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Abstract

Due to the difficulty of constructing "perfect models" (in the sense of physi-
cal sciences) in economics in general, it follows that the aposteriori observed
value for an economic equilibrium may deviate significantly from its model-
based apriori expected value. Mathematically this means that the aposteriori
observed equilibrium may represent a large deviation, namely, fall outside the
region of validity of the central limit theory.

With this simple fact as the motivating starting point for the present study,
we propose a new approach to the theory of stochastic economic equilibrium.
Drawing on recent developments in probability theory, we advocate the relevance
of the theory of large deviations for stochastic equilibrium economics.

It follows from the proposed approach that the formalism of stochastic equi-
librium economics becomes analogous with the formalism of classical statistical
mechanics. This analogy is due to the fact that the theory of large devia-
tions forms also the mathematical basis of statistical mechanics. Due to the
thermodynamic analogy, new "thermodynamic" concepts such as, e.g., entropy,
partition function, canonical probability, can be introduced to stochastic equi-
librium economics. These concepts play a cental role in the economic analogs
of classical thermodynamic principles.

We focus here on the economic analogs of two fundamental principles, namely,
of the second law of thermodynamics and of Gibbs conditioning principle.

The (integral form of the) classical second law expresses thermodynamic
entropy with the aid of temperature, internal energy and partition function. The
economic analog of the concept of entropy is defined as the information content
in the observation of the realized equilibrium. The "second law of stochastic
equilibrium economics” expresses the economic entropy in terms of an "economic
partition function".

In view of its definition as information content, economic entropy is a "mea-
sure of rareness" for the observed value of the equilibrium. It follows that the
economic second law can be interpreted as providing an information theoretic
measure of goodness for a random equilibrium model.

The formulation of the economic second law gives rise to the definition of
a new type of economic equilibrium. Namely, the second law is valid at any
"apriori possible equilibrium". At an apriori possible equilibrium zero is a "pos-
sible value" (in the sense of large deviation theory) for the random total excess
demand.

We discuss also the economic analog of the classical thermodynamic Gibbs
conditioning principle characterizing the canonical thermodynamic probability
law as the governing probability law for a thermodynamic system at a measured
temperature. Its economic analog characterizes a "canonical" probability law
as the aposteriori probability law governing a random economy, conditionally on
the observation of the realized equilibrium.

In order to illustrate the new concepts and principles in a mathematically
simple context, we study in detail the economic analog of the classical ideal gas,
namely, the special case where the participating economic agents are supposed
to be statistically identical and independent ("ideal" random economy). As an
example we will deal with "ideal" random Cobb-Douglas economies.



We suggest a systematic, broad study of the analogy of the formalisms of
statistical mechanics and stochastic equilibrium economics in general. At the
end of the introductory chapter we will outline such a program by suggesting
some concrete topics for later research.



1 Introduction

1.1 The set-up

The subject matter of modern economic theory concerns the building of models,
written in the language of mathematics, which purport to describe "real" eco-
nomic systems. The ideal is to achieve such an exact correspondence between
the model and reality which is paradigmatically characteristic for the physical
sciences.

Classical equilibrium theory is concerned with the following fundamental
problem:

0. Does there exist an equilibrium, i.e., a price vector at which the total excess
demand in the economy vanishes?

In the classical theory the total excess demand is regarded as a deterministic
function (see Debreu [13]). The definition of the equilibrium prices as zeros of
the total excess demand function can be regarded as the fundamental axiom
of equilibrium economics. Namely, while in reality the total excess demand
were not known as an explicit function, it is still implicitely thought that the
equilibrium prices are zeros of a "hypothetical" total excess demand function.

After the pioneering works by Arrow, Debreu and McKenzie in the 1950’s
([2], [3], [13], [22]) the theory of general (deterministic) equilibrium became a
major subject of research developing in the course of the following couple of
decades to its present established mature state.

As human behaviour in general, economic behaviour is always more or less
unpredictable and often also irrational. It follows that - in contrast with the
case of physical sciences - in economics it is never possible to achieve a perfect
correspondence between the model and reality. So an economic model, however
sophistically built, will at its best present only an approximative image of the
real world.

An economic model can be tested by making "objective" aposteriori obser-
vations on the real economic system which the model aims to describe.

