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Abstract. Let E = (C,Ω) be a condenser in Rn where Ω is an open set

and C a compact subset of Ω. The p–Dirichlet integral of the potential func-

tion u of C in Ω associated with the p–harmonic equation gives the p–capacity

cappE of the condenser E. Moreover, u satisfies the basic p–capacity equation

tp−1capp(Ct,Ω) = cappE where Ct = {x ∈ Ω : u(x) ≥ t}. A counterpart of

this equation for quasiminimizers is considered. The estimates make use of one

dimensional quasiminimizers.
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1 Introduction

Let Ω be an open and bounded subset of Rn, n ≥ 1 and p > 1. If C is a
compact subset of Ω, then the pair E = (C,Ω) is called a condenser. The
p–capacity of E is defined as

cappE = inf
∫

Ω
|∇ϕ|p dx (1)

where the infimum is taken over all functions ϕ ∈ C∞
o (Ω) such that ϕ = 1

on C. Let ϕ be as above. Now there is a unique function u ∈ W 1,p(Ω) such
that u− ϕ ∈W 1,p

0 (Ω \ C) and

cappE =
∫

Ω
|∇u|p dx.

Here W 1,p(Ω) is the Sobolev space of functions in Lp(Ω) with distributional
partial derivatives in Lp(Ω) and W 1,p

0 (Ω) stands for the space of functions
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in W 1,p(Ω) with zero boundary values in the Sobolev sense. Moreover, the
function u is p–harmonic in Ω \ C, i.e. u is a solution of the p–harmonic
equation

∇ · (|∇u|p−2∇u) = 0 (2)

in Ω \ C. The function u is called the p–potential of C in Ω, see [HKM,
Section 6.10].

Let u be the p–potential of C in Ω and t ∈ (0, 1). Set Ct = {x ∈ Ω :
u(x) ≥ t}. Although Ct need not be a compact set in Ω we can define the
p–capacity of the pair, also called a condenser, (Ct,Ω) as

capp(Ct,Ω) = inf
∫

Ω
|∇v|p dx (3)

where the infimum is now taken over all functions v such that v − u/t ∈
W 1,p

0 (Ω \ Ct) and v = 1 on C. Here we use the refined version of the the
space W 1,p

0 (Ω \Ct) consisting of all functions w ∈W 1,p(Rn) such that w = 0
and w = 1 p–quasieverywhere in the complement of Ω and in Ct, respectively.
For this theory see [HKM, Chapter 4].

The basic equation between the p–capacities of the condensers (Ct,Ω)
and E is

tp−1capp(Ct,Ω) = cappE. (4)

Equation (4) becomes a double inequality

(
α

β
)p+1tp−1capp(Ct,Ω) ≤ cappE ≤ (

β

α
)p+1tp−1capp(Ct,Ω) (5)

if, instead of a p–potential, an A–potential u of C in Ω is used. Here A refers
to the degenerate second order partial differential equation

∇ ·A(x,∇u) = 0 (6)

where the operator A satisfies

α|h|p ≤ A(x, h) · h ≤ β|h|p, 0 < α ≤ β <∞, (7)

see [HKM, Lemma 6.19]. Equation (4) and inequality (5) are important
tools in the study of boundary behavior of p– and A–harmonic functions as
well as in the study of polar sets. The purpose of this paper is to find the
corresponding estimates for quasiminimizers.

We recall the definition. Let Ω be an open subset of Rn, n ≥ 1, p > 1
and K ≥ 1. A function u in the local Sobolev space W 1,p

loc (Ω) is called a
(p,K)–quasiminimizer in Ω if for all open sets Ω′ ⊂⊂ Ω

∫

Ω′

|∇u|p dx ≤ K
∫

Ω′

|∇v|p dx (8)
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for all functions v such that v − u ∈ W 1,p
0 (Ω′). In general we keep the

number p fixed and use the abbreviation K–quasiminimizer. For K = 1 the
function u is minimizer and hence a p–harmonic function. Note that an A–
potential u of C in Ω is a (β/α)p– quasiminimizer in Ω \ C. For the theory
of quasiminimizers see [GG] and [KiM].

