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Abstract

We study solvency of insurers in a practical model where in addition to basic insurance
claims and premiums, economic factors like inflation, real growth and returns on the invest-
ments affect the capital developments of the companies. The objective is to give qualitative
descriptions of risks by means of crude estimates for finite time ruin probabilities. In our
setup, the economic factors have a dominant role in the estimates. In addition to this theo-
retical view, we will focus on applied interpretations of the results by means of discussions
and examples.
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1 Introduction

Solvency of insurance companies is one of the main concerns in actuarial practice and theory.
In order to continue the business, the companies have to show a reasonable capacity to
survive, that is, to meet their obligations. An appropriate requirement is that the survival
probability within a given time horizon must be above a predescribed high level. For
regulatory purposes, the time horizon is typically small, for example, one or two years.
From the viewpoint of the company management, longer time horizons are also of interest.

To get quantitative estimates for the solvency position of the company, it is necessary
to build up mathematical models for claims, premiums, returns on the investments etc.
Practical models use to be complicated and therefore, simulation is a popular tool in the
estimation of the survival probabilities. The purpose of the present paper is to take a more
theoretical look at the problem. Our results should be understood as qualitative descriptions
of risks associated with the company but not, for example, as competitors for simulation
in the implementation of a solvency test. We will study a comprehensive model which is
largely based on Pentikäinen and Rantala (1982). We also refer the reader to Pentikäinen
et al. (1989) and Daykin et al. (1994) for further developments in modelling and for
other practical aspects of actuarial problems. For empirical observations concerning causes
of solvency problems, we refer to the report of The Conference of Insurance Supervisory
Services of the Member States of the European Union (2002).

To describe our interest in detail, let u > 0 be the initial capital of the company, and let
Un be the capital at the end of the year n for n = 1, 2, . . .. Instead of survival probabilities,
it is equivalent to study ruin probabilities. Define the time of ruin T by

T =

{
inf{n ∈ N ; Un < 0}
∞ if Un ≥ 0 for every n.

(1.1)

We take the most common approach seen in theoretical studies by considering limits of
ruin probabilities as u tends to infinity. The limiting procedure directs the focus to small
probabilities which is motivated in solvency considerations. For appropriate fixed x > 0,
we will show that in our model, the approximation

P(T ≤ x log u) ≈ u−R(x) (1.2)

can be justified with a specific parameter R(x). The precise meaning of (1.2) is stated in
Theorem 2.1 below. The time horizon in the estimate increases slowly with u and hence,
our study may be viewed to focus on solvency questions within moderate time horizons.

Approximation (1.2) is theoretical in the sense that it is crude and asymptotic. However,
the result is also of applied interest. We will assume in the paper that suitable variations
can be expected in the numbers of claims and that the claim sizes are not very heavy tailed.
In this setup, inflation, real growth of the business and the returns on the investments will
completely determine R(x). All these factors are connected with the general economy. The
conclusion is that in our model, the economic factors determine the magnitude of the ruin
probability while the affect of the basic insurance risks is less critical. To clarify this further,
suppose that the company had a need to make its solvency position safer. This should be
possible by cutting large losses in the investment side by means of appropriate options. The
returns on the investments contribute the parameters R(x), and we can expect that they
would increase in the above change. Consequently, the magnitudes of ruin probabilities had
a tendency to decrease. An alternative would be to cut large insurance claims by means
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of an excess of loss reinsurance contract. This should also decrease ruin probabilities, but
the parameters R(x) would remain unchanged. Hence, from the solvency point of view, the
result indicates that a change in the investment strategy is more effective than a change in
the reinsurance strategy.

Another application of approximation (1.2) is that it provides a quality control for
nonasymptotic bounds for ruin probabilities. To explain this, suppose that it would be
possible to show that

P(T ≤ x log u) ≤ φ(x, u) (1.3)

for every finite u where φ is a known function. These types of bounds are obviously of
interest from the applied point of view, for example, in connection with solvency tests. To
have a good upper bound for large initial capital, φ(x, u) should behave asymptotically
similarly to P(T ≤ x log u), that is, we should have

φ(x, u) ≈ u−R(x). (1.4)

If this is not the case then one can argue that the upper bound does not focus carefully on
essential parts of the model, and consequently, relative errors are easily huge for large u. In
this sense, (1.4) may be seen as a mimimal quality requirement for the upper bound.

In recent years, there has been a lot of interest in ruin probabilities for processes which
include stochastic submodels for inflation and for the returns on the investments. It is
generally understood that these factors have a crucial impact to ruin probabilities. An
early observation in this direction is given by Schnieper (1983). Later on, Paulsen (1993)
provides a general framework for many subsequent papers on the problem. We also refer
the reader to Frolova et al. (2002) and Kalashnikov and Norberg (2002) which focus on the
risks associated with the economic factors. A few of the papers in the area deals with finite
time ruin probabilities. Approximation (1.2) as such has been studied in Nyrhinen (2001).
The present paper is an extension since here we allow real growth and economic cycles in
the model, and discuss other applied aspects related to the problem. Tang and Tsitsiashvili
(2003) and (2004) consider ruin probabilities within a fixed time horizon. The papers focus
on heavy tailed claim sizes. This leads to estimates where also insurance claims participate
the parameters R(x). The same is true in Nyrhinen (2007) even if the claim sizes in the
paper are typically light-tailed. This may sound contradictory to the above discussion, but
is explained by differences in the limiting procedures.