Now, due to the imperfectness in the modelling, the observations on the real
economy may well contradict with the predictions by the apriori model. Thus,
even while the model was initially built as deterministic, these contradictions
indicate the presence of apriori uncertainty in the model.

Taking into account uncertainty means that, instead of one single "configu-
ration" of the economy, there is an "ensemble" of configurations, each configu-
ration having a "weight" (apriori probability) indicating the "apriori degree of
belief" to its truth. These beliefs can be of "subjective type" ("rational guesses")
as well as of "objective type" (based, e.g., on an apriori statistical study of the
microeconomic behaviour of a suitably chosen representative sample from the
set of economic agents). Mathematically these beliefs can be described by spec-
ifying an apriori probability law.

In view of the discussion above it is natural to consider equilibrium models
which are stochastic rather than deterministic. This means that we will as-
sume that the parameters in the equilibrium model are random variables. In
particular, it then follows that the equilibria of the model are random, too.



We also assume that the economy is large, viz. the number of participating
agents is "big".

The problem of the existence of an equilibrium (with probability 1) is rel-
evant for random economies, too. The seminal paper is due to Hildenbrand
[15].

The first special problem one can pose for a large random economy is as
follows:

1. What is the apriori relation of a random equilibrium with its model-based
apriori expected value? More precisely, does there exist a law of large numbers
(LLN) and a central limit theorem (CLT)?

The seminal work dealing with the solution to Problem 1 is due to Bhat-
tacharya and Majumdar [6].

In contrast with the case of deterministic equilibrium, after the pioneering
papers by Hildenbrand, Bhattacharya and Majumdar in the early 1970’s, the
theory of random economic equilibrium has remained in the marginal of research
in economic science.

Drawing on recent developments in general probability theory the purpose
of the present paper is to suggest a new method of approach to the theory of
random equilibrium. Namely, we advocate the relevance of the theory of large
deviations for the equilibrium theory of random economies.

We formulate two basic problems concerning the Bayesian type of interplay
between an apriori random equilibrium model with the aposteriori observations
on the realized equilibrium.

By an aposteriori (macroeconomic) observation we mean the observation of
some realized macroeconomic variable or quantity like, e.g.: of the equilibrium
prices; of the consumption or production of some commodities in the economy
(or in some economic sector); of the number of economic agents being of a
certain "type". In this paper we will focus on the case where the observations
concern the realized equilibrium prices in the system.

The first new problem to be addressed here is concerned with the apriori
probability of an aposteriori observation of the equilibrium:

2. Suppose that the realized equilibrium is aposteriori observed. What is the
apriori probability of this observation?

Note that, if the apriori model is "good", then (due to the LLN and CLT),
this probability ought to be "big". Moreover, in this case its value can be
approximated with the aid of the CLT, see Section 2.5.

However, since economic models usually are not perfect (in the sense of
physical sciences), the aposteriori observed equilibrium may deviate significantly
from its model-based apriori expected value. It follows that then the apriori
probability of the observed value is likely to be "small". In fact, it can be argued
that in this case the observed equilibrium may represent a large deviation (LD),
namely, fall outside the region of the validity of the CLT. This is so, because the
CLT is valid only on a region which has the asymptotically small order of the
standard deviation, cf. the discussion in Section 2.5.

We address also the problem of the inference from the aposteriori observation
of the equilibrium (possibly representing a large deviation):



3. What is the aposteriori probability law governing a random economy, condi-
tionally on an observation of the realized equilibrium?

This inference problem arises also in the classical non-stochastic equilibrium
theory. Namely, due to the (inavoidable) contradictions of the aposteriori ob-
servations on the real system with their model-based predictions remodelling
becomes necessary. However, in the case of a deterministic apriori model, the
remodelling can be based only on some kind of ad hoc arguments.

1.2 Description of the results

We argue that the set-up of Problems 2 and 3 has an analogy in the formalism of
classical statistical mechanics. This is due to the common ground of stochastic
equilibrium economics and statistical mechanics in the theory of large deviations.

The set-up of Problem 2 turns out to be an analog of the second law of
thermodynamics. To this end, recall that the (integral form of the) classical
second law relates thermodynamic entropy with temperature, internal energy
and thermodynamic partition function, see (2.1.7).

