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1 Introduction
Andrzej Mostowski presented a way to generalize the notion of a quantifier in 1957
[Mos57]. Preserving the syntactical form of first order quantifiers, he enhanced Tarski’s
truth definition by the clause

M |= Qxψ(x) ⇐⇒
(
|ψM|, |Dom(M) r ψM|

)
∈ R(Q)

where R(Q) is the binary relation between cardinals which determines the meaning of a
generalized quantifier Q. Model theory based on first order logic was young, but already
showing some promise at that time. However, it was all too clear that first order logic
was unable to express some interesting properties, especially infinite sizes of predicates.
Apparently, Mostowski’s paper was a research initiative for developing stronger logics
with good logical properties. In accordance to that, much of the subsequent research on
generalized quantifiers was done on cardinality quantifiers Qα expressing that there are
at least ℵα elements satisfying a formula. This culminated in Keisler’s landmark paper
(see, e.g., [Fuh65, Kei70]).

Mostowski’s work inspired some further generalizations of quantifiers by Härtig and
Rescher [Här65, Res62], which did not follow the first order syntactical form any more.
Finally, Lindström presented the most general form of a generalized quantifier in 1966
[Lin66] where a quantifier is basically treated as a logical oracle. A bit paradoxically,
Lindström soon afterwards proved [Lin69] his famous characterization theorem which
showed that first order logic FO is the only regular logic satisfying Löwenheim–Skolem
and compactness theorems. So in one rigorously defined sense, the quest for better logics
than FO was futile. Though there were many interesting results in abstract model theory
in 1970’s, e.g., Shelah found the compact quantifiers Qcf

α [She75], the research interest in
this area started to decline in 1980’s. Probably the general feeling was that abstract model
theory was bearing too little fruit against the efforts that were spent on it. Currently
abstract elementary classes (for a survey, see [Gro02]) seem to have replaced abstract
model theory as a progressive way of doing model theory.

However, there are other reasons to study generalized quantifiers than model-theoretic,
such as set-theoretical and combinatorial. Indeed, generalized quantifiers re-emerged in
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finite model theory in the early 1990’s [KV95, Hel96]. The connections of the field to com-
plexity theory provide very interesting research problems concerning generalized quanti-
fiers.

This paper is a survey on a seemingly limited aspect of generalized quantifiers, namely
about mutual definability problems between unary quantifiers. We try to develop this
subject matter as a coherent theory, sketching some know results but filling some gaps as
well. The main references are [KV95, Luo00, Luo99, NV96]. It will become clear that the
unary quantifier definability problems are very combinatorial in nature, even if we skip
the Ramsey-theoretic arguments needed.

In Section 2 we introduce the tools needed in the rest of the paper. In particular,
we prove the known result that definability problems between unary quantifiers reduce
to combinatorial questions on relations. Sections 3 and 4 work around the question
which unary quantifiers are definable by (certain types of) Mostowski quantifiers, and how
regularity affects this question. Then in Section 5, we observe that the collection of unary
quantifiers has a hierarchical structure and the steps of this hierarchy are determined by
the unary dimension of a quantifier. Section 6, Regularity gap, is inspired by the fact
that in relation to descriptive complexity theory, irregular quantifiers, such as Maj, are
often used. In the context where they are most frequent, on ordered structures, they are
usually equivalent to regular ones, but on all finite structures this is no longer true. The
main point of the section is that from the logical point of view, this seems to be a defect.

2 Relations and games
This section consists of some preliminary material intensively used in subsequent sec-
tions. To fix some notation, we start with generalized quantifiers as they are treated in
modern expositions. After a quick glance at Ehrenfeucht–Fraïssé-games, it is explained
how definability problem about unary quantifiers are reduced to combinatorial problems
between relations. In a sense, this reduction means a return to the origins of generalized
quantifiers as introduced by Mostowski, as the relations of quantifiers enable a definition
of semantics of the quantifier which is very much in the spirit of Mostowski’s definition.

The model-theoretic notation here is quite standard. We write Dom(M) for the uni-
verse of a structure M and card(M) for its size.

In this paper, the numbers most frequently used are cardinals and integers. We write
Card for the class of cardinals. Addition of cardinals and that of integers is extended to
addition on Card ∪ Z by setting κ + n = n + κ = κ for k an infinite cardinal and n ∈ Z.
Occasionally, real numbers are needed, too, and we write lb for the binary logarithm, i.e.,
lbx = log2 x, for x > 0.

Concepts related to abstract logics are only needed for discussion. In brief, we assume
that the definition presented in [Ebb85] with the strengthening that for every sentence ϕ
there exists the vocabulary of ϕ, τϕ, the symbols occurring in ϕ. A logic L is then a
collection of sentences together with a truth relation |= such that |= is invariant under
isomorphisms and renamings of symbols. In addition, A |= ϕ is only meaningful for a
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σ-structure A such that σ ⊇ τϕ, and A |= ϕ iff A�τϕ |= ϕ.
A logic L is semiregular if it is FO-closed (contains atomic sentences, and is closed

under Boolean connectives and existential quantification) and closed under substitution of
a formula for a predicate. It is well-known that a logic L with finite occurrence property
(τϕ always finite) is semiregular iff it can be presented in the form L ≡ FO(Q) where Q
is a collection of quantifiers of finite width (more on quantifiers later in this section). A
logic is regular if it is semiregular and closed under relativization.

We often compare logics L and L′ as in [Ebb85], using the ordinary notation. Also a
restricted version is used: If S is a class of structures, L ≤ L′ /S means that for every
ϕ ∈ L there is ϕ′ ∈ L′ with τϕ = τϕ′ and such that for every M ∈ Str(τ)∩S with τ ⊇ τϕ,
we have M |= ϕ iff M |= ϕ′. L ≡ L′ /S stands for L ≤ L′ /S and L′ ≤ L /S. We deal with
the following classes: For C ⊆ Card, SC is the class of structures M with card(M) ∈ S.
We write F = Sω and O for the class of finite ordered structures.

A (generalized) quantifier Q is a symbol for its defining class KQ ⊆ Str(τQ) where τQ is
the vocabulary of the quantifier Q. KQ is always assumed to be closed under isomorphisms
and Q to be relational. A logic L is closed under the Q-introduction rule, if for every
vocabulary σ and sequence

(
ψR(xR)

)
R∈τQ

of σ-formulas of L such that nR = |xR|, for
every R ∈ τQ, there is a sentence

ϕ = Q(xRψR(xR))R∈τQ

such that for every A ∈ Str(σ), we have

A |= ϕ iff F (A) ∈ KQ

where the interpreted structure F (A) has the universe Dom(F (A)) = Dom(A) and for
every R ∈ τQ, it holds that RF (A) = ψA

R = {a ∈ Dom(A)nR | A |= ψR[a] } where nR is the
arity of R.

We are mainly interested in logics FO(Q), i.e., quantifier logics with the base logic FO
and set of quantifiers Q. By definition, FO(Q) is the least logic which is closed under first
order formation rules and all Q-introduction rules for Q ∈ Q. Other base logics make
sense and have been studied, in particular, many of the results in this paper extend to
FVL(Q) where FVL = Lω∞ω is the finite variable logic (see, e.g., [KV95]).

Example 2.1. a) The Härtig quantifier I is a quantifier of vocabulary τI = {U, V } and
defining class

KI = {M ∈ Str(τI) | |UM| = |V M| }.

Consider the simplest kind of I-quantified sentence, namely, I(xU(x), yV (y)) of FO(I),
which is usually written in the form Ixy(U(x), V (y)). Clearly, the definition of KI is
equivalent to the statement that for every τI-structure M, we have

M |= Ixy(U(x), V (y)) iff |UM| = |V M|.

This is the form in which we shall usually introduce the semantics of quantifiers.
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b) It is perfectly consistent with the definition of a quantifier that the quantifier may
have empty vocabulary, even if structures for empty vocabulary consist only of the ground
set without further structure. The defining class of such a quantifier is then determined
by the class S ⊆ Card of cardinalities of Ø-structures in the defining class. We reserve
the symbol ΩS for such a quantifier with defining class

KΩS
= {M ∈ Str(Ø) | card(M) ∈ S }.

However, the width of ΩS is zero, so ΩS quantifies no variables in no formulas. In partic-
ular, quantifiers ΩS cannot be nested. Thus, FO(ΩS) is otherwise as first order logic, but
there is a new sentence ΩS() behaving like atomic sentences and expressing the fact that
the cardinality of the structure is in S.

The arity of the quantifier Q is sup({nR | R ∈ τQ } ∪ {1}) where nR is the arity of
the relation symbol R, for each R ∈ τQ. We shall work exclusively with unary quantifiers,
i.e., with quantifiers of arity 1. The width of Q is wd(Q) = |τQ|. Q is simple, if it
is of width one. Simple unary quantifiers are called Mostowski quantifiers. Q is called
universe-independent, if we have A ∈ KQ iff B ∈ KQ whenever A,B ∈ Str(τQ) are such
that for every R ∈ τQ, it holds that RA = RB.

Example 2.2. We list some common unary quantifiers. Throughout this paper, we write
υ = {U} where U is a unary relation symbol. Put τ = {U, V }.

a) Universe-independent Mostowski quantifiers are here called cardinality quantifiers. The
general form of a cardinality quantifier is CS with S ⊆ Card and vocabulary υ. For
M ∈ Str(υ), we have

M |= CS xy U(x) ⇐⇒ |UM| ∈ S.
We note that ∃ can be identified with CCardr{Ø}. In 1960’s and 1970’s, the cardinality
quantifiers Qα = CS with S = {κ ∈ Card | κ ≥ ℵα } where intensively studied. See,
e.g., [Fuh65, Kei70].

b) Another interesting class of Mostowski quantifiers are the threshold quantifiers Tf

of vocabulary υ where the parameter f is a function with dom(f) ∪ rg(f) ⊆ Card
(typically f : N→ N). Then for M ∈ Str(υ),

M |= Tf xy U(x) iff card(M) ∈ dom(f) and |UM| ≥ f(card(M)).

For example Maj = Tf for f : N→ N, f(n) = bn/2c+ 1.

c) Linguistically motivated quantifiers include If , Rf , Mostf of vocabulary τ where f a
function with dom(f) ∪ rg(f) ⊆ Card, such that for M ∈ Str(τ), we have

M |= If xy (U(x), V (y)) ⇐⇒ |V M| = f
(
|UM|

)
,

M |= Rf xy (U(x), V (y)) ⇐⇒ |V M| ≥ f
(
|UM|

)
,

M |= Mostf xy (U(x), V (y)) ⇐⇒ |UM ∩ V M| ≥ f
(
|UM|

)
.
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The first two can be seen as generalizations of the Härtig quantifier I and the Rescher
quantifier R:

M |= Rxy (U(x), V (y)) ⇐⇒ |UM| ≤ |V M|.

Ehrenfeucht–Fraïssé-games are a prolific tool for studying various logics. It is therefore
a bit surprising that in this paper such games for quantifier logics are used only in the
reduction theorem 2.8. of this section. Nevertheless, we define the appropriate systems of
partial isomorphisms (i.e, the algebraic of Fraïssé’s form of Ehrenfeucht–Fraïssé-games)
and present the characterization result without proofs. The proofs are fairly standard,
anyway, and for those who want to reconstruct the proofs by themselves, we give the fol-
lowing background information: Weese [Wee80] presented the Ehrenfeucht–Fraïssé-game
for logics with monotone quantifiers in 1980. This is the key result, as every quantifier
can be monotonized by Imhof’s trick (see [HI98]). The only complication concerns the
translations between sentences using the original quantifier and the monotonized one, as
the quantifier rank should be preserved. This is satisfied by the following definition.