Since quasimininimizers neither form a sheaf nor obey the comparison
principle, which is fundamental in Potential Theory, the capacity estimates
of the type (5) for quasiminimizers should be based on other methods than
the proof for (5). In this paper we develop a method which uses one di-
mensional quasiminimizers. These are considered in Section 3 and Section 4
is devoted to the main result. The sharpness of the capacity estimates for
quasiminimizers is considered at the end of Section 4.

2 Preliminaries and a characterization for quasi-

minimizers

We first introduce an alternative definition for a quasiminimizer. In partic-
ular this is useful for quasiminimizers on the real line. The definition does
not involve the p–Dirichlet integral of the quasiminimizer u itself but only
that of minimizers, i.e. solutions of the p–harmonic equation with the same
boundary values as u.

Let u ∈ W 1,p
loc (Ω), p > 1. For each open set Ω′ ⊂⊂ Ω we let uΩ′ denote

the minimizer of the p–Dirichlet integral in Ω′ with boundary values u, i.e.
uΩ′ − u ∈ W 1,p

0 (Ω′) and uΩ′ is a solution of the p–harmonic equation (2) in
Ω′. Condition (8) can now be rewritten as

∫

Ω′

|∇u|p dx ≤ K
∫

Ω′

|∇uΩ′|p dx. (9)

Theorem 2.1 Suppose that u belongs to W 1,p
loc (Ω). Then u is a K–quasi-

minimizer in Ω if and only if for each open set Ω′ ⊂⊂ Ω and all disjoint

open sets Ω1, ...,Ωk ⊂ Ω′ it holds

∑

i

∫

Ωi

|∇uΩi
|p dx ≤ K

∫

Ω′

|∇uΩ′|p dx. (10)

Proof. The necessity of condition (10) is immediate.
For the converse we have to show (9) in every open set Ω′ ⊂⊂ Ω. Fix an

open set Ω′ and note that (10) holds for a countable collection of open subsets
Ω1,Ω2, ... of Ω′ as well. Form a Whitney decomposition {Qi} of Ω′ where the
open cubes Q′

is are disjoint and ∪Qi = Ω′. For each j = 1, 2, ... subdivide
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every cube Qi, if necessary, to disjoint cubes to obtain a new sequence {Qj
i}

of disjoint cubes so that every cube Qj
i satisfies diam(Qj

i ) ≤ 1/j.
Next define for each j the function vj as

vj(x) = uQj

i
(x), x ∈ Qj

i , i = 1, 2, ...

= u(x), x ∈ Ω′ \ ∪iQ
j
i .

Now it easily follows that vj − u ∈W 1,p
0 (Ω′) and by (10)

∫

Ω′

|∇vj|p dx ≤
∫

Ω′

|∇u|p dx

for each j. Since the sequence ∇vj is bounded in Lp(Ω′) and vj−u ∈W 1,p
0 (Qj

i )
for each i and j, the Sobolev inequality yields

∫

Qj

i

|vj − u|p dx ≤ Cdiam(Qj
i )

p
∫

Qj

i

|∇(vj − u)|p dx

≤ Cj−p
∫

Qj

i

|∇(vj − u)|p dx

where C depends only on p and n. Summing over i we obtain
∫

Ω′

|vj − u|p dx ≤
∑

i

∫

Qj

i

|vj − u|p dx ≤ 2p+1Cj−p
∫

Ω′

|∇u|p dx

because ∫

Ω′

|∇vj|p dx ≤
∫

Ω′

|∇u|p dx

by he minimizing property of the function vj in each Qj
i . Thus vj → u in

Lp(Ω′).
Since the sequence ∇vj is bounded in Lp(Ω′), passing to a subsequence if

necessary, we may assume that ∇vj → ∇u weakly in Lp(Ω′). By the lower
semicontinuity of the Lp–norm in the weak convergence we see that

∫

Ω′

|∇u|p dx ≤ lim inf
j→∞

∫

Ω′

|∇vj |p dx ≤ K
∫

Ω′

|∇uΩ′|p dx

where (11) is used in the last step. This yields (9) and the proof is complete.

There is a version of Theorem 2.1 where the assumption u ∈ W 1,p
loc (Ω)

is not needed. To formulate the result we introduce some notation. Let
w be a continuous real valued function defined on the boundary ∂Ω of a
bounded open set Ω of Rn. We let HΩ

w denote the Perron–Wiener–Brelot
solution associated with the p–harmonic equation (2) and with the boundary
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values w, see [HKM, Chapter 9]. Since Ω is bounded and w is continuous
a unique Perron–Wiener–Brelot solution HΩ

w with boundary values w exists,
see [HKM, Theorem 9.26].