The paper is organized as follows. Main results and discussions are given in Section 2.
Section 3 consists of the proofs.

2 Statement of results

We begin by describing the main variables and parameters of the model in our interest.
Some variants and extensions will be discussed in Section 2.2 below. For the motivation
and the background, we refer the reader to Pentikäinen and Rantala (1982).
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Numbers of claims Associated with the year n, write

Nn = the accumulated number of claims occured in the years 1, . . . , n,
λ = the basic level of the mean of the number of claims in the year,
gn = the rate of real growth,
qn = the structure variable describing short term fluctuations in the numbers of claims
bn = the variable describing cycles and other long term fluctuations in the numbers of

claims.

Write further N0 = 0 so that Nn−Nn−1 represents the number of claims occured in the year
n. We assume that they have mixed Poisson distributions such that conditionally, given
b1, . . . , bn, g1, . . . , gn and q1, . . . , qn, the variables N1 −N0, . . . , Nn −Nn−1 are independent
and Nk −Nk−1 has the Poisson distribution with the parameter

λbk(1 + g1) · · · (1 + gk)qk (2.1)

for k = 1, . . . , n. The exact formulation of the model is given in (2.8) below.

Total claim amounts Let

Xn = the total claim amount in the year n,
Zj = the size of the jth claim in the inflation-free economy,
mZ = the mean of the claim size in the inflation-free economy,
in = the rate of inflation in the year n.

We consider the model where

Xn = (1 + i1) · · · (1 + in)
Nn∑

j=Nn−1+1

Zj .

Premiums For the year n, write

Pn = the premium income,
s = the safety loading coefficient,
cn = the variable describing long term fluctuations in the premiums.

We take
Pn = (1 + s)λmZcn(1 + g1) · · · (1 + gn)(1 + i1) · · · (1 + in). (2.2)

The transition rule We next describe the development of the capital in time. Let

Un = the capital at the end of the year n,
rn = the rate of return on the investments in the year n.

Let U0 = u > 0 be the deterministic initial capital of the company. We define

Un = (1 + rn)(Un−1 + Pn −Xn). (2.3)
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Technical specifications and assumptions We end the description by specifying
the dependence structure and other technical features of the model. All the random variables
below are assumed to be defined on a fixed probability space (Ω,F ,P).

We begin by giving a detailed mathematical description for the total claim amounts in
the inflation-free economy. For the year n, denote this quantity by Vn, that is,

Vn =
Nn∑

j=Nn−1+1

Zj . (2.4)

The distributions of N -variables depend on the b-, g- and q-variables. We take

(g, q), (g1, q1), (g2, q2), . . .

to be an i.i.d. sequence of random vectors where the first one (g, q) is generic and is
introduced for notational simplicity. We also assume that g and q are independent, and
that the b-variables are independent of the g- and q-variables. We do not give a specific
dependence structure for the sequence {bn}. Instead of that, we just assume that

P
(
bn ∈

[
b, b̄
])

= 1 for every n (2.5)

where b and b̄ are finite and positive constants. Let F bn be the joined distribution function
of (b1, . . . , bn), and let F g and F q be the distribution functions of 1 + g and q, respectively.
Let further Fn be the joined distribution function of the random vector

ξn := (b1, . . . , bn, 1 + g1, . . . , 1 + gn, q1, . . . , qn). (2.6)

Thus for every yb1, . . . , y
b
n, y

g
1 , . . . , y

g
n, y

q
1, . . . , y

q
n ∈ R,

Fn(yb1, . . . , y
b
n, y

g
1 , . . . , y

g
n, y

q
1, . . . , y

q
n) (2.7)

= F bn(yb1, . . . , y
b
n)F g (yg1) · · ·F g (ygn) F q (yq1) · · ·F q (yqn) .

By these specifications, we assume that for every h1, . . . , hn ∈ N ∪ {0} and for every Borel
set C ⊆ R3n,

P (N1 −N0 = h1, . . . , Nn −Nn−1 = hn, ξn ∈ C) (2.8)

=
∫
C

n∏
k=1

e−λy
b
ky
g
1 ···y

g
ky
q
k

(λybky
g
1 · · · y

g
ky
q
k)
hk

hk!
dFn(yb1, . . . , y

b
n, y

g
1 , . . . , y

g
n, y

q
1, . . . , y

q
n).

The claim sizes Z,Z1, Z2, . . . are assumed to be i.i.d. (Z is again a generic variable). We
also assume that they are independent of the numbers of claims in all respects. Let FZ

be the distribution function of Z, and let
(
FZ
)h∗ be the hth convolution power of FZ . In

precise terms, we assume that for every h1, . . . , hn ∈ N ∪ {0} and y1, . . . , yn ∈ R, and for
every Borel set C ⊆ R3n,

P (V1 ≤ y1, . . . , Vn ≤ yn, N1 −N0 = h1, . . . , Nn −Nn−1 = hn, ξn ∈ C) (2.9)

= P (N1 −N0 = h1, . . . , Nn −Nn−1 = hn, ξn ∈ C)
n∏
k=1

(
FZ
)hk∗ (yk).