Definition 2.3. The quantifier rank qr(ϕ) of a sentence ϕ of a quantifier logic FO(Q) is
defined inductively as follows:

qr(ϕ) = 0, for f atomic,
qr(¬ϕ) = qr(ϕ),

qr(ψ ∧ ϑ) = max{qr(ϕ), qr(ϑ)}
qr(Q (xRψR(xR))R∈τQ) = sup{ qr(ψR) | R ∈ τQ }+ ar(Q).

The following is the algebraic equivalent to a single move in the Ehrenfeucht–Fraïssé-
game.

Definition 2.4. Suppose M and N are structures of the same vocabulary τ and let Q be
quantifier. Let p ∈ Part(M,N) and I ⊆ Part(M,N) where p ∈ Part(M,N) is the set of
partial isomorphisms from M to N.

a) We say that p Q-extends to I, if for every A ∈ KQ with Dom(A) = Dom(M), one
of the following holds:

1) There exists B ∈ KQ with Dom(B) = Dom(N) such that for every R ∈ τQ and b =
(b0, . . . , bnR−1) ∈ Dom(N)nR , there is an extension q ∈ I of p such that {b0, . . . , bnR−1} ⊆
rg(q) and b ∈ RN ⇐⇒ q−1b ∈ RM.

2) There is R ∈ τQ, b = (b0, . . . , bnR−1) ∈ Dom(N)nR and two extensions q, r ∈ I of p
such that {b0, . . . , bnR−1} ⊆ rg(q) ∩ rg(r) and q−1(b) ∈ RM, but r−1(b) 6∈ RM.

b) We say that p Q-extends back-and-forth to I if p Q-extends to I and p−1 ∈
Part(N,M) Q-extends to I−1 = { q−1 | q ∈ I }.
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There is a clear intuition behind this definition, which unfolds when we draft what an
Q-extension means as a Q-move of an Ehrenfeucht–Fraïssé-game: Let p be the position
in the play. Suppose ∀ makes a Q-move, so he first chooses A ∈ KQ.

Then ∃ has two options: Either she complies to ∀’s move and picks B ∈ KQ, or
she protests against ∀’s choice (which corresponds to case 2 in the definition). In the
first case, ∀ checks ∃’s choice B ∈ KQ by picking R ∈ τQ and b = (b0, . . . , bnR−1) ∈
Dom(N)nR . ∃ then answers by a = (a0, . . . , anR−1) ∈ Dom(M)nR with a ∈ RM iff
b ∈ RN, and the play continues at the position p ∪ {(a0, b0), . . . , (anR−1, bnR−1)} (with A

and B now forgotten). In the second case, ∃ picks R ∈ τQ, b ∈ Dom(N)nR and a ∈ RM,
a′ 6∈ RM and ∀ has to choose if the play continues at p ∪ {(a0, b0), . . . , (anR−1, bnR−1)}
or p ∪ {(a′0, b0), . . . , (a′nR−1, bnR−1)}. (Intuitively, ∃ tries to demonstrate that A is not
definable.)

Definition 2.5. Let M,N ∈ Str(τ), k ∈ N and let Q be a set of quantifiers of finite
width. Then (I0, . . . , Ik) is a Q-system of partial isomorphisms between M and N, if

1) Part(M,N) ⊇ I0 ⊇ I1 ⊇ · · · ⊇ Ik 6= Ø,

2) for every i = 0, . . . , k − 1 and Q ∈ Q ∪ {∃} with i + ar(Q) ≤ k, every p ∈ Ii+ar(Q)

Q-extends back-and-forth to Ii.

In symbols, (I0, . . . , Ik) : M ∼=k;Q N.

Note that ∃-back-and-forth extension can be shown to be equivalent to the normal
back-and-forth criterion for first order logic.

We state the following characterization without a proof. We write M ≡k N (FO(Q))
if M and N satisfy the same sentences of FO(Q) up to quantifier rank k.

Theorem 2.6. Let M and N be structures of a finite vocabulary τ , k ∈ N and let Q be
a set of quantifiers of finite width. Then

M ≡k N (FO(Q)) iff M ∼=k;Q N.

The comparisons of expressive power of quantifiers are generally very hard. If we
restrict the attention to unary quantifiers, the question becomes feasible, since unary
structures are simple enough.

Let us say that U is a possibly improper partition of X, if U r {Ø} is a partition of X,
i.e.,

⋃
U = X and U is a disjoint family of sets. Similarly, call an indexed family (Ui)i∈I

a possibly improper partition of X if
⋃
i∈I Ui = X and Ui ∩ Uj = Ø, for i, j ∈ I, i 6= j.

Let M be a structure for a finite unary relational vocabulary τ . Then the relations
of R generate a possibly improper partition of Dom(M). More formally, put

UM(σ) = { a ∈ Dom(M) | σ = {R ∈ τ | a ∈ RM } },

for σ ⊆ τ .
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Then (UM(σ))σ⊆τ is a possibly improper partition of Dom(M). Put

cM : P(τ)→ Card, cM(σ) = |UM(σ)|.

Then cM is an invariant of M, i.e., for another N ∈ Str(τ), we have and M ∼= N iff
cN = cM.

Fix a bijection fτ : P(τ) → n where n = 2|τ | ∈ Cardn and κM = cM ◦ fτ−1 ∈ Cardn.
We make the convention that fτ (Ø) = n − 1. For a unary quantifier Q of finite width,
put

R(Q) = {κM |M ∈ KQ } ⊆ Cardn

where n = 2wd(Q). For C a class of cardinals, write

R(Q,C) = R(Q) ∩ Cn.

Example 2.7. An easy calculation shows that R(ΩS) = S, R(CS) = S × Card,

R(Tf ) = { (κ, λ) ∈ Card2 | κ+ λ ∈ dom(f), κ ≥ f(κ+ λ) },

for f a function with dom(f) ∪ rg(f) ⊆ Card and

R(I) = { (κ0, κ1, κ2, κ3) ∈ Card4 | κ0 + κ1 = κ0 + κ2 }

assuming the enumerations ϕυ(υ) = 0, ϕυ(Ø) = 1, ϕτI(τI) = 0, ϕτI({U}) = 1, ϕτI({V }) =
2, ϕτI(Ø) = 3.

We need some notation for manipulation of relations. For n, l ∈ Z+, l ≤ n, Un,l is the
set of sequences U = (U0, . . . , Ul−1) of disjoint subsets of n and Vn,l is the set of possibly
improper partitions U = (U0, . . . , Ul−1) of n. In addition,

Jn,l = { (U , t) ∈ Vn,l × Zl | t = (t0, . . . , tl−1) satisfies
∑
i∈l

ti = 0 }.

For a sequence κ ∈ Cardn and U = (U0, . . . , Ul−1) ∈ Un,l, we write

s(κ,U) =

∑
i∈U0

κi, . . . ,
∑
i∈Ul−1

κi

 .

For a finite tuple κ ∈ (Card ∪ Z)n and λ ∈ Card ∪ Z, we write

κ ↓λ = (min{κ0, λ}, . . . ,min{κl−1, λ})

and
κ ↑ λ = (max{κ0, λ}, . . . ,max{κl−1, λ}).

Furthermore, we write

κ ↓+ λ = (κ ↓λ)ˆ

(∑
i∈n

κi

)
.

The following result is an obvious generalization of a similar result for cardinality
quantifiers by Corredor [Cor86]. It is well-known among researchers of unary quantifiers,
and variants of it have appeared in literature (see, e.g., [Vää97, Luo99]).
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Proposition 2.8. Let Q be a unary quantifier and Q a set of unary quantifiers, all
of finite width. Let C be an infinite initial segment of the class of cardinals. Denote
n = 2wd(Q) and lq = 2wd(q), for q ∈ Q. Then the following are equivalent:

a) FO(Q) ≤ FO(Q) /SC,

b) R(Q,C) is a (finite) Boolean combination of relations

{κ ∈ Cn | s(κ,U) + t ∈ R(q, C) }

where q ∈ Q ∪ {∃} and (U , t) ∈ Jn,lq .

Proof. We only sketch the direction from condition b to a, omitting some easy but tedious
details. Let U = (U0, . . . , Ul−1) ∈ Vn,l where l = 2wd(q) for some q ∈ Q. Then there is
a quantifier-free interpretation F : Str(τQ) → Str(τq) such that for every M ∈ Str(τQ),
we have κF (M) = s(κM,U). Here, quantifier-free interpretation means that there are
quantifier-free formulas ϑR(x), R ∈ τq, such that for every M ∈ Str(τQ), it holds that
RF (M) = ϑM

R .
Consider the sentence ϕ = q(xRϑR(xR)). Then for M ∈ Str(τQ), we have

M |= ϕ iff F (M) ∈ KQ iff s(κM,U) = κF (M) ∈ R(q).

Put in another way,

{κM |M ∈ Str(τQ), M |= ϕ } = {κ ∈ Cardn | s(κ,U) ∈ R(q) }.

If t = (t0, . . . , tl−1) ∈ Zl with
∑

i∈l ti = 0, then modifying the sentence ϕ slightly we get
ϕ′ ∈ FO(q)[τQ] such that

{κM |M ∈ Str(τQ), M |= ϕ′ } = {κ ∈ Cardn | s(κ,U) + t ∈ R(q) }.

Suppose now condition b holds, i.e., R(Q,C) is a Boolean combination of relations
Ri = {κ ∈ Cn | s(κ,Ui) + ti ∈ R(qi) }, i ∈ I, where qi ∈ Q∪ {∃} and (Ui, t) ∈ Jn,lqi

. By
previous paragraph, for each i ∈ I, there is ϕi ∈ FO(Q)[τQ] such that for M ∈ Str(τQ),
we have M |= ϕi iff s(κ,Ui) + ti ∈ R(qi). If ψ is an appropriate Boolean combination of
sentences ϕi, i ∈ I, then for every M ∈ Str(τQ)∩SC , we have M |= ψ iff M ∈ KQ, so that
Q is definable in FO(Q) on SC . By semi-regularity of FO(Q), this implies condition a.

Suppose now condition a holds, i.e., FO(Q) ≤ FO(Q) /SC and so Q is definable in
FO(Q) on the class SC . Fix a finite Q0 ⊆ Q and ϕ ∈ FO(Q0)[τQ] defining KQ on SC .
Write r = qr(ϕ). Our claim is now that R(Q,C) is a Boolean combination of relations
of form {κ ∈ Cn | s(κ,U) + t ∈ R(q, C) } where q ∈ Q0 ∪ {∃}, (U , t) ∈ Jn,lq and
t ∈ {−r,−r + 1, . . . , r − 1, r}lq . Note that the set r of such relations is finite.