If u is a quasiminimizer, then u is locally Hölder continuous, see [CC] and
[KiM]. Hence the continuity assumption in Theorem 2.2 is not an essential
restriction.

Theorem 2.2 Suppose that u is continuous in Ω. Then u is a K–quasi–

minimizer in Ω if and only if for each open set Ω′ ⊂⊂ Ω and all disjoint

open sets Ω1, ...,Ωk ⊂ Ω′ it holds

∑

i

∫

Ωi

|∇HΩi

u |p dx ≤ K
∫

Ω′

|∇HΩ′

u |p dx <∞. (11)

Proof. The proof is similar to that of Theorem 2.1. For the sufficiency

replace in the definition of the sequence H
Qj

i
u the functions uQj

i
by the func-

tions H
Qj

i
u . Note that a cube is regular domain for the p–Dirichlet problem

and hence the function vj is continuous in Ω′. Now it is easy to see that the
sequence vj, j = 1, 2, ..., converges locally uniformly to u in Ω′ and hence no
Poincaré inequality is needed.

3 Quasiminimizers in R

In the one dimensional case Theorem 2.1 takes a simple form.

Theorem 3.1 Suppose that p > 1, K ≥ 1, ∆ is an open interval in R and

u : ∆ → R is a function. Then u is a K–quasiminimizer if and only if for

all intervals [a, b] ⊂ ∆ it holds

k
∑

i=1

|u(xi+1) − u(xi)|p
(xi+1 − xi)p−1

≤ K
|u(b) − u(a)|p

(b− a)p−1
(12)

whenever a = x1 < x2 < ... < xk+1 = b is a partition of [a, b].

Proof. Since affine functions are minimizers in the 1–dimensional case for
all p, see [GG], and

∫ d

c
|f ′(t)|p dt =

|f(d) − f(c)|p
(d− c)p−1

(13)

for an affine function f , (12) follows from Theorem 2.1 for aK–quasiminimizer
u.
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To prove the sufficiency of (12) we first show that u is absolutely contin-
uous in any closed interval [a, b] ⊂ ∆. Let (ai, bi), i = 1, ..., k be a collection
of disjoint intervals in [a, b]. By the Hölder inequality and by (12) we obtain

(
∑

i

|u(bi) − u(ai)|)p ≤ (
∑

i

|u(bi) − u(ai)|p
|bi − ai|p−1

)(
∑

i

|bi − ai|)p−1

≤ K
|u(b) − u(a)|p

(b− a)p−1
(
∑

i

|bi − ai|)p−1

and this clearly implies absolute continuity of u on [a, b].
Condition (12) also implies that u′ ∈ Lp

loc(∆). Indeed, let [a, b] ⊂ ∆
and subdivide [a, b] into intervals of equal length < 1/i. Approximate u on
[a, b] by a piecewise linear function vi which equals u at the endpoints of
subintervals. Then vi converges uniformly to u in [a, b] and it follows from
(12), as in the proof of Theorem 2.1, that v′i → u′ weakly in Lp([a, b]), at least
for a subsequence. Hence u′ ∈ Lp([a, b]) and the inequality (8) follows from
the lower semicontinuity of the norm with respect to the weak convergence,
see the proof for Theorem 2.1. The proof follows.

Remark 3.2 The condition (12) should be compared to the condition

j
∑

i=1

|u(xi+1) − u(xi)|p
(xi+1 − xi)p−1

<∞ (14)

for a function u : [a, b] → R. Here x1, x2, ...xj+1 is any partition of [a, b].
Now (14) is equivalent to the fact that u is absolutely continuous on [a, b]
and u′ ∈ Lp([a, b]), p > 1. The sufficiency of (14) follows as in the proof
for Theorem 3.1 and the necessity is due to the Hölder inequality and the
estimate

|u(xi+1) − u(xi)| ≤
∫ xi

xi+1

|u′| dt.

Inequality (12) has a reverse nature since it gives the bound for the sum
in (14) in terms of the values of u at the endpoints of each interval [a, b].
Note that (12) is much stronger than (14). In particular (12) implies that u′

is locally integrable to some exponent q > p and that u is either constant or
strictly monotone. Some of these properties are considered in the following.