Intuitively, (V1, . . . , Vn) is a mixture of n-dimensional random vectors such that each of
them has independent compound Poisson variables as components. We refer to Grandell
(1997) for more information about mixed Poisson distributions and related topics.
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Consider now the other parts of the model. We do not give a specific dependence
structure for the fluctuation sequence {cn} associated with the premiums. Instead of that,
we assume similarly to (2.5) that

P (cn ∈ [c, c̄]) = 1 for every n (2.10)

where c and c̄ are finite and positive constants. We allow an arbitrary dependence struc-
ture between the c- and V -variables. As the model for inflation and the returns on the
investments, we take

(i, r), (i1, r1), (i2, r2), . . . (2.11)

to be an i.i.d. sequence of random vectors, and these vectors are assumed to be independent
of g- and V -variables.

Concerning the parameters of the model, we take λ, mZ and s to be positive real
numbers. For the supports of Z and q, we assume that

P(Z ≥ 0) = 1, P(q > 0) = 1 and P (q > (1 + s)c̄/b) > 0, (2.12)

and for the supports of the economic factors that

P(i > −1) = 1, P(g > −1) = 1 and P(r > −1) = 1.

For the moments of the main variables, we assume that

E ((1 + i)α) ,E ((1 + g)α) and E ((1 + r)α)

are all finite for every α ∈ R, and that E (qα) and E (Zα) are finite for every α > 0. Finally,
assume that E(q) = 1 and that E(log(1 + g)) ≥ 0.

2.1 Estimates for ruin probabilities

Let the model be as described in the first part of Section 2, and let the time of ruin T be as
in (1.1). Recall that U0 = u is the initial capital. Our objective is to give the magnitude of
the ruin probability P(T ≤ x log u) for appropriate values of x and for large u. The impact
of the economic factors will come via the variable

Y =
(1 + i)(1 + g)

1 + r
, (2.13)

and in fact, Y will be in the key role in our considerations.
Define the generating function Λ : R→ R ∪ {∞} by

Λ(α) = log E (Y α) , (2.14)

and let

r = sup{α; Λ(α) ≤ 0} ∈ [0,∞]. (2.15)

Let further Λ∗ : R→ R ∪ {∞} be the convex conjugate of Λ, that is,

Λ∗(x) = sup{αx− Λ(α) ; α ∈ R}.

It is well-known that both Λ and Λ∗ are convex functions. We refer the reader to Rockafellar
(1970) and Dembo and Zeitouni (1998) for the background.
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Define the parameters µ and x0 by

µ =

{
1/Λ′(r) if r <∞ and Λ′(r) 6= 0
∞ otherwise,

and

x0 =

{
inf{1/Λ′(α);α > r} if r <∞
∞ otherwise.

For x > 0, write finally
R(x) = xΛ∗(1/x). (2.16)

We next state the main results of the paper.

Lemma 2.1 For the above parameters, we have x0 ≤ µ, R(x) = ∞ for every x ∈ (0, x0),
and R(x) <∞ for every x ∈ (x0, µ).

Theorem 2.1 Let x ∈ (0, µ) \ {x0} be arbitrary. Then

lim
u→∞

(log u)−1 log P(T ≤ x log u) = −R(x). (2.17)

Theorem 2.1 describes the magnitude of the ruin probability. More precisely, if (2.17) holds
for x ∈ (x0, µ) then for a given ε > 0,

u−(R(x)+ε) ≤ P(T ≤ x log u) ≤ u−(R(x)−ε)

for sufficiently large u. The parameter R(x) only depends on the economic factors.
It is interesting to compare our model with the classical one where economic factors are

not present. So let i ≡ 0, g ≡ 0 and r ≡ 0. Then Y ≡ 1, r = ∞, µ = ∞ and x0 = ∞.
Thus limit (2.17) holds for every x > 0 with R(x) = ∞, and hence, the magnitudes of
ruin probabilities are asymptotically smaller than in general in the present paper. As an
extension of the classical model, suppose that inflation and real growth are not present, but
that the return on the investments is always non-negative. Then Y ≤ 1. By Theorem 2.1,
we still have (2.17) for every x > 0 with R(x) =∞.

By the above discussion, the company could have a motivation to adjust its strategy
such that Y ≤ 1 would hold. A problem here seems to be that it is difficult to control
inflation. To illustrate this, take g ≡ 0, for simplicity. Then the target would be to have

1 + i

1 + r
≤ 1. (2.18)

In financial terms, this can be viewed as a superhedging against inflation by means of
appropriate investments. It is not obvious that instruments can be found for the hedging,
especially, because the company faces specific claim inflation instead of general inflation in
the economy. We refer to Pentikäinen and Rantala (1982), Volume I, Section 2.5.

2.2 Discussion of conditions

The model we have studied is complicated but there is still applied motivation for general-
izations. We briefly discuss in this section our conditions and some possible extensions.
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Dependences between the years Dependences between consequtive years in the
model are caused, for example, by inflation, real growth and the returns on the investments.
However, we assumed in (2.11) and elsewhere that the corresponding rates in different years
are independent. It would be natural to allow at least a Markovian dependence. This type
of extension has been generally possible in classical models in the case where the state space
of the underlying Markov chain is finite. We refer to Asmussen (2000). We believe that a
similar extension is possible here, especially, since we only consider crude estimates for ruin
probabilities.