Toward contradiction, suppose R(Q,C) is not a Boolean combination of relations in
r. Pick tuples λ ∈ R(Q,C) and µ ∈ Cn r R(Q,C) such that for every R ∈ r we have
λ ∈ R iff µ ∈ R. In particular, λ ∈ Rsi iff µ ∈ Rsi holds for the relations Rsi = {κ ∈
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Cn | s(κ,U) + t ∈ R(∃, C) } where s ∈ {0, . . . , r}, i ∈ n with U = ({i}, n r {i}) and
t = (s,−s). These particular cases imply that λ ↓(r + 1) = µ ↓(r + 1). Pick structures
M,N ∈ Str(τQ) with κM = λ and κN = µ; then M ∈ KQ, but N 6∈ KQ.

Building a system of partial isomorphisms is now simple: put Ii = { p ∈ Part(M,N) |
|p| ≤ r − i }, i = 0, . . . , r. As κM ↓(r + 1) = κN ↓(r + 1), the sequence (I0, . . . , Ir) clearly
satisfies the normal back-and-forth conditions, i.e., (I0, . . . , Ir) is a decreasing sequence
of nonempty subsets of Part(M,N) and every p ∈ Ii+1 ∃-extends back-and-forth to Ii,
for i = 0, . . . , r − 1. Let us check that for every p ∈ Ii+1 and q ∈ Q0 the partial
isomorphism p q-extends back-and-forth to Ii, too. By symmetry, it is enough to consider
forth extensions.

So suppose q ∈ Q0, p ∈ Ii+1 for some i ∈ r and A ∈ Kq with Dom(A) = Dom(M).
For every j ∈ lq = 2wd(q), put

U ′j = { i ∈ n | UM(f−1
τQ

(i)) ∩ UA(f−1
τq (j)) 6⊆ dom(p) }.

Note that for i ∈ n, we have i 6∈
⋃
j∈lq U

′
j iff UM(f−1

τQ
(i)) ⊆ dom(p). We have two cases.

1) The sets U ′j, j ∈ lq, are disjoint. We note in passing that then A is actually
quantifier-free definable in M with parameters in dom(p). Choose Uj ⊇ U ′j, j ∈ lq,
such that U = (Uj)j∈lq ∈ Vn,lq . For j ∈ lq, we now have UA(f−1

τq (j)) r dom(p) =⋃
i∈Uj

UM(f−1
τQ

(i)) r dom(p). For every j ∈ lq, put A+
j = UA(f−1

τq (j)) ∩ dom(p), A−j =(⋃
i∈Uj

UM(f−1
τQ

(i))
)
∩ dom(p), B+

j = p[A+
j ], B−j = p[A−j ]. ∃’s natural reply is now

B ∈ Str(τq) such that Dom(B) = Dom(N) and for every j ∈ lq

UB(f−1
τq (j)) =

⋃
i∈Uj

UN(f−1
τQ

(i)) r rg(p)

 ∪B+
j .

Then for j ∈ lq, we have

UA(f−1
τq (j)) =

⋃
i∈Uj

UM(f−1
τQ

(i) r A−j )

 ∪ A+
j

and

UB(f−1
τq (j)) =

⋃
i∈Uj

UN(f−1
τQ

(i) rB−j )

 ∪B+
j .

The main point is now showing that B ∈ Kq. Indeed, if we put tj = |A+
j | − |A−j |, for

j ∈ lq, we see that κA = s(κM,U) + t and κB = s(κN,U) + t with t = (tj)j∈lq . As
|tj| ≤ r, for each j ∈ lq, we see that R = {κ ∈ Cn | s(κ,U) + t ∈ R(q, C) } ∈ r. Now
A ∈ Kq implies s(κM,U)+t = κA ∈ R(q, C), so κM ∈ R, and by our choice of tuples κM

and κN, also κN ∈ R, whence κB ∈ R(q, C), so indeed we have B ∈ Kq. The remaining
conditions are now easy to check.
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2) There are distinct j, k ∈ lq such that U ′j ∩U ′k 6= Ø. There is P ∈ f−1
τq (j)4f−1

τq (k) ⊆
τq, say, P ∈ f−1

τq (j) and P 6∈ f−1
τq (k). Pick i ∈ U ′j∩U ′k ⊆ n, a0 ∈ UM(f−1

τQ
(i))∩UA(f−1

τq (j))r
dom(p) and a1 ∈ UM(f−1

τQ
(i))∩UA(f−1

τq (k))rdom(p). Then a0 6∈ PA, but a1 ∈ PA and it is
readily seen that there is b ∈ Dom(N) such that both p∪{(a0, b)} ∈ Ii and p∪{(a1, b)} ∈ Ii
hold. So ∃ can reject A as in Definition 2.4 a, case 2.

By cases 1 and 2, we have that p q-extends to Ii. In conclusion, (I0, . . . , Ir) : M ∼=r;Q0 N.
By Theorem 2.6, this means that M ≡k N (FO(Q0)), and, in particular, M |= ϕ iff N |= ϕ.
This is in contradiction with the assumption that q defines Q on SC , as we have M ∈ KQ

and N 6∈ KQ.

In particular, for S ⊆ T we have that FO(CS) ≤ FO(CT ) iff S is a Boolean combination
of classes T + m and {κ + m | κ > 0 } where m ∈ N. The latter classes result from the
effect of the existential quantifier, the effect which can be eliminated by the following
reformulation: FO(CS) ≤ FO(CT ) iff there exists S ′ ⊆ Card such that S4S ′ ⊆ ω is finite
and S ′ is a Boolean combination of classes T +m, m ∈ Z.

Corredor [Cor86] found this simple fact and used it to show that the partial order of
cardinality quantifiers according to the expressive power is already very rich, containing,
among others, infinite descending chains and antichains.

3 Bounded quantifiers
We start exploring the hierarchy of unary quantifiers from the weakest of quantifiers,
proceeding from bottom to top. The trivial starting point is then the first order definable
unary quantifiers. Although there is nothing really new in the characterization of FO-
definable unary quantifiers, we go through this easy case for reasons of comparison, and
to acquaint the reader with notation and methods.

There is a class of unary quantifiers almost as trivial as the FO-definable one, which
is called the class of bounded quantifiers. The notion, as it appears here, is a variant
of many similar notions appearing in the literature, e.g, in [Vää97, DHS98]. Different
boundedness notions are usually not generalizations of each other, but they try to convey
the same idea of inexpressibility. We shall find out that bounded quantifiers are equivalent
to unary quantifiers of empty vocabulary, which appears to be a case which has not been
considered at all, probably due to its triviality.

Proposition 3.1. Let Q be a unary quantifier with n = 2wd(Q) ∈ N. Then Q is first-order
definable iff there are m ∈ N and R ⊆ {0, . . . ,m}n such that

R(Q) = {κ | κ ↓m ∈ R }.

Proof. Let A and B be τQ-structures. Then a standard application of Ehrenfeucht–
Fraïssé-games shows that A ≡r B (FO) iff κA ↓ r = κB ↓ r. Suppose now the condition
is not met. Then for each m ∈ Z+, there are κ ∈ R(Q), λ ∈ Cardn r R(Q) such that
κ ↓m = λ ↓m. Picking τQ-structures A and B such that κA = κ and κB = λ we observe
that A ∈ KQ, B 6∈ KQ and A ≡m B (FO). This implies that Q is not FO-definable.
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Suppose then that the condition holds: R(Q) = {κ | κ ↓m ∈ R } with some m ∈ N
and R ⊆ {0, . . . ,m}n. Then KQ is closed under ≡m-equivalence of FO: If A ∈ KQ and
B is a τQ-structure with A ≡m B (FO), then κB ↓m = κA ↓m ∈ R, whence κB ∈ R(Q)
and B ∈ KQ. As τQ is finite, this implies that Q is FO-definable.

Hence, in this context, FO-definability corresponds to the way birds count: 0, 1, 2 up
to m as “many”. When we enhance this ability just a bit, changing κ ↓m to κ ↓+m, we
get a concept which is called boundedness of quantifiers here. Note that for appropriate
unary relational structures A we have κA ↓+m = (κA ↓m)ˆ(card(A)), so that this change
entails adding the information about the size of the structure.

Definition 3.2. A unary quantifier Q of finite width is bounded on class C ⊆ Card, if
there are m ∈ N and R ⊆ {0, . . . ,m}n × Card with n = 2wd(Q) such that

R(Q,C) = {κ ∈ Cn | κ ↓+m ∈ R }.

The default is C = Card: Then we simply say that Q is bounded without referring to the
class C.

Note that the FO-definability of a unary quantifier of finite width implies that it is
bounded.

Example 3.3. a) Let S ⊆ Card and consider the cardinality quantifier CS with

R(CS) = { (κ, λ) ∈ Card2 r {(0, 0)} | κ ∈ S }.

Suppose CS is bounded, and pick m ∈ Z+ and R ⊆ {0, . . . ,m}2 × Card such that

R(CS) = { (κ, λ) ∈ Card2 | (κ, λ) ↓m ∈ R }.

For every µ, ν ≥ m, we have (µ, ν) ↓+m = (m,m, µ + ν) = (ν, µ) ↓+m, which implies
µ ∈ S iff (µ, ν) ∈ R(CS) iff (µ, ν) ↓+m = (ν, µ) ↓+m ∈ R iff (ν, µ) ∈ R(CS) iff ν ∈ S.
Hence, either S ⊆ m or Card r S ⊆ m.

Since m ∈ Z+ was arbitrary, boundedness of CS implies that either S is finite or co-
finite (Card r S finite) and this finite part is included in ω. Conversely, if this condition
holds, CS is easily seen to be FO-definable, which implies boundedness. Hence, CS is
bounded iff it is FO-definable.

b) Let f : N → N be such that f(0) = 1 and f(n) ≤ n + 1, for n ∈ N. Consider the
threshold quantifier Tf with

R(Tf ) = { (k, l) ∈ N× N | k ≥ f(k + l) }.

Let g : N→ N, g(n) = min{f(n), n+ 1− f(n)}. If g is unbounded, then for each m ∈ Z+

there is n ∈ N such that g(n) > m, so m < f(m) ≤ n −m. Then (m,n −m) 6∈ R(Tf )
and (n−m,m) ∈ R(Tf ), but

(m,n−m) ↓+m = (m,m, n) = (n−m,m) ↓+m.
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This implies that Tf is not bounded.
Suppose then g is bounded. Denote by m ∈ N the maximum value of g, and put

R = {κ ↓+m | κ ∈ R(Tf ) }.

Let κ ∈ Card2. Trivially, κ ∈ R(Tf ) implies κ ↓+m ∈ R. In the other direction,
suppose that κ ↓+m ∈ R. Choose λ ∈ R(Tf ) such that λ ↓+m = κ ↓+ m ∈ R. We
observe that λ = (i, j) ∈ N × N where i ≥ f(i + j). We may assume that κ 6= λ; then
κ ↓+m = λ ↓+m is possible only if κ ↓+m = (m,m, i + j) = λ ↓+m. Then i, j ≥ m.
Consequently, we have i + j + 1 − f(i + j) > j + i − f(i + j) ≥ j ≥ m. However,
since g is bounded by m, we must have f(i + j) ≤ m. Now if κ = (r, s), we get
r ≥ min{r,m} = min{i,m} = m ≥ f(i+ j) = f(r + s). Therefore, we have κ ∈ R(Tf ).

All in all, Tf is bounded iff g is bounded.
c) For the Härtig quantifier I we have

R(I, ω) = { (κ0, κ1, κ2, κ3) ∈ ω4 | k1 = k2 }.