We argue that there is an analogy in stochastic equilibrium economics which
suggests the definition of the information content in (defined as the logarithm of
the inverse probability of) the observation of an equilibrium as the economic ana-
log of thermodynamic entropy (Definition 1 in Section 2.3). The "second law of
stochastic equilibrium economics” relates economic entropy with the "economic
partition function" (see Section 2.3).

The economic second law is obtained at the ideal limit of an "infinitely
large economy" (the analog of the thermodynamic limit, cf. Section 2.1) from
a theorem of large deviations (TLD) concerning the random equilibrium prices
(Theorem 2 in Section 4.3).

The TLD gives a formula with the aid of the Laplace transform of the ran-
dom total excess demand for the apriori probability of the observation of an
apriori non-expexted equilibrium. The TLD is valid at any "apriori possible"
equilibrium price, and therefore its use is mathematically legitimate even for an
imperfect apriori model. (For the precise definition of the concept of an apriori
possible equilibrium price see Definition 2 in Section 3.2.)

The economic second law can be interpreted as providing an information
theoretic measure of goodness for the apriori equilibrium model, see Remark
2.3(ii).

The set-up of Problem 3 is an analog of the thermodynamic Gibbs condi-
tioning principle (GCP) characterizing the thermodynamic canonical probability
law as the governing probability law of a thermodynamic system at a measured
temperature. The canonical law is a member of the exponential probability dis-
tribution family generated by the total energy (see Section 3.1).

According to the economic analog of Gibbs conditioning principle, condi-
tionally on the observation of an equilibrium, the aposteriori probability law
governing a random economy is a "canonical member" in the exponential fam-
ily generated by the random total excess demand (Section 3.2).

As an exact mathematical theorem GCP is a conditional law of large numbers
concerning macroeconomic random variables (Theorem 3 in Section 5.2).



We organize the paper in two parts. In the first part we develop the "ther-
modynamic formalism" of large random economies focusing on the economic
analogs of the second law of thermodynamics and of Gibbs conditioning prin-
ciple. The second part comprises "exact results" in that we formulate the eco-
nomic second law and Gibbs conditioning principle as exact mathematical the-
orems within the framework of the theory of large deviations.

We will investigate in detail the special case of an "ideal” random economy
where the economic agents are supposed to be statistically identical and inde-
pendent. (This is the analog of the classical thermodynamic ideal gas.) As a
special illustrating example we study "ideal” random Cobb-Douglas economies.

There seems to be no easily accessible treatment on the LD theoretic foun-
dations of statistical mechanics. Therefore, for the convenience of a possibly
unacquainted reader and in order to point out the proposed analogy of stochas-
tic equilibrium economics with statistical mechanics, we will begin each chapter
with a short review on the relevant basics of statistical mechanics and its LD
theoretic foundations.

The presentation attempts to be as self-contained as possible. (This goal
implies that there will be some overlapping with [22-25]. We also try to avoid
reference to the general LD theory. For a reader who is interested in the general
LD theory we recommend the monographs by Bucklew [10], and by Dembo and
Zeitouni [14].

We plan to study stochastic finance markets and the so-called survival model
as applications of the proposed formalism in the forthcoming papers [28], [29].

1.3  General background on LD theory and statistical me-
chanics

We advocate in this study the relevance of the theory of large deviations for
the equilibrium theory of large random economies comprising a big number of
participating agents.

In probability theory in general, by a large deviation is meant the occurrence
of a value for a random variable, which falls outside the region of validity of the
central limit theorem. Large deviations are bound to occur in a large random
system, if the apriori model is imperfect (as is the case usually, e.g., in economics,
cf. Remark 2.3(ii) and Section 2.5).

The standard LD theory is concerned with the probabilities of large devi-
ations of "extensive" random variables, viz. of random variables which result
from the accumulation of a big number of "micro" random variables. The basic
example is the sum of independent and identically distributed random variables.
The extensivity can also mean temporal extensivity, i.e., time is regarded as the
size parameter.

Theorems of large deviations type express the probabilities of large devi-
ations in an exponential form where the exponent is proportional to the size
parameter of the system. The negative of the coefficient of proportionality is
referred to as the rate function.

Due to the thermodynamic analogy, the rate function is also referred to as
the entropy function. The estimate yielded by the TLD is valid also outside the
region of validity of the CLT.