Short term fluctuations We assumed for the structure variable q in (2.12) that

P (q > (1 + s)c̄/b) > 0. (2.19)

Roughly speaking, the condition means that in any circumstances, the yearly profit Pn−Xn

is negative with a moderate probability. Without the assumption, positive long-term real
growth could make the probabilities very small. Something like (2.19) seems to be necessary
to end up to the conclusion of Theorem 2.1. We note, however, that it should be possible
to relax the condition by specifying the fluctuation sequences {bn} and {cn} in more detail.
Nevertheless, in the presence of real growth, also the short term fluctuation may be viewed
as an essential risk factor in the model.

Heavy tailed claim sizes We assumed that E(Zα) is finite for every α > 0. This
excludes heavy tailed distributions as models for the claim sizes. If the assumption is relaxed
then limit (2.17) may change but there are still chances to specify it. We refer to Nyrhinen
(2005), Example 3.4.

Economic cycles Economic cycles may be included in the model by means of the b-
and c-variables as it was described in the first part of Section 2. It is intuitively clear that
cycles increase the risk of ruin in a short time horizon, especially, if a bad period is just
starting. Still their impact is not seen in the moderate time horizon of Theorem 2.1. We
believe, however, that cyclicity associated with the economic factors would affect the limits
of the theorem.

Other variants Some further changes in the model could be motivated from the
applied point of view. For example, in the definition of the premium in (2.2), it could be
natural to replace the last inflation rate in by an estimate. Also in the transition rule for
the capital in (2.3), alternative models could be used for the investment return on the profit
Pn − Xn of the current year. The proofs indicate that small changes in these directions
would not affect the limits of Theorem 2.1.

2.3 Examples

We illustrate in this section Theorem 2.1 by means of three examples. It turns out that the
crude description of the theorem is sufficient to confirm some intuitively natural viewpoints
concerning the risk of ruin associated with the models in question. In each example, the
risk will be measured by R(x) for small x. It is interesting that for large x, the conclusions
may be different. We prefer to focus on short time horizons since they are probably more
relevant from the applied point of view.
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We will consider some financial instruments in the examples. The reader is referred to
Panjer et al. (1998) for the background.

Example 2.1 We will compare two investment strategies in a model where inflation and
real growth are not present, that is, i ≡ 0 and g ≡ 0. Suppose that there are a stock and
an associated put option available in the financial market. Let Sn be the value of the stock
at the end of the year n, and let κSn be the strike price of the put option associated with
the year n+ 1 where κ > 0 is a constant. According to Theorem 2.1, assume that

{Sn+1/Sn;n = 0, 1, 2, . . .}

is an i.i.d. sequence of random variables. The value of the option at the end of the year
n+ 1 is

max(κSn − Sn+1, 0).

We assume that the price of the option at the beginning of the year n+ 1 is π(κ)Sn where
π(κ) is a constant. The above assumptions hold, for example, in the Black-Scholes model
for the financial market.

Suppose first that the company invests all its money to the stock. Let ρs be the associ-
ated generic rate of return on the investments. Hence, 1 + ρs has the same distribution as
Sn+1/Sn. Associated with this investment strategy, denote by Λs the function corresponding
to (2.14). Thus

Λs(α) = log E((1 + ρs)−α).

Let further Rs(x) be the parameter corresponding to (2.16), that is, Rs(x) = xΛ∗s(1/x).
Consider an alternative investment strategy where the company cuts large losses in the

investment side. This can be done by keeping always the numbers of the stocks and the
options equal in the portfolio. Define the variable ρa according to

1 + ρa =
max(1 + ρs, κ)

1 + π(κ)
.

Then ρa describes the rate of return associated with the strategy. Corresponding to (2.14)
and (2.16), write

Λa(α) = log E((1 + ρa)−α) and Ra(x) = xΛ∗a(1/x).

Let’s compare ruin probabilities related to the above two strategies. Under the natural
assumption that

P
(

1 + ρs <
κ

1 + π(κ)

)
> 0,

there exists α1 ≥ 0 such that Λs(α) ≥ Λa(α) for every α ≥ α1. See for example Bahadur
and Zabell (1979), Theorem 2.4, and Rockafellar (1970), Corollary 26.4.1. It is easy to see
that then for every v ≥ Λ′s(α1),

Λ∗s(v) = sup{αv − Λs(α);α ≥ α1}
≤ sup{αv − Λa(α);α ≥ α1} ≤ Λ∗a(v).

Thus Rs(x) ≤ Ra(x) for small x, and the inequality is often strict. If this is the case then
the ruin probability within the time horizon [0, x log u] has a tendency to be smaller when
the alternative strategy with options is used.
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Example 2.2 We will focus in this example on the correlation between inflation and the
returns on the investments. Suppose that there are a stock and a risk-free asset available
in the financial market. Let i be the generic rate of inflation as earlier. The rates of the
returns on the stock are assumed to be i.i.d. Denote by ρs the generic rate of return. We
assume that the pair (log(1+ i), log(1+ρs)) has a two-dimensional normal distribution. Let
(mi,ms) be the mean and

Σ =
(
σ2
i σis

σis σ2
s

)
the covariance matrix of the distribution. Assume further that the rate of return on the
risk-free asset is a fixed constant ρf . Write in short mf = log(1 + ρf ).

We assume that ms > mf > mi. This corresponds to the natural situation where in
the mean, the returns on the investments suffice to compensate the affect of inflation, and
the return on the stock is larger than the risk-free return. It is also natural to assume a
positive correlation between inflation and the return on the stock. Hence, we take σis > 0.