A natural domain of definition for a quasiminimizer in R is a closed
interval [a, b]. Indeed, if u is a K–quasiminimizer in an open interval (a, b),
then u has a continuous extension to [a, b] and

∫ d

c
|u′(t)|p dt ≤ K

|u(d) − u(c)|p
(d− c)p−1

(15)
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holds for all intervals [c, d] ⊂ [a, b]. For this and other properties of one
dimensional quasiminimizers see [MS].

We say that a K–quasiminimizer u : [0, 1] → [0, 1] is a normalized K–
quasiminimizer if u(0) = 0 and u(1) = 1. The following lemma is immediate.

Lemma 3.3 Suppose that u is a normalized (p,K)–quasiminimizer. Then

u(t) ≤ K1/pt(p−1)/p

for each t ∈ [0, 1].

Proof. By the Hölder inequality

u(t) =
∫ t

0
u′(s) ds ≤ t(p−1)/p(

∫ 1

0
u′(s)p ds)1/p

≤ t(p−1)/p[K
(u(1) − u(0))p

(1 − 0)p−1
]1/p = K1/pt(p−1)/p

as required.

Next we review some results from [MS] which will be needed in the sequel.
We use the same notation as in [MS] where the higher regularity properties
of one dimensional quasiminimizers were considered in detail. From [MS,
Theorem 4] it follows that there is a function p1 : (1,∞) × [1,∞) → (1,∞]
and for each triple (p,K, s) ∈ (1,∞) × [1,∞) × (1, p1(p,K

1/p)) a number
K1 = K1(p,K, s) such that if u is a normalized (p,K)–quasiminimizer, then
u is also a (s,K1)–quasiminimizer. The function p1 satisfies for each p ∈
(1,∞)and K ≥ 1:

p1(p,K) > p (16)

lim
K→1

p1(p,K) = ∞ = p1(p, 1) (17)

lim
K→∞

p1(p,K) = p (18)

and the number K1 has the property K1(p, 1, s) = 1 for each p, s > 1.
From the above property we obtain an improved version of Lemma 3.3:

Corollary 3.4 Suppose that u is a normalized (p,K)–quasiminimizer. Then

for each s ∈ (1, p1(p,K
1/p))

u(t) ≤ K1(p,K, s)
1/st(s−1)/s (19)

for every t ∈ [0, 1].
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Remark 3.5 The only normalized 1–quasiminimizer is u(t) = t. Note that
(19) reduces to u(t) ≤ t for K = 1.

Suppose that u is a normalized (p,K)–quasiminimizer. Then u is strictly
increasing and continuous. By [MS, Theorem 14] there is a function p2 :
(1,∞) × [1,∞) → (1,∞] and for each q ∈ p2(p/(p − 1), K1/(p−1)) a num-
ber K2 = K2(p,K, q) such that the inverse function v of u is for each
q ∈ (1, p2(p/(p − 1), K1/(p−1))) also a (q,K2)–quasiminimizer. The function
p2 and the number K2 = K2(p,K, q) satisfy

lim
K→1

p2(p/(p− 1), K) = ∞ = p2(p/(p− 1), 1) (20)

lim
K→∞

p2(p/(p− 1), K) = 1 (21)

K2(p, 1, q) = 1. (22)

Remark 3.6 For p = 2 the functions p1(2, K) and p2(2, K) have explicit
expressions, see [MS],

p1(2,
√
K) = 1 +

√

K/(K − 1)

p2(2, K) =
√

K/(K − 1)

for K > 1. The aforementioned functions p1, p2 and the numbers K1, K2

can be numerically computed for all argument values, see [D’AS] and [MS].
Moreover, all these results are sharp. Note the open ended property for the
exponents s and q. Hence there is no best Hölder exponent in (19).

4 Capacity estimates

We state the counterpart to (3) as two separate theorems although their
proofs follow from the same principle. We let the functions p1, p2 and the
numbers K1, K2 be as in the previous section.

Suppose that E = (C,Ω) be a condenser in Rn, n ≥ 1, where Ω is a
bounded open set. Let u be a (p,K)– quasiminimizer in Ω\C with boundary
values 0 on ∂Ω, 1 on C, i.e. u − ϕ ∈ W 1,p

0 (Ω \ C) where ϕ ∈ C∞
0 (Ω) and

ϕ = 1 on C. Write Ct = {x ∈ Ω : u(x) ≥ t}.

