3 and z4.

Let τj be the ϕ-trajectory through zj . Lemma 5.3 implies that there are a compact
set K ⊂ ∆ and ε > 0 such that if |ϕ − ψ| < ε in K, then there is a ψ-trajectory τψ
intersecting χ1 such that τ̄ψ separates τ̄1 and τ̄2 and that there is another ψ-trajectory
σψ intersecting χ3 such that σ̄ψ separates τ̄3 and τ̄4. It follows that R(τ, σ) properly
contains R(τψ, σψ).

Lemma 5.1 implies that ε and K can be so chosen that there is a ψ-horizontal arc
κψ joining τψ and σψ. Since κψ intersects both τ2 and τ3, |κψ|hψ ≥ dhψ(τ2, τ3). Now

dhψ(τ2, τ3) = dhψ(z2, z3) and |χ2|ϕ = dhϕ(z2, z3) and hence (5.3) implies that ε and K can
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be so chosen that
|κψ|ψ ≥ |χ2|ϕ/2.

Thus the lemma is true with this ε and c = |χ2|ϕ/2.

Given Lemma 5.4, Theorem 2.2 is a consequence of Lemma 2.1.

6. Appendix

The following theorem is well known [V, 12.7] but we give a simple normal family
argument.

Theorem 6.1. Given M > 0 and c > 0, there is d > 0 with the following property.
Let R be a ring such that M(R) ≤ M and that C \ R has components C1 and C2 so
the spherical diameter q(Ci) ≥ c, i = 1, 2. Then q(C1, C2) ≥ d.

Proof. If the theorem is not true, there is a sequence of rings Rj so that M(Rj) ≤
M and that the components of C \ Rj are Cj1 and Cj2 with q(Cjk) ≥ c but that
q(Cj1, Cj2) → 0 as j → ∞. Let Sj be the ring 1 < |z| < rj such that M(Sj) = M(Rj)
and thus M(Rj) = 1/ log rj. We can assume that rj → r where 1 < r ≤ ∞. Let
S = {1 < |z| < r}. There is a conformal homeomorphism fj : Sj → Rj . Our
assumptions imply that fj avoids a set spherical diameter at least c and hence fj is a
normal family and it is possible to pass to a subsequence (denoted in the same manner)
so that fj tend in S uniformly on compact subsets toward a map f : S → C which is
either a constant or a conformal embedding. Since both components of C \ Rj have
spherical diameter exceeding c, it follows that f cannot be a constant. It follows that
lim supj→∞ q(Cj1, Cj2) ≥ q(C1, C2) > 0 where C1 and C2 are the components of C\fS.
This contradiction proves the lemma.
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