Consider first the strategy where the company invests all its money to the stock. Let η
be the variance of the variable log(1 + i)− log(1 + ρs), that is,

η = σ2
i − 2σis + σ2

s .

We assume that η > 0 which just excludes superhedging (2.18). Associated with this
strategy, let Λs and Rs be the functions corresponding to Λ in (2.14) and R in (2.16). Then

Λs(α) = (mi −ms)α+ ηα2/2 and Rs(x) =
x

2η

(
1
x
− (mi −ms)

)2

.

Consider an alternative strategy where the company invests its money to the risk-free
asset only. Let Ra be the function corresponding to R in (2.16). Then

Ra(x) =
x

2σ2
i

(
1
x
− (mi −mf )

)2

.

Suppose first that σ2
s − 2σis > 0. It is easy to see that then Rs(x) < Ra(x) for small

x > 0. This indicates that by investing to the risk-free asset, the company ends up to smaller
ruin probabilities than by investing to the stock. On the other hand, if σ2

s − 2σis < 0 then
Ra(x) < Rs(x) for small x > 0. This gives the signal that it is safer to invest to the risky
asset in the case where the correlation between inflation and the return on the stock is high.

Example 2.3 We illustrate in this example the impact of real growth to ruin probabilities.
Let’s start with the model where g ≡ 0 so that

Λ(α) = log E
((

1 + i

1 + r

)α)
. (2.20)

If we add real growth to the model then we have to add log E ((1 + g)α) to the right-hand
side of (2.20). This makes Λ(α) larger for α ≥ 0 since we assumed that E(log(1 + g)) ≥ 0.
Similarly to the previous examples, we conclude that by adding real growth to the model,
ruin probabilities have a tendency to increase.
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3 Proofs

We begin by recalling some basic facts from the theory of convex functions. They will be
used throughout the proofs. The background can be found in Rockafellar (1970).

Let f : R→ R ∪ {∞} be a convex function, that is,

f(at+ (1− a)u) ≤ af(t) + (1− a)f(u)

for every t, u ∈ R and a ∈ (0, 1). The convex conjugate f∗ of f is a function R→ R ∪ {∞}
defined by

f∗(x) = sup{tx− f(t); t ∈ R}.

Also f∗ is convex. Assume henceforth that f(0) = 0. Then f∗(x) ≥ 0 for every x. If
x = f ′(tx) for some tx ∈ R then f∗(x) = txx − f(tx). In particular, if f ′(0) exists then
f∗(f ′(0)) = 0. In this case, f∗ attains its global minimum at f ′(0), and so f∗ is increasing
on (f ′(0),∞). Assume further that f is differentiable on some interval [t0,∞), and write
z = limt→∞ f

′(t). Then
f∗(x) = sup{tx− f(t); t ≥ t0} (3.1)

for x ≥ f ′(t0). Further,

f∗(x) <∞ for x ∈ (f ′(t0), z) and f∗(x) =∞ for x > z. (3.2)

Proof of Lemma 2.1 The result follows immediately from the convexity of Λ and from
(3.2). 2

Before the proof of Theorem 2.1, we will give an asymptotic result concerning the
moments of compound Poisson distributions. The proof of the result will be given at the
end of the section. Let Z,Z1,Z2, . . . be an i.i.d. sequence of non-negative random variables,
and assume that P(Z > 0) > 0. Let Nν be a Poisson distributed random variable with the
parameter ν. Assume that Nν is independent of the Z-variables so that

Xν := Z1 + · · ·+ ZNν (3.3)

has a compound Poisson disrtibution.

Lemma 3.1 Assume that E(Z) <∞. If E (Zα) <∞ for α > 0 then

lim
ν→∞

(log ν)−1 log E (Xαν ) = α. (3.4)

We now turn to the proof of Theorem 2.1. It is convenient to consider a discounted
version of the process {Un}. For n ∈ N, write

An =
1 + in
1 + rn

and
Bn = Vn − (1 + s)λmZcn(1 + g1) · · · (1 + gn) (3.5)

where Vn is as in (2.4). Let further

Yn =
n∑
k=1

A1 · · ·Ak−1(1 + ik)Bk.
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By dividing each Un by (1+r1) · · · (1+rn), it is seen that the time of ruin T can be expressed
as

T =

{
inf{n ∈ N ; Yn > u}
∞ if Yn ≤ u for every n.

(3.6)

Define the generating functions Λi,ΛA and Λg by

Λi(α) = log E ((1 + i)α) , (3.7)

ΛA(α) = log E
((

1 + i

1 + r

)α)
(3.8)

and
Λg(α) = log E ((1 + g)α) (3.9)

for α ∈ R. By our assumptions,
Λ = ΛA + Λg. (3.10)

Proof of Theorem 2.1 We begin by showing that for every x ∈ (0, µ),

lim sup
u→∞

(log u)−1 log P(T ≤ x log u) ≤ −R(x). (3.11)

Let Vn be as in (2.4), and let

Ȳn = 1 +
n∑
k=1

A1 · · ·Ak−1(1 + ik)Vk. (3.12)

Then Ȳn ≥ 1, Ȳn ≥ Yn, and {Ȳn} is an increasing process. Hence,

P(T ≤ x log u) ≤ P
(
Ȳdx log ue ≥ u

)
(3.13)

where dae denotes the smallest integer ≥ a.
We will apply the Gärtner-Ellis theorem to the sequence {log Ȳn}. We refer to Dembo

and Zeitouni (1998) for the background. To apply the theorem, define the function Γ : R→
R ∪ {±∞} by

Γ(α) = lim sup
n→∞

n−1 log E
(
Ȳ α
n

)
.