Gibbs conditioning principle is concerned with the aposteriori inference from
the observation of a large deviation, viz. how to take into account such an ob-
servation in a mathematically legitimate way. According to GCP the aposteriori
probability law belongs to the exponential family generated by the random vari-
able under consideration. As a mathematical theorem GCP is a conditional law
of large numbers.

Since the seminal classical work by H. Cramér [12]), LD theory has become
a major subject in probability theory, and subsequently also an important tool
in stochastic modelling, like e.g., in: statistics, information theory, engineering
problems, see [10], [14]; modelling of large communication networks [33]; risk
theory [21]; dynamical macroeconomic phenomena [1]; calibration of asset prices
[4].

The theory of large deviations can be regarded as the mathematical abstrac-
tion of the inherent mathematical structure of statistical mechanics in that large
stochastic systems are understood as "thermodynamic" systems. Due to this
relation, the proposed formalism for stochastic economic equilibrium theory is
conceptually and structurally similar to the formalism of statistical mechanics.

Classical thermodynamic systems are physical systems which comprise a
big number of particles (see e.g. [20]) or [30]). The goal is to describe the
macroscopic behaviour of the system in terms of a few thermodynamic variables.
Standard thermodynamic variables are, e.g., volume, pressure, internal energy,
temperature and entropy. The thermodynamic variables can be classified either
as extensive (i.e., proportional to the volume) or intensive (i.e., independent of
the volume). Examples of extensive variables are volume, internal energy and
entropy, while pressure and temperature are intensive.

The relations between the thermodynamic variables are described by ther-
modynamic equations of state. Thus, e.g., (the integral form of) the second law
of thermodynamics relates thermodynamic entropy with temperature, internal
energy and partition function, see formula (2.1.7).

According to the paradigm, the thermodynamic laws are assumed to hold
true universally, i.e., to govern the behaviour of any thermodynamic system
(even if the behaviour of the system is not mathematically fully understood).

Like a thermodynamic system, a large economic system comprising a big
number of economic agents has many "degrees of freedom", only a few of which
are "observable". As in statistical mechanics one can distinguish extensive (pro-
portional to the size of the economy) and intensive (independent of the size)
variables. Examples of extensive variables are, e.g., the total demand and sup-
ply on some commodities, while prices are typical intensive variables.

Despite of their intensive character, however, as zeros of the (extensive)
random total excess demand function, the random equilibrium prices still obey
the principles of large deviation theory, see [22-25]. It follows that stochastic
equilibrium theory becomes a potential object of application of the LD method.

We argue that, in analogy with statistical mechanics, the "thermodynamic
formalism" of stochastic equilibrium theory reflects certain underlying "univer-
sal principles" which hold true for a larger class of random economies than are
those for which the exact mathematical conditions can be validated.



1.4 Suggestions for future research

As the present author sees it, the purpose of mathematical economics is not
only to study mathematical structures which already are merited as being rel-
evant to economics, but - as importantly - also theories which only seem to
have such potential. The aim of the present work is to advocate certain recent
developments in probability theory which the author believes to be useful to the
stochastic equilibrium theory, but of which mathematical economists may not
be well aware.

As the main thesis of this study we argue that there is a structural anal-
ogy between the formalisms of statistical mechanics and stochastic equilibrium
economics which is worthwhile to be investigated.

In this paper we focus on the economic analogs of two basic thermodynamic
principles, namely, of the second law of thermodynamics and of Gibbs condi-
tioning principle. The goal is also to provide economic content to these analogs.

We suggest a systematic investigation and economic interpretation of the
analogy of statistical mechanics and stochastic equilibrium economics in general.
Below we make an outline for such a program by suggesting some concrete topics
of research. We add comments on the possible solutions and interpretations.

(i) Consider an economic system which comprises economic sectors. This
could be regarded as the economic analog of a thermodynamic system which
comprises subsystems. As a natural question one may now ask whether there is a
meaningful analog of the first law of thermodynamics, namely of thermodynamic
temperature equilibrium (cf. [18]; for a risk-theoretic analog, see [21].)