Theorem 4.1 For each s ∈ (1, p1(p/(p − 1), K1/p(p−1)) there is a number

κ1 = κ1(p,K, s) <∞ such that

cappE ≤ κ1t
p−s/(s−1) capp(Ct,Ω). (23)
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The number κ1 has the following property for each p > 1 and s ∈ (1, p1(p/(p−
1), K1/p(p−1)):

lim
K→1

κ1(p,K, s) = 1 = κ1(p, 1, s)

Remark 4.2 ForK = 1 inequality (23) and the properties of p1 give cappE ≤
tp−1 capp(Ct,Ω). Inequality (23) does not reduce to the right hand side of
(5) if the A–potential u of C in Ω is considered as a quasiminimizer because
now an A–potential of C in Ω is a (β/α)p–quasiminimizer in Ω \ C. Since
p1(p/(p−1), K1/p(p−1)) > p/(p−1), the exponent s can be chosen > p/(p−1).

Proof for Theorem 4.1 Set u = 1 on C. Then u ∈W 1,p(Ω) and write

Ωt = {x ∈ Ω : u(x) > t}, 0 ≤ t < 1.

Although Ωt need not be an open subset of Ω, for each 0 ≤ t < t′ ≤ 1 we can
define a condenser (Ct′ ,Ωt) and its p–capacity capp(Ct′,Ωt) as before using
the refined Sobolev functions. Note that Ω0 = Ω provided that C is a set of
positive p–capacity and Ω is a domain. These we can assume without loss of
generality. For each 0 ≤ t < t′ ≤ 1 the quasiminimizing property of u yields

capp(Ct′ ,Ωt) ≤ (t′ − t)−p
∫

Ωt\Ct′

|∇u|p dx ≤ Kcapp(Ct′,Ωt). (24)

Fix an interval [a, b] ⊂ [0, 1] and let a = t0 < t1 < ... < tk = b be
a partition of [a, b]. Next we employ the well known separation inequality
for capacities of condensers, see [HKM, Theorem 2.6]: For the condensers
(Cti ,Ωti−1

), i = 1, 2, ..., k, this gives

k
∑

i=1

capp(Cti ,Ωti−1
)−1/(p−1) ≤ capp(Ctk ,Ωt0)

−1/(p−1) (25)

because
Ctk ⊂ Ωtk−1

⊂ Ctk−1
⊂ Ωtk−2

⊂ ... ⊂ Ωt0 .

Set
ϕ(t) =

∫

{u(x)<t}
|∇u|p dx.

Then ϕ : [0, 1] → [0, β],

β =
∫

Ω\C
|∇u|p dx,

is a continuous strictly increasing function with ϕ(0) = 0 and ϕ(1) = β. Now
(24) and (25) yield

k
∑

i=1

(ti − ti−1)
p/(p−1)(ϕ(ti) − ϕ(ti−1))

1/(1−p)

≤ K1/(p−1)(b− a)p/(p−1)(ϕ(b) − ϕ(a))1/(1−p). (26)
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Note that ∇u = 0 almost everywhere on the set where u =const.
Let ψ : [0, β] → [0, 1] denote the inverse function of ϕ. Writing (26) for

the inverse function ψ we obtain

k
∑

i=1

(ψ(t′i) − ψ(t′i−1))
p/(p−1)(t′i − t′i−1)

1/(1−p)

≤ K1/(p−1)(ψ(b′) − ψ(a′))p/(p−1)(b′ − a′)1/(1−p) (27)

where ϕ(a) = a′, ϕ(b) = b′ and ϕ(ti) = t′i, i = 0, 1, ... , k. Thus (27) holds for
an arbitrary partition

a′ = t′0 < t′1 < ... < t′k = b′

of the interval [a′, b′] ⊂ [0, β]. By Theorem 3.1 the function ψ is a (p/(p −
1), K1/(p−1))–quasiminimizer. Since ψ(βt) is a normalized quasiminimizer,
Corollary 3.4 yields for each s ∈ (1, p1(p/(p− 1), K1/p(p−1)))

ψ(βt) ≤ c
1/s
1 t(s−1)/s (28)

where c1 = c1(p,K, s). For the inverse function ϕ of ψ this means that

ϕ(t) ≥ βc
1/(1−s)
1 ts/(s−1), t ∈ [0, 1]. (29)

By the quasiminimizing property of u

capp(Ct,Ω) ≥ K−1
∫

{u<t}
|∇(

u

t
)|p dx = K−1t−pϕ(t)

and hence we obtain from (29)

capp(C,Ω) ≤ β ≤ c
1/(s−1)
1 t−s/(s−1)ϕ(t)

≤ Kc
1/(s−1)
1 tp−s/(s−1)capp(Ct,Ω).