Then Γ is convex. The first step is to show that

Γ(α) ≤

{
0 for α ≤ r

Λ(α) for α > r.
(3.14)

For α ≤ 0, (3.14) holds since Ȳn ≥ 1. Let now α > 0, and let ε > 0 and k ∈ N. By our
model assumptions,

E(V α
k ) = E

(
e−λbk(1+g1)···(1+gk)qk

∞∑
h=0

(λbk(1 + g1) · · · (1 + gk)qk)h

h!
E((Z1 + · · ·+ Zh)α)

)
.

Take Z = Z in Lemma 3.1 and choose large M > 0 such that E (Xαν ) ≤ να+ε whenever
ν > M . Write

GM = {λbk(1 + g1) · · · (1 + gk)qk > M}.
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Then

E(V α
k 1(GM )) ≤ E

(
(λbk(1 + g1) · · · (1 + gk)qk)α+ε

)
≤ (λb̄)α+εE

(
qα+ε

)
ekΛg(α+ε).

Concerning the complement of GM , we have

E(V α
k 1(GcM )) ≤ eME (XαM ) .

We assumed that E(log(1 + g)) ≥ 0 so that Λg(α + ε) ≥ 0. By the above estimates, there
exists a constant C1 such that

E(V α
k ) ≤ C1e

kΛg(α+ε)

for every k ∈ N. By (3.10), there exists a constant C2 such that

E ((A1 · · ·Ak−1(1 + ik)Vk)
α) ≤ C2e

(k−1)Λ(α)e(k−1)(Λg(α+ε)−Λg(α)) (3.15)

for every k.
Consider separately the cases where α > r and α ∈ [0, r]. Let first α > r. Then Λ(α) > 0

and Λg(α+ ε)−Λg(α) ≥ 0. For α > 1, apply Minkowski’s inequality to conclude that there
exists a constant C such that for every n,

E(Ȳ α
n ) ≤ CenΛ(α)en(Λg(α+ε)−Λg(α)). (3.16)

By the continuity of Λg, the estimate implies (3.14) for α > r in the case where α ≥ 1. A
similar proof applies to the case where α ∈ (0, 1). Instead of Minkowski’s inequality, we
now make use of the inequality

(x+ y)α ≤ xα + yα (3.17)

for x, y ≥ 0. Let now α ∈ [0, r]. Then Λ(α) ≤ 0. We still have (3.15) which now implies
that

E ((A1 · · ·Ak−1(1 + ik)Vk)
α) ≤ C2e

(k−1)(Λg(α+ε)−Λg(α)+ε).

It follows as above that
E(Ȳ α

n ) ≤ Cen(Λg(α+ε)−Λg(α)+ε).

Hence, Γ(α) ≤ Λg(α+ ε)− Λg(α) + ε so that (3.14) holds for α ∈ [0, r].
Let ε > 0. By the Gärtner-Ellis theorem,

lim sup
u→∞

(log u)−1 log P
(
Ȳdx log ue ≥ u

)
(3.18)

≤ lim sup
u→∞

dx log ue
log u

(dx log ue)−1 log P

(
log Ȳdx log ue

dx log ue
≥ 1
x
− ε

)

≤ −x inf
{

Γ∗(v); v ≥ 1
x
− ε
}
.

Now if r =∞ then Γ(α) ≤ 0 for every α ≥ 0 and hence, Γ∗(v) =∞ for every v > 0. Thus
(3.13) and (3.18) imply (3.11). Assume that r < ∞. It follows from (3.1) and (3.14) that
for v > Λ′(r),

Γ∗(v) = sup{αv − Γ(α);α ∈ R}
≥ sup{αv − Λ(α)1(α > r);α ∈ R} = Λ∗(v).
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Further, Λ∗ is increasing on (Λ′(0),∞), and hence, on (Λ′(r),∞). Recall that x < µ. By
the above discussion, it is seen that for small ε, (3.18) is at most −xΛ∗ (1/x− ε). Finally,
x 6= x0 so that xΛ∗ (1/x− ε) tends to R(x) as ε tends to zero. Thus (3.13) implies (3.11).

To complete the proof, we have to show that for every x ∈ (x0, µ),

lim inf
u→∞

(log u)−1 log P(T ≤ x log u) ≥ −R(x). (3.19)

See Lemma 2.1. In particular, we can assume that x0 < µ. This implies that Λ is strictly
convex. Recall the definitions of Λi, ΛA and Λg from (3.7), (3.8) and (3.9).

We will construct a subset of {T ≤ x log u} which is large enough to lead to (3.19).
Consider first the case where g is not identically zero. We assumed that E(log(1 + g)) ≥ 0
so that Λg(α) > 0 for every α > 0. Define the continuous time processes

{zAn (t); 0 < t <∞}, {zA,in (t); 0 < t <∞} and {zgn(t); 0 < t <∞}

by

zAn (t) = (logA1 + · · ·+ logAdtne)/n,

zA,in (t) = (logA1 + · · ·+ logAdtne−1 + log(1 + idtne))/n

and

zgn(t) = (log(1 + g1) + · · ·+ log(1 + gdtne))/n.