Now for every m ∈ Z+, we may choose κ = (0,m,m+ 2, 0) and λ = (0,m+ 1,m+ 1, 0),
and then κ 6∈ R(I), λ ∈ R(I) and κ ↓+m = (0,m,m, 0, 2m+ 2) = λ ↓+m. Therefore, I is
not bounded.

The general appearance of bounded quantifiers is deceptive: The following result shows
that they can be reduced to the simplest kind of unary quantifiers.

Proposition 3.4. For a unary quantifier Q of finite width and an infinite initial seg-
ment C of Card, the following are equivalent:

a) Q is bounded on C.

b) There are finitely many classes C0, . . . , Cs−1 ⊆ C such that

FO(Q) ≡ FO(ΩC0 , . . . ,ΩCs−1) /SC .

c) There are finitely many classes C0, . . . , Cs−1 ⊆ C such that

FO(Q) ≤ FO(ΩC0 , . . . ,ΩCs−1) /SC .

Proof. Let n = 2wd(Q). Obviously condition b implies condition c, so suppose now c
holds, i.e., there are classes C0, . . . , Cs−1 ⊆ C with s ∈ N such that FO(Q) ≤ L /SC
where L = FO(ΩC0 , . . . ,ΩCs−1). In particular, Q is L-definable on SC ; let ϕ ∈ L[τQ] be
the defining sentence. Partition C according to the classes Ci: For each I ⊆ s, let DI

be the set of cardinals κ ∈ C such that I = { i ∈ s | κ ∈ Ci }. Since quantifiers of
vocabulary Ø cannot be nested but can appear only in front of subformulas of atomic
form ΩCi

() which trivialize in classes SDi
, we have L ≡ FO /SDI

. Let ϕI ∈ FO[τq] be
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a translation of ϕ ∈ L[τQ] on the class SDI
. Now the previous proposition implies that

there is mI ∈ N and RI ⊆ {0, . . . ,m} such that

RτQ(ϕI) = {κM |M ∈ Str(τQ),M |= ϕI }
= {κ ∈ Cardn | κ ↓mI ∈ RI }.

A moment’s reflection shows that all mI , I ⊆ s, can be assumed to be equal, i.e., mI = m
is constant. Put R =

⋃
I⊆s(RI × DI). It is then straightforward to show that for every

κ ∈ Cn, we have κ ∈ R(Q,C) iff κ ↓+m ∈ R. Hence, Q is bounded on C.
Suppose then condition a holds, i.e., Q is bounded. Choose m ∈ Z+ and R ⊆

{0, . . . ,m}n × Card such that R(Q,C) = {κ ∈ Cn | κ ↓+m ∈ R }. We judiciously
choose classes of cardinals such that condition b will hold. Put B = { (κ0, . . . , κn−1) ∈
Nn | max{κ0, . . . , κn−1}) = m } ⊆ {0, . . . ,m}n. By the preceding proposition, we know
that for every A ⊆ B there is ψA ∈ FO[τQ] such that

RτQ(ψA) = {κ ∈ Cardn | κ ↓m ∈ A }.

For every λ ∈ C, define Rλ = {κ ∈ {0, . . . ,m}n | κˆ(λ) ∈ R } . Now for every A ⊆ B,
put

CA = {λ ∈ C | A = Rλ ∩B }.

We aim to show that FO(Q) ≡ L /SC where L = FO({ΩCA
| A ⊆ B }).

For κ ∈ Cardn, write s(κ) = s(κ, (n)) for the sum of components of κ, for short.
Note that R(ΩCA

) = CA and put

SA = {κ ∈ Cn | s(κ) ∈ R(ΩCA
) } = {κ ∈ Cn | s(κ) ∈ CA },

for A ⊆ B. Let us compare the relation R(Q,C) to the relation

R′ =
⋃
A⊆B

(
RτQ(ψA) ∩ SA

)
,

so let κ = (κ0, . . . , κn) ∈ Cn. Denote λ = s(κ). Let A be the unique subset of B for
which λ ∈ CA, or equivalently, κ ∈ SA. Then κ ∈ R′ iff κ ∈ RτQ(ψA) iff κ ↓m ∈ A.
If λ ≥ mn, then by the pigeonhole principle, we have κ ↓m ∈ B so that κ ↓m ∈ A
iff κ ↓m ∈ Rλ iff κ ↓+m = (κ ↓m)ˆ(λ) ∈ R iff κ ∈ R(Q,C). Hence, κ ∈ R′ iff
κ ∈ R(Q,C) provided that λ ≥ mn. Since there are only finitely many tuples with
λ < mn, this means that the symmetric difference R(Q,C)4R′ is finite and included in
Nn. So R(Q,C)4R′ = RτQ(ϕ) for some ϕ ∈ FO[τQ]. Consequently, R(Q,C) is a Boolean
combination of relations RτQ(ϕ), RτQ(ψA) and SA, for A ⊆ B. Applying Theorem 2.8
first to FO case, we see that R(Q,C) is a Boolean combination of relations of form
{κ ∈ Cn | s(κ,U)+ t ∈ R(q, C) } where q ∈ {ΩCA

| A ⊆ B }∪{∃} and (U , t) ∈ Vn,2wd(q) .
Another application of that theorem now gives that Q is L-definable on SC which implies
FO(Q) ≤ L /SC .
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In the other direction, we still need to show that L ≤ FO(Q) /SC , so let us show that
each ΩCA

, A ⊆ B, is FO(Q)-definable on the class C. For every κ = (κ0, . . . , κn−1) ∈ B,
pick j(κ) such that κj(κ) = m, and let t(κ) = (t0, . . . , tn−1) ∈ Zn be the tuple with∑

i∈n ti = 0 and such that κ and t(κ) differ only on one coordinate: tj(κ) 6= κj(κ). Put
U = (U0, . . . , Un−1) where Uj(κ) = {0} and Ui = Ø, otherwise. Then for every λ ∈ C,
λ ≥ mn, we have

(s((λ),U) + t(κ)) ↓m = κ.

Put
Rκ = {λ ∈ C | s((λ),U ) + t(κ) ∈ R(Q,C) }.

For A ⊆ B, consider the relation

RA =
⋂
κ∈A

Rκ r
⋃

κ∈BrA

Rκ

as a unary relation on C. For every λ ∈ C, λ ≥ mn, we have that λ ∈ RA iff

A = {κ ∈ B | λ ∈ Rκ }
= {κ ∈ B | s((λ),U) + t(κ) ∈ R(Q,C) }
= B ∩Rλ,

as (s((λ),U) + t(κ)) ↓+m = κˆ(λ) and R(Q,C) = {κ ∈ Cn | κ ↓+m ∈ R }. So λ ∈ RA

iff λ ∈ CA, provided that λ ≥ mn. We have shown that RA4CA ⊆ {0, . . . ,mn} which
implies that CA = R(ΩCA

, C) is an appropriate Boolean combination. Hence, ΩCA
is

FO(Q)-definable on the class C.
Since Q is L-definable and each ΩCA

, A ⊆ B, FO(Q)-definable on the class SC , we get
FO(Q) ≡ L /SC .

4 Regularity and small width
In this section, we study the borderline between Mostowski quantifiers and other unary
quantifiers. We thus concentrate on unary quantifiers of width one (Mostowski quantifiers)
and width two. We approach this issue in a most concrete manner: We repeat three
problems by Jouko Väänänen [Vää97] and provide answers in this and the next section.
In the process, we shall learn that regularity is an important factor considering such
problems.

Let f : N → N and put g : N → Z, g(n) = min{f(n), n + 1− f(n)}. Väänänen asked
the following questions:

a) If f is unbounded, does it imply that If is not definable by Mostowski quantifiers?

b) Assume that f(n) ≤ n + 1, for every n ∈ N. If g is unbounded, does it imply that
Mostf is not definable by Mostowski quantifiers?
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c) If f is unbounded, does it imply that Rf is not definable by Mostowski quantifiers?

Väänänen showed that the answer for c is affirmative and conjectured that this is
the case for a and b two. Here, these conjectures are shown to be false and a slightly
strengthened version of c is presented.

Obviously, FO(If ) ≤ FO(Rf ) and FO(Mostf ) ≤ FO(Rf ). Note that one should not
confuse the concept of boundedness of quantifiers to boundedness of f : The fact that f is
bounded does not imply that any of If , Mostf of Rf would be bounded, it rather implies
that

FO(If ) ≡ FO(Rf ) ≡ FO(Mostf ) ≡ FO(CS0 , . . . ,CSm)

for Si = f−1{i}, i = 0, . . . ,m = max{ f(n) | n ∈ N }.
An impatient reader may now proceed right away to the two examples of this section

where negative solutions to the questions a and b are provided. These solutions look like
as if they could be constructed from the scratch, without any special knowledge of unary
quantifiers. However, in reality, I found the constructions since I knew where to look for
the solution. Therefore, we develop some general theory first.

We devise an appropriate topological space for studying unary quantifiers of fixed
width, essentially as points of the space. For technical reasons, relations of the quantifiers
rather than quantifiers themselves are used as points. Note first that for any set X,
the power set P(X) is in a natural way a topological space: Consider the canonical
bijection P(X) → X2 = X{0, 1}, A 7→ χA where χA is the characteristic function of the
set A, i.e.,

χA : X → 2, χA(x) =

{
1, if x ∈ A
0, if x 6∈ A.

Now, if we regard 2 as a discrete space of two points, then X2 is naturally endowed with
the product topology, and the canonical bijection induces a topology in P(X). Thus,
P(X) and X2 are homeomorphic. A natural basis for P(X) is B = {U(A,B) | A,B ⊆
X,A ∩B = Ø } where

U(A,B) = {Y ⊆ X | A ⊆ Y, Y ∩B = Ø }.

Note also that P(X) is a Hausdorff space, and, by Tychonoff’s theorem, a compact space.
Now fix a finite unary vocabulary τ and a class C of cardinals with ω ⊆ C for studying

unary quantifiers of vocabulary τ . Put n = 2|τ |. Then the appropriate topological space
is Xn = P((C ∪ Z)n). Note that the notation makes sense, even if n is not a power of 2.

For every relation R ⊆ (C ∪ Z)n and finite A ⊆ C ∪ Z, define

N(R,A) = {S ∈ Xn | S ∩ An = R ∩ An }.

It is readily seen that, not only N(R,A) = U(R ∩ An, An r R) and thus N(R,A) is a
member of the canonical basis, but also that

Bn = {N(R,A) | R ⊆ (C ∪ Z)n, A ⊆ C ∪ Z finite }
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is another basis for Xn.
An important, but easy to see, technical point is that sets

K1 = {R(q, C) | q is a quantifier of vocabulary τ }
and

K2 = {R(q, C) | q is a universe-independent quantifier of vocabulary τ }

are closed in Xn. Since we deal with relations, it is helpful to observe that Boolean
operations are continuous. In specific, f : Xn → Xn, f(R) = An rR is even a homeomor-
phism and g : Xn × Xn → Xn, g(R, S) = R ∩ S, is continuous. A further typical way of
manipulating relations is the following:

Lemma 4.1. Let t : (C ∪ Z)n → (C ∪ Z)l where n, l ∈ Z+. Then h : Xl → Xn, h(R) =
t−1[R] is continuous.