It is easy to check that the number

κ1 = κ1(p,K, s) = Kc
1/(1−s)
1

has the required property. The proof follows.

The next theorem gives the counterpart of the left hand side of (5) for
quasiminimizers.
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Theorem 4.3 For each q ∈ (1, p2(p,K)) there is κ2 = κ2(p,K, q) such that

tp−(q−1)/q

κ2
capp(Ct,Ω) ≤ cappE. (30)

The number κ2 satisfies for each p > 1 and q ∈ (1, p2(p,K)):

lim
K→1

κ2(p,K, q) = 1 = κ2(p, 1, q).

Proof. We proceed as in the proof of Theorem 4.1. Since the function ϕ
is the inverse function of ψ and ψ is a (p/(p − 1), K1/(p−1)–quasiminimizer,
for each q ∈ (1, p2(p,K)), see Section 3, there is a number K2 = K2(p/(p−
1), K1/(p−1), q) such that the function ϕ is a (q,K2)–quasiminimizer in [0, 1].
Since ϕ/β is a normalized quasiminimizer, Corollary 3.4 yields

ϕ(t) ≤ K
1/q
2 t(q−1)/qβ, t ∈ [0, 1]

and since
capp(Ct,Ω) ≤ t−pϕ(t)

we obtain from the quasiminimizing property of u that

capp(C,Ω) ≥ β

K
≥ tp−(q−1)/q

KK
1/q
2

capp(Ct,Ω)

=
tp−(q−1)/q

κ2
capp(Ct,Ω)

where the number κ2 = KK
1/q
2 has the required property. The proof follows.

Remark 4.4 Remark 4.2 also applies to Theorem 4.3: For K = 1 inequality
(30) reduces to cappE ≥ tp−1 capp(Ct,Ω). However, the exponents and the
constants on the right and left hand side of (23) and (30) are different.

The inequalities (23) and (30) are sharp for n = 1. It remains an open
question if they are sharp for n ≥ 2. For p = 2 in the one dimensional
case the sharpness can be easily checked by considering the 2–capacity of
the condenser E = ([1, 2], (0, 3)). The function u(x) = xα, x ∈ [0, 1] and
u(x) = 1 − (x − 2)α, x ∈ [2, 3] is a (2, K)–quasiminimizer in [0, 1] ∪ [2, 3]
where α ∈ (1/2,∞) and K = α2/(2α − 1). For these computations see
[M] and [MS]. Note that u is not (2, K ′)–quasiminimizer for any K ′ < ∞ if
α ≤ 1/2 and that the number K is the smallest possible.
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Set u = 1 in [1, 2] and let Et, t ∈ (0, 1), be the condenser ({u(x) ≥
t}, (0, 3)). Now cap2E = 2 and cap2Et = 2/t1/α and hence

cap2E = t1/αcap2Et. (31)

Since
p1(2,

√
K) = 1 +

√

K/(K − 1),

a direct computation shows that

p1(2,
√
K) =

2α− 1

α− 1
, 1 < α, (32)

=
1

1 − α
, 1/2 < α < 1. (33)

By Theorem 4.1 the exponent s in (23) can now be chosen so that

s ∈ (1,
2α− 1

α− 1
), 1 < α,

s = ∞, α = 1,

s ∈ (1,
1

1 − α
), 1/2 < α < 1.

It is easy to see that the endpoints 2α−1
α−1

and 1
1−α

of these intervals cannot
be used for s in (23) and that these values correspond to the values of K
in Theorem 4.1. This is no accident because the function u is a normalized
(2, K)–quasiminimizer in [0, 1] and u is an optimal function with respect
to the higher integrability property of one dimensional quasiminimizers, see
[MS, Section 5].

Similar computations show that the estimate in Theorem 4.3 is optimal
for p = 2 as well.
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