Fix p > 0 and small ε > 0, and let x1 and x2 be such that 0 < x1 < x2 < x. Write

HAn (ε) =
{

sup
0<t≤x

∣∣zAn (t)− (1− p)t/x1

∣∣ ≤ ε} ,
HA,in (ε) =

{
sup

0<t≤x

∣∣zA,in (t)− (1− p)t/x1

∣∣ ≤ ε}
and

Hgn(ε) =
{

sup
0<t≤x

|zgn(t)− pt/x1| ≤ ε
}
. (3.20)

Write further
HBn (ε) = {Bk ≥ ε(1 + g1) · · · (1 + gk), ∀k ∈ [x1n, xn]}

where Bk is as in (3.5). By Mogulskii’s theorem,

lim inf
n→∞

n−1 log P
(
HAn (ε/4)

)
≥ −xΛ∗A

(
1− p
x1

)
. (3.21)

We refer to Dembo and Zeitouni (1998) and Martin-Löf (1983). For α > 0, we have by
Chebycheff’s inequality,

P (log(1 + i)/n > ε/4) ≤ e−nαε/4+Λi(α).

A similar estimate holds for the probability P (log(1 + i)/n < −ε/4) so that

lim sup
n→∞

n−1 log P (| log(1 + ik)/n| > ε/4 for some 1 ≤ k ≤ dxne)

≤ lim sup
n→∞

n−1 log
(
dxne

(
e−nαε/4+Λi(α) + e−nαε/4+Λi(−α)

))
= −αε/4.
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By the same arguments, it is seen that

lim sup
n→∞

n−1 log P (| logAk/n| > ε/4 for some 1 ≤ k ≤ dxne) ≤ −αε/4.

Since α is arbitrary we conclude by (3.21) that

lim inf
n→∞

n−1 log P
(
HA,in (ε)

)
≥ −xΛ∗A

(
1− p
x1

)
. (3.22)

Similarly, by making use of Mogulskii’s theorem, it is seen that

lim inf
n→∞

n−1 log P (Hgn(ε)) ≥ −xΛ∗g

(
p

x1

)
.

Let Xν be a compound Poisson variable as in (3.3), and take Z = Z. Let mZ = E(Z)
as earlier. Fix ν0 > 0, and write

γ = γ(ν0) = inf{P(Xν ≥ νmZ); ν ≥ ν0}. (3.23)

Obviously, γ is strictly positive. Denote

Rk
+ = {(y1, . . . , yk); y1 > 0, . . . , yk > 0}.

Corresponding to Hgn(ε) in (3.20), define the subset of Rdxne+ by

Hg
n(ε) =

{
(yg1 , . . . , y

g
dxne) ∈ Rdxne+ ; sup

0<t≤x
|(log yg1 + · · ·+ log ygdtne)/n− pt/x1| ≤ ε

}
.

Choose a > (1+s)c̄/b such that P (q > a) > 0. This is possible by assumption (2.12). Recall
the definition of the distribution function Fn from (2.6) and (2.7). By (2.8) and (2.9),

P
(
Hgn(ε) ∩HBn (ε)

)
≥ P

(
Hgn(ε) ∩HBn (ε) ∩ {qk > a for every dx1ne ≤ k ≤ dxne}

)
≥

∫
Cn

dxne∏
k=dx1ne

P
(
Xλybkyg1 ···ygkyqk ≥ ((1 + s)λmZ c̄+ ε)yg1 · · · y

g
k

)
dFdxne(y

b
1, . . . , y

b
dxne, y

g
1 , . . . , y

g
dxne, y

q
1, . . . , y

q
dxne)

where

Cn = {(yb1, . . . , ybdxne, y
g
1 , . . . , y

g
dxne, y

q
1, . . . , y

q
dxne) ∈ R3dxne

+ ;

(yg1 , . . . , y
g
dxne) ∈ H

g
n(ε), yqk > a,∀k ∈ [dx1ne, dxne]}.

Recall that bk ≥ b > 0 for every k. Take ν0 = 1 in (3.23) to see that for small ε and large n,

P
(
Hgn(ε) ∩HBn (ε)

)
≥

∫
Cn

dxne∏
k=dx1ne

P
(
Xλybkyg1 ···ygkyqk ≥ λy

b
ky
g
1 · · · y

g
ky
q
kmZ

)
(3.24)

dFdxne(y
b
1, . . . , y

b
dxne, y

g
1 , . . . , y

g
dxne, y

q
1, . . . , y

q
dxne)

≥ γdxne−dx1ne+1 P(q > a)dxne−dx1ne+1 P (Hgn(ε)) .
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Consequently,

lim inf
n→∞

n−1 log P
(
Hgn(ε) ∩HBn (ε)

)
(3.25)

≥ (x− x1) (log γ + log P (q > a))− xΛ∗g

(
p

x1

)
.