Proof. It is enough to check that h is continuous at any R ∈ Xl. Let B ⊆ C∪Z be finite.
Then there is finite B′ ⊆ C ∪ Z such that t[Bn] ⊆ (B′)l. Now for every S ∈ N(R,B′) we
have h(S) ∩Bn = h(R) ∩Bn, so h(S) ∈ N(h(R), B) and h is continuous at R.

Lemma 4.2. Let q be a unary quantifier of finite vocabulary τ , l = 2|τ |, n ∈ Z+ and
(U , t) ∈ Jn,l. Then there is a quantifier q′ of the same vocabulary τ and (U ′, t′) ∈ Jn,l
where U ′ = (U ′0, . . . , U

′
l−1) such that

1) n− 1 ∈ U ′l−1 and

2) for every κ ∈ Cardn, we have s(κ,U) + t ∈ R(q) iff s(κ,U ′) + t′ ∈ R(q′).

Proof. Let U = (U0, . . . , Ul−1). Pick any permutation σ of l = {0, . . . , l − 1} such that
n− 1 ∈ Uσ(l−1). This is possible, since {U0, . . . , Ul−1}r {Ø} is a partition of n. Consider
R′ = {κ ◦ σ | κ ∈ R(q) }. Obviously R′ ⊆ Cardn r {0}, so there is a quantifier q′ of
vocabulary τ such that R′ = R(q′). Put U ′ = U ◦ σ and t′ = t ◦ σ. Then it is easy to see
that the conditions of the lemma are satisfied.

In plain terms, the following results convey the idea that irregularity of a logic does
not help in defining universe-independent quantifiers.

Theorem 4.3. Let Q be a universe-independent unary quantifier of finite width and let
C be a set of cardinals which is an infinite initial segment of the class C. Suppose

FO(Q) ≤ FO(Q) /SC

for some finite set Q of unary quantifiers of width at most k ∈ ω. Then there is a finite
set Q∗ of unary universe-independent quantifiers of width k such that

FO(Q) ≤ FO(Q∗) /SC .
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Proof. Let σ be a vocabulary of Q and n = 2|σ| ∈ N. By renaming and adding dummy
symbols, we may assume that the quantifiers q ∈ Q have a common vocabulary τ . Put
l = 2k. The plan of the proof is as follows: It is first showed that we can write

R(Q,C) = f(R(q0, C), . . . ,R(qr−1, C))

with r ∈ N, q0, . . . , qr−1 ∈ Q and f : Xr
l → Xn continuous. Then it is showed that it

is possible to approximate quantifiers q0, . . . , qr−1 by universe-independent q̃0, . . . , q̃r−1

so that f(R(q̃0, C), . . . ,R(q̃r−1, C)) is arbitrarily close to R(Q,C). Finally, topological
reasoning demonstrates that this implies the claim of the theorem.

For the first point, we first apply Theorem 2.8 which implies thatR(Q,C) is a Boolean
combination of relations of form {κ ∈ Cn | s(κ,U) + t ∈ R(q, C) } where q ∈ Q ∪ {∃}
and (U , t) ∈ Jn,l. More formally, let us write the Boolean combination in disjunctive
normal form. This means finding r ∈ Z+, I ⊆ P(r), quantifiers q0, . . . , qr−1 ∈ Q and
(Ui, ti) ∈ Jn,l (i ∈ r) such that

R(Q,C) =
⋃
I∈I

(⋂
i∈I

{κ ∈ Cn | hi(κ) ∈ R(qi, C) }

r
⋃
i∈rrI

{κ ∈ Cn | hi(κ) ∈ R(qi, C) }
)

where hi : (C ∪ Z)n → C ∪ Z, hi(κ) = s(κ,Ui) + ti. Hence

R(Q,C) = f(R(q0, C), . . . ,R(qr−1, C))

where f : Xr
l → Xn,

f(R0, . . . , Rr−1) =
⋃
I∈I

(
(Cn r {0}) ∩

⋂
i∈I

h−1
i [Ri] r

⋃
i∈rrI

h−1
i [Ri]

)
.

By Lemma 4.1, mappings R 7→ h−1
i [R] are continuous. Mapping f can be composed using

these, projections, constant functions and Boolean functions, so f is continuous.
For the second point, let B ⊆ C ∪ Z be finite and non-empty. Let us find universe-

independent quantifiers q̃0, . . . , q̃r−1 with vocabulary τ such that

f(R(q̃0, C), . . . ,R(q̃r−1, C)) ∈ N(R(Q,C), B).

By Lemma 4.2, we may assume that n − 1 is a member of the last component of the
sequence Ui, for each i ∈ r. Choose µ ∈ C such that µ ≥ n · κ + 1, for each κ ∈ B. Fix
i ∈ r for a moment, and let us choose an appropriate quantifier q̃i. We essentially fix the
semantics according to the behaviour of qi on cardinality µ. The defining class Kq̃i of q̃i
consists thus of all τ -structures M for which there is N ∈ Kqi such that card(N) = µ, for
every R ∈ τ we have RM = RN, and |Dom(N) r

⋃
R∈τ R

N| = µ provided that µ ≥ ω.
Note that N is unique up to isomorphism, if it exists. Clearly, q̃i is universe-independent.

Let us compare relation R(Q,C) to f(R(q̃0, C), . . . ,R(q̃r−1, C)). Write R̃i = R(q̃i, C),
for short. Let κ ∈ Bn. If κ 6∈ Cnr{0}, then clearly κ 6∈ R(Q,C) and κ 6∈ f(R̃0, . . . , R̃r−1),
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so suppose κ = (κ0, . . . , κr−1) ∈ Cn r {0}. Since
∑

i∈n κi ≤ µ, we can pick λ =
(λ0, . . . , λr−1) ∈ Cn such that λ�(n− 1) = κ�(n− 1) and

∑
i∈n λi = µ, and λn−1 = µ pro-

vided that µ ≥ ω. Our hypothesis on the form of Ui implies now that s(κ,Ui)�(l − 1) =
s(λ,Ui)�(l− 1) and if µ ≥ ω, then s(κ,Ui)(l− 1) = µ. Switching now to the correspond-
ing τ -structures M, N such that κM = s(κ,Ui) + ti = hi(κ) and κN = hi(λ) it is easy
to see that hi(κ) ∈ R̃i iff M ∈ Kq̃i iff N ∈ Kqi iff hi(λ) ∈ R(qi, C), as M and M have,
up to isomorphism, the same mutual relation as in the definition of q̃i. This, in turn,
implies that κ ∈ f(R̃0, . . . , R̃r−1) iff λ ∈ f(R(q0, C), . . . ,R(qr−1, C)) = R(Q,C). As Q is
universe-independent, we get κ ∈ R(Q,C) iff λ ∈ R(Q,C) iff κ ∈ f(R̃0, . . . , R̃r−1). We
have proved that f(R̃0, . . . , R̃r−1) ∈ N(R(Q,C), B).

Finally, we draw topological conclusions. Denote the set of all R(q̃, C) where q̃ is
universe-independent quantifier of vocabulary τ by K2. In the previous paragraph we
showed that R(Q,C) is in the closure of f [Kr

2 ]. We know that K2 is closed in Xl. As Xl

is compact, K2 is also compact as a closed subset. Consequently, the image f [Kr
2 ] is also

compact, as f is continuous. Hence, f [Kr
2 ] is closed and R(Q,C) ∈ f [Kr

2 ]. This means
that there are universe-independent q∗0, . . . , q∗r−1 having vocabulary τ such that

R(Q,C) = f(R(q∗0, C), . . . ,R(q∗r−1, C)).

By Theorem 2.8, we have FO(Q) ≤ FO(Q∗) /SC with Q∗ = { q∗i | i ∈ r }.
In the case k = 1, we get:

Corollary 4.4. Let Q be a universe-independent unary quantifier of finite width, Q a
finite set of Mostowski quantifiers and C infinite initial segment of cardinals. Suppose
FO(Q) ≤ FO(Q) /SC. Then there is a finite set of cardinality quantifiers Q̃ such that
FO(Q) ≤ FO(Q̃) /SC.

Next I provide two counterexamples:

Example 4.5. Let us construct an unbounded f : N → N such that If is definable by
Mostowski quantifiers. The last corollary shows that if this is really possible, then If has
to be definable by cardinality quantifiers. Without further ado, we put f : N→ N,

f(n) =

{
3n, for n ∈ S
0, otherwise

where S = { 9n | n ∈ N }. This example can be varied in many ways, but the critical idea
is that S is sparse enough. We intend to show that FO(If ) ≤ FO(CN,CS,CT ,CeT ,CT ∗)
where

T = { 3s | s ∈ S },
T̃ = {m ∈ N | m/n ∈ [1, 4/3] for some n ∈ T } and
T ∗ = {m ∈ N | m/n ∈ [2/3, 5/6] ∪ [7/6, 4/3] for some n ∈ T }.
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Consider the sentences

ϕ0 = CS xU(x) ∧ CT xV (x) ∧ CeT x(U(x) ∨ V (x))

∧
(
CT ∗ x(U(x) ∨ V (x)) ∨ CT ∗ x(¬U(x) ∧ V (x))

)
and

ϕ = CN U(x) ∧ ((¬CS xU(x) ∧ ¬∃xV (x)) ∨ ϕ0) .

We claim that ϕ defines If .
Let M be a {U, V }-structure. If |UM| 6∈ S or |V M| 6∈ T , then clearly M |= ϕ iff

M ∈ KIf . Suppose then |UM| ∈ S and |V M| ∈ T , i.e., |UM| = 32m and |V M| = 32n+1 for
some m,n ∈ N. Then M |= ϕ iff M |= ϕ0 and we have several cases:

1) If m > n, then 32m ≤ |UM ∪ V M| ≤ 4
3
· 32m. Then for every t ∈ T , we have either

|UM∪V M| ≥ 3t > 4
3
t or |UM∪V M| ≤ 4

9
t < t. Hence, M 6∈ KIf and M 6|= CeT x(U(x)∨V (x))

implying M 6|= ϕ.
2) If m ≤ n, then 32n+1 ≤ |UM ∪ V M| ≤ 4

3
· 32n+1, so |UM ∪ V M| ∈ T̃ . Write

v− = |V M r UM|, v = |V M| and v+ = |UM ∪ V M|. Then M |= ϕ iff M |= ϕ0 iff v+ ∈ T ∗

or v− ∈ T ∗. We also see that v− ≤ v ≤ v+ and
∣∣v+−v−

v

∣∣ = |UM|
|VM| = 1

3
· 32(m−n).

2a) If m < n, then
∣∣v+−v−

v

∣∣ ≤ 1
27
< 1

6
, so 1 ≤ v+

v
≤ 1 + v+−v−

v
< 7

6
and 1 ≥ v−

v
≥

1−
∣∣v+−v−

v

∣∣ > 1− 1
6

= 5
6
. Consequently, v+, v− 6∈ T ∗. Hence, M 6∈ KIf and M 6|= ϕ.

2b) If m = n, then v+−v
v

+ v−v−
v

= v+−v−
v

= 1
3
implying 1

6
≤ v+−v

v
≤ 1

3
or 1

6
≤ v−v−

v
≤ 1

3
.