On the event HA,in (ε) ∩Hgn(ε) ∩HBn (ε), we have for large n,

Ydx1ne ≥ −D1e
n(1+2ε)

and
Ydx2ne − Ydx1ne ≥ D2e

n(x2/x1−2ε)

where D1 and D2 are positive constants. Choose ε, x1 and x2 in an appropriate way to see
that Ydx2ne > en for large n on the event. By (3.22) and (3.25),

lim inf
u→∞

(log u)−1 log P (T ≤ x log u) (3.26)

≥ lim inf
u→∞

(log u)−1 log P
(
Ydx2dlog uee > u

)
≥ lim inf

u→∞
(log u)−1 log P

(
HA,idlog ue(ε) ∩H

g
dlog ue(ε) ∩H

B
dlog ue(ε)

)
≥ −x

(
Λ∗A

(
1− p
x1

)
+ Λ∗g

(
p

x1

))
+ o(1)

where o(1) tends to zero as x1 tends to x from the left. Choose x1 close to x such that
x1 ∈ (x0, µ). Then Λ′(α1) = 1/x1 for some α1 > r and hence,

Λ∗(1/x1) = α1/x1 − Λ(α1).

We now choose p such that Λ′g(α1) = p/x1. Then p > 0 and it is easy to see by (3.10) that

Λ∗
(

1
x1

)
= Λ∗A

(
1− p
x1

)
+ Λ∗g

(
p

x1

)
.

By (3.26),

lim inf
u→∞

(log u)−1 log P (T ≤ x log u) ≥ −xΛ∗
(

1
x1

)
+ o(1). (3.27)

Now Λ∗ is continuous at 1/x since x ∈ (x0, µ). Thus (3.19) follows from (3.27).
Consider finally the case where g ≡ 0. We now choose p = 0 in the definitions of the

sets HAn (ε) and Hgn(ε). Then P (Hgn(ε)) = 1 for every n. Similarly to the case p > 0, it is
seen by choosing ν0 = λba in (3.23) that

lim inf
u→∞

(log u)−1 log P (T ≤ x log u)

≥ −xΛ∗A

(
1
x1

)
+ o(1) = −xΛ∗

(
1
x1

)
+ o(1).

This implies (3.19). 2

Proof of Lemma 3.1 Define the function LN : (0,∞)→ R by

LN (t) = lim sup
ν→∞

(log ν)−1 log E
(
N t
ν

)
. (3.28)
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We first show that LN (t) = t and that (3.28) holds as the limit for each t.
We have E(Nν) = ν, and by convention, let E(N 0

ν ) = 1. It is easy to see that then

E
(
N k
ν

)
=

k−1∑
h=0

(
k − 1
h

)
νE
(
N h
ν

)
(3.29)

for k = 2, 3, . . .. This shows that

lim
ν→∞

(log ν)−1 log E
(
N t
ν

)
= t (3.30)

for every t ∈ N. Let t ∈ (0, 1). Apply Jensen’s inequality to conclude that

E
(
N t
ν

)
≤ E (Nν)t = νt

so that LN (t) ≤ t. Now by Hölder’s inequality, LN is convex so that necessarily, LN (t) = t
for every t > 0. It remains to show that (3.28) holds as the limit. Assume on the contrary
that there would exist a sequence νj →∞ and t0 > 0 such that

lim
j→∞

(log νj)−1 log E
(
N t0
νj

)
< t0. (3.31)

Write
LN (t) = lim sup

j→∞
(log νj)−1 log E

(
N t
νj

)
(3.32)

for t > 0. By the first part of the proof, LN (t) = t for every t ∈ N, and LN (t) ≤ t for
every t ∈ (0, 1). By (3.31), LN (t0) < t0. This is a contradiction since also LN is convex. It
follows that (3.28) holds as the limit for every t > 0.

Consider now (3.4). Let first α ≥ 1. By Minkowski’s inequality,

E (Xαν ) =
∞∑
h=1

e−ν
νh

h!
E ((Z1 + · · ·+ Zh)α) (3.33)

≤
∞∑
h=1

e−ν
νh

h!
hαE (Zα) = E (Nα

ν ) E (Zα) .

By (3.33) and Jensen’s inequality,

E (Xαν ) ≥
∞∑
h=1

e−ν
νh

h!
hαE (Z)α (3.34)

= E (Nα
ν ) E (Z)α .

By the above estimates and the first part of the proof, (3.4) holds if α ≥ 1.
Let now α ∈ (0, 1). By (3.33) and Jensen’s inequality,

E (Xαν ) ≤
∞∑
h=1

e−ν
νh

h!
hαE (Z)α

= E (Nα
ν ) E (Z)α .

To get an appropriate lower bound, let M > 0 be such that P(Z ∈ (0,M)) > 0, and let
Zk = min(Zk,M) for k ∈ N. Write

X ν = Z1 + · · ·+ ZNν .
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Then also X ν has a compound Poisson disrtibution. Write

LX (t) = lim sup
ν→∞

(log ν)−1 log E
(
X tν
)

(3.35)

for t > 0. By the first part of the proof, LX (t) = t for t ≥ 1, and LX (t) ≤ t for t ∈ (0, 1).
Also LX is convex so that by making use of arguments similar to the first part of the proof,
it is seen that LX (t) = t for every t > 0, and further, that (3.35) holds as the limit for every
t. The desired lower bound now follows since Xν ≥ X ν . 2

Acknowledgement

I am grateful to Heikki Bonsdorff for stimulating discussions and for his improving
comments on the paper.

References

Asmussen, S. (2000). Ruin Probabilities. River Edge, NJ: World Scientific.
Bahadur, R. R. and S. L. Zabell (1979). Large deviations of the sample mean in general vector

spaces. Ann. Probab. 7, 587–621.
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