In the first case, it holds that 7
6
≤ v+

v
≤ 4

3
and v+ ∈ T ∗, in the second case, it holds that

2
3
≤ v−

v
≤ 5

6
and v− ∈ T ∗, respectively. So M ∈ KIf and M |= ϕ.

We have showed that ϕ defines If , so FO(If ) ≤ FO(CN,CS,CT ,CeT ,CT ∗) even if f is
unbounded.

Example 4.6. Consider f : N→ N,

f(n) =

{
dn/2e, if n ∈ S
n+ 1, otherwise

where S = { 2k − 1 | k ∈ Z+ }. Note that g : N → N, g(n) = min{f(n), n + 1 −
f(n)} is unbounded. Let us construct set T+, T− ⊆ N such that Mostf is definable in
FO(CS,CT+ ,CT−). By induction on k ∈ N, put T+

0 = T−0 = Ø and

T+
k+1 = T+

k ∪ { 2k+1 − 1− n | n ∈ T−k },
T−k+1 = T−k ∪ { 2k+1 − 1− n | n ∈ {0, . . . , 2k − 1}r T+

k }.

Put T+ =
⋃
k∈N T

+
k and T− =

⋃
k∈N T

−
k . The relevant properties of sets T+ and T− are:

For n ∈ Z+ and k = dlb(n+ 1)e,

(1) n ∈ T+ iff 2k − 1− n ∈ T−

and

(2) n ∈ T− iff 2k − 1− n 6∈ T+.
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The idea behind the sets T+ and T− is akin to the well-known Morse-Thue sequence.
Consider the sentence

ϕ = CS xU(x) ∧
(
CT+ x(U(x) ∧ V (x)) ⇐⇒ CT+ x(U(x) ∧ ¬V (x))

)
.

Let M be a τ -structure. If |UM| 6∈ S, then M 6∈ KMostf and M 6|= ϕ. Suppose now
|UM| ∈ S and pick k ∈ Z+ such that |UM| = 2k − 1. Write n = |UM ∩ V M|; then
UM rV M = 2k−1−n. If n ≥ f(2k−1) = 2k−1, then k = dlb(n+ 1)e and by (1), we have
M |= ϕ. If n < f(2k − 1) = 2k−1, then 2k − 1− n ≥ 2k−1 and applying (2) to 2k − 1− n
instead of n we get M 6|= ϕ. Hence, M ∈ KMostf iff |UM ∩ V M| ≥ f(|UM|) iff M |= ϕ. We
have seen that Mostf is definable in FO(CS,CT+ ,CT−) even if g is unbounded.

5 Hierarchy
Width of a quantifier is a syntactical notion. On the semantic side, it is clear that
large width by itself does not guarantee strong expressive power. From the onset, it is not
obvious at all that there is a unary quantifier of width n+1 which is not definable by means
of unary quantifiers of width n, for every n ∈ N. This hierarchy result can be established in
various ways: Per Lindström demonstrated this by a simple but clever counting argument
without going to concrete examples. Nešetřil and Väänänen [NV96] provided examples
of quantifiers and showed the undefinability by some other combinatorial means.

Here, we follow [Luo00] were combinatorial theory was developed for solving the hi-
erarchy problem. This entails introducing the concept of unary dimension for unary
quantifiers and a quite systematic procedure for calculating it. Unary dimension is the
semantic counterpart for the width of a quantifier, except for the fact that maximal di-
mension for unary quantifiers of width l is 2l. Not accidentally, 2l is the maximal number
of parts to which l predicates may partition unary structure. The exposition is rather
sketchy in this section, relying a lot on intuition. The reader is advised to consult [Luo00]
for further details and explanations.

As a by-product of the theory, we get an affirmative answer to question c in the
preceding section.

Since definability problems of unary quantifiers can be reduced to combinatorial prob-
lems of relations, we start with some notions of relations. We need a dimensional notion
that reflects the structure of the relation better than the arity. Intuitively, the idea is
clear: The relation may or may not depend simultaneously on all of its variables. It is
apparent that there is no such dependence if some of the variables are dummy (futile).
For a more elaborate example, let f, g : N → N be (non-trivial) mappings and consider
the relation R = { (x, f(x), g(f(x))) | x ∈ N }. Then we can test if (x, y, z) ∈ R by just
checking if y = f(x) and z = g(y), i.e., checking some binary relations. So, even if R is
ternary, it has essentially binary structure.

The following is an implementation of this idea:

Definition 5.1. A relation R ⊆ An is congruent with a function f : An → B, if for all
a, b ∈ An, we have that a ∈ R and f(a) = f(b) imply b ∈ R. If (fJ)J∈J is a family
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of functions fJ = JA → XJ , then ∇J∈J fJ stands for the function f : IA →
∏

J∈J XJ ,
f(a) = (fJ(a�J))J∈J where I = ∪J and XJ = rg(fJ), for J ∈ J . The rank of the
relation R is the least k ∈ Z+ such that there are finite colourings χI : IA→ FI , I ∈ [n]k

such that R is congruent with χ = ∇I∈[n]kχI : An →
∏

I∈[n]k FI .

However, this notion is sufficient for our purposes only as far as relations on infinite
cardinals are concerned. For finite cardinals, we need to elaborate the idea further. This
need results from the fact that we can define unions of predicates, which corresponds to
taking sums of cardinals.

Definition 5.2. Let C be an initial segment of cardinals and let R ⊆ (C ∪ Z)n. Then
the rank of R relative to addition, in symbols r+(R), is the least l ∈ Z+ for which the
following holds: There are finite colourings χU : (C ∪Z)l → FU , for U ∈ Un,l, such that R
is congruent with the colouring χ : (C ∪ Z)n →

∏
U∈Un,l

FU , χ(a) =
(
χU (s(a,U))

)
U∈Un,l

.
The function χ is denoted by ∇+

U∈Un,l
χU .

We list some of the properties of ranks r and r+. The proofs are easy but technical
and can be found in [Luo00, Sections 2 and 3]. For R, S ⊆ (C ∪ Z)n,

(1) 1 ≤ r+(R) ≤ r(R) ≤ n,

(2) r((C ∪ Z)n rR) = r(R) and similarly r+((C ∪ Z)n rR) = r+(R),

(3) r(R ∩ S) ≤ max{r(R), r(S)} and r+(R ∩ S) ≤ max{r+(R), r+(S)},

(4) r(R) = r+(R) = 1 if R is finite,

(5) r+(R) = r+(R + t) for any t ∈ Zn,

(6) if R = {a ∈ (C ∪ Z)n | s(a,U) ∈ T } for some U ∈ Un,l and T ⊆ Al, then
r+(R) ≤ r+(T ).

Returning to quantifiers, we define:

Definition 5.3. Let Q be a unary quantifier of finite width and C be a set of cardinals
with C ⊇ ω. The unary dimension of Q relative to C is udimC(Q) = r+(R(Q,C)). The
unary dimension udim(Q) of Q is udim(Q) = max{ udimκ∩Card(Q) | κ ∈ Card, κ ≥ ω }.

Let C be an infinite initial segment of Card and let R ⊆ (C r N)n ⊆ (C ∪ Z)n.
Then it is fairly easy to show (cf. [Luo00, Theorem 3.5]) that r(R) ≤ max{r+(R), 2}.
Consequently, if Q is a unary quantifier of finite width, R(Q,ω) = Ø and r(R(Q, κ)) ≥ 2
for some infinite cardinal κ, then udim(Q) = max{ r(R(Q, κ∩Card)) | κ ∈ Card, κ ≥ ω }.
This means that if the expressive power of a quantifier trivializes on finite structures, but
udim(Q) ≥ 2, then we may use the simpler rank r instead of r+ in determining the unary
dimension of Q.

Reformulating the results of [Luo00, Theorems 4.5 and 4.7] we have:
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Theorem 5.4. Let Q be a unary quantifier of finite width, and let C be an infinite initial
set of cardinals.

a) Suppose FO(Q) ≤ FO(Q) /SC where Q is a finite set of cardinals.
Then udimC(Q) ≤ maxq∈Q∪{∃} udimC(q).

b) Suppose udimC(Q) < 2k with k ∈ Z+. Then there is a finite set Q of unary universe-
independent quantifiers of width k such that Q is definable by FO(Q) on SC.

Proof. (Sketch) a) By Theorem 2.8, we can write R(Q,C) as a Boolean combination of
relations of form {κ ∈ Cn | s(κ,U) + t ∈ R(q, C) } where q ∈ Q ∪ {∃}, n = 2wd(Q)
and (U , t) ∈ Jn,q , lq = 2wd(Q). The basic properties of the rank relative to addition
now imply that r+(R(Q,C)) ≤ maxq∈Q∪{∃} r+(R(q, C)), or equivalently, udimC(Q) ≤
maxq∈Q∪{∃} udimC(q).

b) As l = r+(R(Q,C)) = udimC(Q) ≤ 2k − 1, there are finite colourings χU , U ∈
Un,l witnessing this. For each U ∈ Un,l and colour c ∈ rg(χU ) we pick a universe-
independent QU ,c with R(QU ,c) = χ−1

U {c}. It is then routine to show that R(Q,C) is
a Boolean combination of appropriate kind, so that then Theorem 2.8 implies FO(Q) ≤
FO(Q) /SC for the collection Q of quantifiers QU ,c.

Example 5.5. It is known that udim(CS) = 1, for every S ⊆ Card, and udim(I) =
udim(R) = udim(Maj) = 2. These facts are intuitively obvious, e.g., R(Maj) clearly
depends on both of its variables, but also combinatorially easy to prove (see [Luo00]).
The previous theorem now implies that I, R and Maj are not definable in the logic FO(C)
where C is the collection of all cardinal quantifiers. We can no even better: I (and R) is
universe-independent, so Corollary 4.4 shows that I is not definable in FO(M) whereM
is the collection of Mostowski quantifiers. This was first proved by Kolaitis and Väänänen
[KV95]. They actually showed that I is not definable even in FVL(Q) for any finite
Q ⊆M, but this is only seemingly stronger, since FVL(Q) and FO(Q) can be shown to
have the same expressive power on unary structures for finite vocabularies.

As a more elaborate application, we find an answer to question c in the preceding
section by Väänänen. The combinatorial content needed for the result is extracted in the
following lemma.

Lemma 5.6. Let C be an infinite set of cardinals with ω ⊆ C. Suppose f : C ⇀ C, i.e.,
f is a partial function on C having values in C. Then the following are equivalent for
R = { (κ, λ) ∈ C × C | κ ∈ dom(f), λ ≥ f(κ) }:

a) rg(f) is finite.

b) r(R) = 1.

c) r+(R) = 1.
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Proof. Since 1 ≤ r+(R) ≤ r(R), it is immediate that condition b implies c.
Suppose rg(f) is finite. We choose as colours F = rg(f) ∪ {0, µ} with µ = sup{κ+ |

κ ∈ C }. Extend f to colouring χ0 : C → F so that χ0(κ) = µ, for κ ∈ C r dom(f).
Define χ1 : C → F , χ1(λ) = max{κ ∈ F | κ ≤ λ }, and χ : C × C → F × F , χ(κ, λ) =
(χ0(κ), χ1(λ)). Obviously χ is a finite colouring. For (κ, λ) ∈ C ×C, it is easy to see that
(κ, λ) ∈ R iff χ(κ, λ) = (c0, c1) with c0 ≤ c1. Hence, R is congruent with χ, which implies
r(R) = 1. So condition a implies condition b.

The true contents of the lemma is the implication from condition c to condition a.
Suppose χi : C → Fi, i = 0, 1, 2 are finite colourings such that R is congruent with the
colouring χ : C × C → F0 × F1 × F2, χ(κ, λ) = (χ0(κ), χ1(λ), χ2(κ + λ)). We proceed by
a sequence of claims.

Consider an arbitrary non-empty I ⊆ dom(f) and pick µ ∈ I such that f(µ) = min f [I]
and put ν = min I.

Claim 1: If χ0�I is a constant function and f(µ) ≥ sup(I∪{ω}), then f�I is a constant
function.

This is because for arbitrary κ ∈ I, we have by our assumptions χ(µ, f(µ)) =
(χ0(µ), χ1(f(µ)), χ2(µ+f(µ))) = (χ0(κ), χ1(f(µ)), χ2(κ+f(µ))) = χ(κ, f(µ)). As (µ, f(µ)) ∈
R and R is congruent with χ, we get (κ, f(κ)) ∈ R, i.e., f(µ) ≥ f(κ). As f(µ) = min f [I],
this implies f(µ) = f(κ).

Claim 2: If χ0�I and χ2�I are constant functions, ν ≥ ω and ν ≥ f(µ), then f�I is a
constant function.

Similarly than in Claim 1 we get, for κ ∈ I, that χ(µ, f(µ)) = (χ0(µ), χ1(f(µ)), χ2(µ+
f(µ))) = (χ0(µ), χ1(f(µ)), χ2(µ)) = (χ0(κ), χ1(f(µ)), χ2(κ)) = (χ0(κ), χ1(f(µ)), χ2(κ +
f(µ))) = χ(κ, f(µ)). Again, it holds that f(κ) = f(µ).

Claim 3: If ω ≤ ν < f(µ) < sup I, then χ1�I and χ2�I cannot both be constant
functions.

Choose ν ′ ∈ I with ν ′ > f(m) > ν. Then (µ, ν) 6∈ R and (µ, ν ′) ∈ R so that con-
gruence of R with χ implies χ(µ, ν) = (χ0(µ), χ1(ν), χ2(µ+ ν)) = (χ0(µ), χ1(ν), χ2(ν)) 6=
(χ0(µ), χ1(ν ′), χ2(µ+ν ′)) = χ(µ, ν ′). Hence, χ1(ν) 6= χ1(ν ′) or χ2(µ) 6= χ2(µ+ν ′) = χ2(ν ′).

Claim 4: If χ0�I and χ2�I are constant functions and f(µ) < ω, then f [I] is finite.
For l ∈ I ⊆ ω and l ≥ f(µ), we have χ(µ, l) = (χ0(µ), χ1(l), χ2(µ+l)) = (χ0(l), χ1(µ), χ2(l+

µ)) = χ(l, µ). Combined with (µ, l) ∈ R we get (l, µ) ∈ R, i.e., m ≥ f(l). Consequently,
f [I] ⊆ f [f(µ) ∩ I] ∪ {0, . . . , µ} is finite.

Now partition dom(f) in finitely many parts so that for each part I, either I ⊆ ω
or I ∩ ω = Ø, and χ0�I, χ1�I and χ2�I are constant functions. Let A be the arising
partition. Let I ∈ A. If I ⊆ ω, then either min f [I] ≥ ω and Claim 1 implies that f�I is
constant, or min f [I] < ω and Claim 4 implies that f [I] is finite. On the other hand, if
I ∩ ω = Ø, then by Claim 3, either min f [I] ≤ min I or min f [I] ≥ sup I = sup(I ∪ {ω}),
whence Claim 1 and 2 imply that f�I is constant. In any case, f [I] is finite. Summing
up, we get that rg(f) =

⋃
I∈A f [I] is finite.

Now we can answer the question c in the preceding section in even a more general
framework than it was originally posed.
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Theorem 5.7. Let f be a function with dom(f) ∪ rg(f) ⊆ Card. Then the following are
equivalent:

a) Rf is definable by Mostowski quantifiers, i.e., there is a finite set of Mostowski quan-
tifiers Q such that Rf is definable in the logic FO(Q).

b) Rf is definable by cardinality quantifiers.

c) udim(Rf ) = 1.

d) rg(f) is finite.

Proof. Condition b trivially implies a, and condition a implies b, by Corollary Moscard.
Furthermore, conditions b and c are equivalent, by Theorem 5.4, so we need to prove only
the equivalence of c and d.

Suppose first that rg(f) is infinite. We know that

R(Rf ) = { (κ0, κ1, κ2, κ3) ∈ C4 r {0} | κ0 + κ1 ∈ dom(f), κ0 + κ2 ≥ f(κ0 + κ1) }

where C is any initial segment of Card that is a set and contains ω ∪ dom(f). Put
S = { (0, κ1, κ2, κ3) | κ1, κ2, κ3 ∈ C }. Clearly r+(S) = 1 (even r(S) = 1). Now

R(Rf ) ∩ S = { (0, κ1, κ2, κ3) ∈ C4 r {0} | κ1 ∈ dom(f), κ2 ≥ f(κ1) }
= { (0)ˆ(κ, λ)ˆ(µ) | (κ, λ) ∈ R, µ ∈ C }r {0}

where R is as in the previous lemma. By the basic properties of the rank relative to
addition, it holds that

r+(R) = r+(R(Rf ) ∩ S) ≤ max{r+(R(Rf )), r+(S)} = r+(R(Rf )).

However, since rg(f) is infinite, the previous lemma maintains that

1 < r+(R) ≤ r+(R(Rf )) = udim(Rf ),

so that condition c does not hold.
Assume then that rg(f) is finite. Then

R(Rf ) = R(Rf , C) =
⋃

µ∈rg(f)

(S ′ ∩ Sµ ∩ Tµ)

where S ′ = { (κ0, κ1, κ2, κ3) ∈ C4 r {0} | κ0 + κ1 ∈ dom(f) }, Sµ = { (κ0, κ1, κ2, κ3) ∈
C4 | κ0 + κ1 ∈ f−1{µ} } and Tµ = { (κ0, κ1, κ2, κ3) ∈ C4 | κ0 + κ2 ≥ µ }. It is easily seen
that r+(S ′) = r+(Sµ) = r+(Tµ) = 1, for all m ∈ rg(f), so that r+(R(Rf )) = 1 as Boolean
combination of such relations. Hence, udim(Rf ) = r+(R(Rf )) = 1.
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This far we have been only dealing with concrete quantifiers of low unary dimension.
The main point of the combinatorial theory is, however, that unary dimension can be
arbitrarily large, i.e, there is a whole hierarchy of unary quantifiers.

Theorem 5.8. For every n ∈ Z+ there is a unary quantifier Q of width dlbne such that
udim(Q) = n.

Proof. (Sketch) This is essentially [Luo00, Theorem 5.3]. For a fixed c ∈ Qn, consider

Rc = {x ∈ Nn | c · x = 0 }.

Thus, Rc is the set of nonnegative lattice points of a hyperplane that is perpendicular
to c. The rank r+(Rc) varies with c, but under some natural conditions it holds that
r+(Rc) = n. The proof of this fact uses some advanced combinatorics, a result of Ramsey
theory called multidimensional van der Waerden’s theorem or Gallai’s and Witt’s theorem.
Now the rank is robust to small changes, so r+(Rc r {0}) = n and also r+(R) = n for
the relation where we have added dummy variables to increase the arity of R to 2l with
l = dlbne. Then there is a unary quantifier Q of width l such that R(Q) = R and
udim(Q) = r+(R(Q)) = n.

As a final point, note that the unary dimension hierarchy is actually finer than the
hierarchy that would have been based only on the definability of universe-independent
unary quantifiers of fixed width. Furthermore, we can still refine this a bit. Let n ∈ Z+.
By the previous theorem, there is a unary quantifier of dimension 2n and width n. This
quantifier cannot be universe-independent, since the relation of a universe-independent
unary quantifier has at least one dummy variable. However, modifying the proof of the
previous theorem we get a unary quantifier Q′ of dimension 2n and width n + 1 that is
universe-independent. By Theorem 4.3, thisQ′ cannot be definable by means of quantifiers
of width n. Hence, one can find an irregular layer of unary quantifiers of dimension 2n

and width n which is lower than the corresponding regular layer.
In the next section, we put the irregular logics generated by unary quantifiers under

magnifying glass.

6 Regularity gap
Regularity is a very practical property of logics, analogous to field axioms in algebra. In a
field, calculating expressions is easy; similarly, in a regular logic, forming sentences is easy.
Unfortunately, not all of the interesting logics are regular, e.g., the logic Σ1

1 is not even
closed under negation. Therefore, it may be interesting to study how irregular a particular
logic is. Note that if we restrict ourselves to finite structures, this is a notoriously open
question for Σ1

1, related to Fagin’s characterization theorem (Σ1
1 ≡ NP /F) and NP vs.

PTIME problem.
Before going to business, let us sketch a measure of irregularity. Let L be any logic,

and let Q be the collection of L-definable quantifiers Q. Then FO(Q) is the semiregular
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closure of L, i.e., the least semiregular logic L′ with L′ ≥ L. Furthermore, we can
regularize each Q: Qreg is the quantifier of vocabulary σ = τQ∪{P} with P a new unary
relation symbol, having defining class

K
Qreg = {M ∈ Str(σ) | (M|PM)�τQ ∈ KQ }.

Clearly Qreg is universe-independent. Put Qreg = {Qreg | Q ∈ Q}; then Lreg =
FO(Qreg) is the regular closure of L.

For the lower bound, we need to assume L is semiregular already. Let Q◦ be the
collection of all L-definable universe-independent quantifiers Q. Then L◦ = FO(Q◦) is,
by semi-regularity of L, included in L, and is, in fact, the largest regular logic L′ such
that L′ ≤ L. We call L◦ the regular interior of L. Now the pair (L◦,Lreg) is a reasonable
measure of irregularity of L; the larger the gap between L◦ and Lreg, the more irregular
is L.

Returning to our primary interest, we note that quantifier logics are always semireg-
ular, if the base logic (usually FO) is regular. This far we have found a unary quan-
tifier Q such that for every universe-independent quantifier q definable in FO(Q), we
have udim(q) < udim(Q). Investigating this example further, we shall learn that the
situation is even worse: it may happen that such q is always FO-definable (and hence
udim(q) = 1). Consequently, FO(Q)◦ = FO. We shall extract a property of the example,
weakness against padding, which is sufficient for the phenomenon to happen. We shall
call this phenomenon a regularity gap.

Definition 6.1. A relation R ⊆ Nn is weak against padding, if there is a set I ⊆ n such
that the following holds. For every κ = (κ0, . . . , κn−1) ∈ Nn there is a threshold r ∈ N
such that if λ = (λ0, . . . , λn−1) ∈ Nn differs from κ in only one coordinate, say λi 6= κi,
and λi ≥ r, then λ ∈ R iff i ∈ I. We may stress the set I by saying that R is weak against
padding of type I. Unary quantifier of finite width Q is weak against padding if R(Q,ω)
is.

Example 6.2. Let f : N → N and suppose f(n) ≤ n + 1, for every n ∈ N. Suppose
further that limn→∞ f(n) = limn→∞(n+ 1− f(n)) =∞. Recall that the relation of Tf is

R(Tf ) = R(Tf , ω) = { (k, l) ∈ N2 | k ≥ f(k + l) }.

We show that Tf is weak against padding of type {0}: For (k, l) ∈ N2, choose r ∈ N such
that for n ∈ N, n ≥ r, we have f(n) > k and n + 1 − f(n) > l. Then for (k′, l) ∈ N2

with k′ ≥ r, it holds that k′+l+1−f(k′+l) > l implying k′ ≥ f(k′+l), i.e., (k′+l) ∈ R(Tf ).
Respectively, for (k, l′) ∈ N2, l′ ≥ r, we get f(k + l′) > k and (k, l′) 6∈ R(Tf ).

In particular, Maj is weak against padding. Also Tdlbe is weak against padding.
The result on Tf can be reversed: If Tf is weak against padding of type {0}, then

limn→∞ f(n) = limn→∞(n+ 1− f(n)) =∞. We leave it as an easy exercise to show that
other types than {0} are possible, but result in FO-definable cases.

We start the technical work by showing that weakness against padding is almost
preserved under appropriate operations.
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Lemma 6.3. Let n, l ∈ Z+, (U , t) ∈ Jn,l and let R ⊆ Nl be weak against padding. Then
there is S ⊆ Nn which is weak against padding and satisfies the equality

{κ ∈ Nn | s(κ,U) + t ∈ R } = S ∩ {κ ∈ Nn | s(κ,U) + t ∈ Nl }.

Proof. We proceed in two steps. Suppose the type of weakness of R is I ⊆ n. Write
R′ = {κ ∈ Nl | (κ+ t) ↑ 0 ∈ R }. Then a moment’s reflection shows that R′ is also weak
against padding of type I. Obviously we have the equality

{κ ∈ Nl | κ+ t ∈ R } = R′ ∩ {κ ∈ Nl | κ+ t ∈ Nl }.

Put S = {κ ∈ Nn | s(κ,U) ∈ R′ } and J =
⋃
i∈I Ui where (U0, . . . , Ul−1) = U . Then S is

weak against padding of type J and for κ ∈ Nn, we have s(κ,U) + t ∈ R iff s(κ,U) ∈ R′
and s(κ,U)+t ∈ Nl iff κ ∈ S and s(κ,U)+t ∈ Nl, whence the claimed equality between
the relations holds.

Next we see how the regularity gap opens up.

Theorem 6.4. Let Q be a set of quantifiers which are weak against padding and let Q be
a universe-independent unary quantifier of finite width. Assume Q is definable in FO(Q)
on F . Then Q is definable in FO on F .

Proof. As Q is definable in FO(Q), we have (by Theorem 2.8) that R(Q,ω) is a Boolean
combination of relations Ri, i ∈ I, where Ri = {κ ∈ Nn | s(κ,Ui) + ti ∈ R(qi, ω) } for
some qi ∈ Q ∪ {∃}, (Ui, ti) ∈ Jn,lqi

, n = 2wd(Q) and lqi = 2wd(qi), I finite. For clarity, let
us fix a disjunctive normal form: For some K ⊆ P(I), we have

R(Q,ω) =
⋃
K∈K

(⋂
i∈K

Ri ∩
⋂

i∈IrK

(ωn rRi)

)
. (∗)

Put J = { i ∈ I | qi ∈ Q}. Previous lemma enables us to write, for i ∈ J ,

Ri = Si ∩ {κ ∈ Nn | s(κ,Ui) + ti ∈ Nlqi }

with Si weak against padding of type Ii. For i ∈ I, put

R′i =


Ri, for i ∈ I r J

Ø, for i ∈ J and n− 1 6∈ Ii
{κ ∈ Nn | s(κ,Ui) + ti ∈ Nlqi }, for i ∈ J and n− 1 ∈ Ii

and

R′ =
⋃
K∈K

(⋂
i∈K

R′i ∩
⋂

i∈IrK

(ωn rR′i)

)
.

For each i ∈ I, there is obviously some mi ∈ N such that for every κ ∈ Nn, we have
κ ∈ R′i iff κ ↓m ∈ R′i. Hence, form = max{mi | i ∈ I } and for someR0 ⊆ {0, . . . ,m}n we
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have that R′ = {κ ∈ Nn | κ ↓m ∈ R0 }. By Theorem 3.1, there is some FO-definable Q′
such that R′ = R(Q′, ω).

Put

g : Cardn → Cardn, g(κ) = κ�(n− 1)ˆ(m),

R′′ = {κ ∈ Cardn | g(κ) ∈ R(Q′) }
and

R1 = {κ ∈ {0, . . . ,m}n | g(κ) ∈ R0 }.

Thus, g replaces the last component of a tuple by m. For every κ ∈ Cardn, we have
g(κ) ↓m = g(κ ↓m), so κ ∈ R′′ iff g(κ) ∈ R(Q′) iff g(κ ↓m) = g(κ) ↓m ∈ R0 iff
κ ↓m ∈ R1. Consequently, also the quantifier Q′′ of vocabulary τQ such that R(Q′′) = R′′

is FO-definable.
Clearly, Q′′ is universe-independent. The main point to prove here is that R(Q,ω) =

R(Q′′, ω), so that Q is FO-definable on F . Indeed, let κ = (κ0, . . . , κn−1) ∈ Nn. For each
i ∈ J , pick a threshold ri ∈ N such that if λ = (λ0, . . . , λn−1) ∈ Nn differs from κ on only
one component, say λt 6= κt, and λt > ri, then λ ∈ Si iff t ∈ Ii. Pick r such that r ≥ ri,
for every i ∈ J , that r > κt, for each t ∈ n, and r > m.

Consider κ′ = κ�(n − 1)ˆ(r) ∈ Nn, i.e., the last component of κ is replaced by r.
Then κ′ ∈ Si iff n − 1 ∈ Ii, for i ∈ J . By (∗), we have thus κ′ ∈ Ri iff κ′ ∈ R′i, for each
i ∈ I, implying κ′ ∈ R(Q,ω) iff κ′ ∈ R′. As Q and Q′′ are universe-independent, we get
the following sequence of equivalent statements: κ ∈ R(Q,ω) iff κ′ ∈ R(Q,ω) iff κ′ ∈ R′
iff g(κ′ ↓m) = g(κ′) ↓m ∈ R0 iff κ′ ↓m ∈ R1 iff κ′ ∈ R(Q′′) iff κ′ ∈ R(Q′′, ω). Hence,
R(Q,ω) = R(Q′′, ω).

Corollary 6.5. Let Q be a set of quantifiers which are weak against padding and let L be
a regular logic such that L ≤ FO(Q) /U where U is the class of all finite unary relational
structures. Then L ≡ FO /U .

Proof. Let Q be a L-definable unary quantifier of finite width. By the previous theorem,
Qreg is FO-definable on U . However, FO(Q) ≤ FO(Qreg), so also Q is FO-definable on
U . Hence, L ≤ FO /U and by regularity of L, we get L ≡ FO /U .

The main theorem of the section shows that the regularity gap can be arbitrarily large
in the realm of unary quantifiers.

Theorem 6.6. For every n ∈ Z+, there is a quantifier Q which is weak against padding
and for which udim(Q) ≥ n.

Proof. Choose l ∈ Z+ with 2l ≥ n. From the proof of 5.8 we know that there is
c = (c0, . . . , c2l−1) ∈ Q2l such that r+(Rc) = 2l where Rc = {x ∈ Nn | c · x = 0 }. All of
the components of c are non-zero, since otherwise some variables of Rc would be dummy
implying r+(Rc) < 2l.

Let us show that Rc is weak against padding. The argument is geometric: If we make
a shift big enough, we are away from the hyperplane. Let κ = (κ0, . . . , κ2l−1) ∈ N2l . Put
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u = c · κ, γ = min{ |ci| | i ∈ 2l } > 0 and r = max{κ0, . . . , κ2l−1} + d|u|/γe + 1 ∈ N. Let
λ = (λ0, . . . , λ2l−1) ∈ N2l be a sequence that differs from κ on only one component, say
λi 6= κi. Suppose also λi ≥ r. Then λi − κi ≥ d|u|/γe+ 1, so

|c · λ| = |u+ ci(λi − κi)| ≥ |ci||λi − κi| − |u|

≥ γ ·
(
|u|
γ

+ 1

)
− |u| = γ > 0.

Hence, λ 6∈ Rc, so Rc is weak against padding of type Ø.
Let Qc be the quantifier with R(Qc) = Rc r {0}. Then Qc is weak against padding

(removing 0 does not change that) and udim(Qc) = 2l ≥ n.

7 Conclusion
Hopefully I have managed to convince the reader that unary quantifier definability theory
on all structures or on all finite structures can be developed in a systematic way. There
is of course plenty of room for new results, for the simple reason that many natural
combinatorial questions can be formulated as unary quantifier definability problems (for
more on this point, see [Luo99]). In fact, this is the very nature of the field and the
landscape of the field seems to be well understood.

Let us take a look at the future, then. From a traditional model-theoretic perspective,
unary quantifiers may seem to be clumsy and lacking many desirable properties, but
from the finite model theory perspective this is not a problem. On the contrary, unary
quantifiers have an interesting relation to built-in relations of the structures and some of
the quantifiers have also been studied for their own sake in descriptive complexity theory
(for built-in relations, see [Imm99] or [Sch01] and about the relation to quantifiers, see
[Luo04]). However, descriptive complexity seems to suggest that the focus should be
on restricted classes of structures, such as ordered structures, and on vectorizations of
quantifiers.

A lot of attention has been paid to ordered structures, but even questions related
to first order logic are often very involved. As to quantifiers, interesting things start
to happen [Nur96, Luo04]. For example, recall that the Härtig quantifier I has unary
dimension two. Consequently, I is not definable by cardinality quantifiers, and this holds
even on finite structures. On the other hand, the class of cardinality quantifiers that are
capable of expressing I on O is large and combinatorially characterizable [Luo04]. There
are some indications that unary quantifier theory may be very complex.

There seems to be a qualitative change in the landscape when we move from finite
structures to ordered structures. The landscape of unary quantifiers on all or finite struc-
tures is quite homogeneous: If we fix a unary quantifier Q and restrict the considerations
to stronger unary quantifiers Q′, there is no qualitative change. On the other hand, there
seem to be thresholds of logics on ordered structures, e.g., it is more difficult to separate
quantifiers that are stronger than I than those that cannot define I.
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The picture is even more unclear for vectorizations. Without going to details, vec-
torization is a process where elements are replaced by k-tuples, for some k ∈ Z+. In
particular, the k-th vectorization of Q is k-ary Q(k). The importance of vectorizations
is demonstrated, among other results, by Dawar’s result on PTIME-characterizability
[Daw95]. The generic question is as follows: Given unary quantifiers q and Q, is it true
that q is definable in FO({Q(n) | n ∈ Z+ }). It is conceivable that unary vectorized
quantifiers theory has some similarities with the theory without vectorizations.

The results of this paper are unlikely to be directly perused if one tries to develop
theory in the case of ordered structures or vectorizations. However, I think they would
help indirectly: Quantifier definability theory, as presented in this paper, should serve as
a point of departure and of comparison for future research.
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