(i1) The principle of minimum entropy (viz. the analog of the thermo-
dynamic principle of mazimum entropy) will be shortly discussed in Remarks
2.3(iii) and 3.2(iv). We suggest its systematic study and comparison with the
thermodynamic analog as a subject of further study.

(iii) Due to the fact that economic models are bound to be non-perfect, it
follows that approximations play an important role. Therefore it is desirable to
investigate the (second order) approximations in a systematic way. In analogy
with thermodynamics, the second order approximation ought to concern the
stability and fluctuations of the economic equilibrium (cf. [30]: Section 1.5).

(iv) The dichotomy of reversibility and irreversibility plays a central role in
thermodynamics. A thermodynamic process is reversible, if it is quasistatic, viz.
"infinitely slow", and such that its path can be reversed ([30]: Section 1.2.1).

This suggests to conjecture that a "reversibile economic process" ought to
be defined as a (random) dynamic economic process which is "quasistatic", i.e.,
such that the parameters change so slowly that the agents’ economic behaviour
is based solely on the present state of the economy and not on the agents’ ex-
pectations on the future states of the economy, and the path of which can be
"reversed". (This might be related to the economic theory of rational expecta-
tions.)

(v) The ultimate test for the relevance of any abstract theory is its appli-
cability and explanatory power in the analysis of the real world. Thus, e.g.,
classical statistical mechanics explains the thermodynamic phenomena in the
physical world, and the classical theory of general equilibrium forms the basis
for the equilibrium econometrics.
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The proposed "thermodynamic formalism" of economic equilibrium is also
subject to this test. Suggested by the results of this paper, we propose the use
of the second law in the evaluation of the quality of an econometric model which
is subject to aposteriori "objective" macroeconomic observations, cf. Remark
2.3(iii). Similarly, in view of its economic interpretation, Gibbs conditioning
principle could possibly work as an updating tool in the stochastic modelling of
economic equilibrium.

PART I: THERMODYNAMIC FORMALISM

2 The Second Law

2.1 The second law of thermodynamics

The proposed formalism for stochastic equilibrium theory is analogous with the
formalism of statistical mechanics. Therefore, in order to point out this analogy,
we review in Sections 2.1 and 3.1 the classical second law of thermodynamics
and Gibbs conditioning principle.

Consider a physical system which comprises n particles i = 1,2, ...,n. Their
positions p; € R? and momenta 0; € R form a particle configuration w in the
thermodynamic ensemble ! = R5". Associated with each particle configuration
w there is the energy U(w) (= the sum of the kinetic energies of the particles
and of the potential energy associated with the particle configuration w).

According to Liouville’s theorem, Lebesque’s measure dw (= the Euclidean
volume) in R™ is invariant under the Hamiltonian dynamics (see [20]: Chap-
ter 1). This means that Lebesgue’s measure can be regarded as the "apriori
probability law". So in statistical mechanics the "apriori model" is "completely
imperfect" in that, apriori, all configurations w are "equiprobable".

The observation (measurement) of the temperature T restricts the thermo-
dynamic system to a compact energy shell:

(lU-E| <Ay ={weQ: [Uw)—E| <A} (2.1.1)

Here E denotes the internal energy at the temperature T, A denotes the thick-
ness of the "infinitesimally thin" energy shell. (The symbol "dot" indicates
equality by definition.) The thermodynamic entropy S is defined as the loga-
rithm of the volume of this energy shell:

S = log Vol{|U — E| < A}, (2.1.2)

([30]: p.32).
The thermodynamic partition function is defined as the Laplace transform of
the energy:

A(B) = /e—ﬂUW)dw, B> 0. (2.1.3)

The conjugate variable § has the meaning of inverse temperature: T = % The
internal energy E () associated with the inverse temperature (3 is defined as the

11



derivative

d
dp
The second law of thermodynamics introduces entropy as an extensive ther-
modynamic variable. According to it an infinitesimal reversible addition d@ of
heat leads to a proportional increase in entropy with the inverse temperature
as the coefficient of proportionality:

E(B) = log A(f). (2.1.4)

ds = 3dQ. (2.1.5)

For a system in constant volume (doing no work) the heat adds solely the internal
energy of the system. Therefore, for a system in constant volume we have

dS = BdE. (2.1.6)

Integrating by parts in (2.1.6) and taking into account the relation (2.1.4)
leads to the equivalent integral form of the second law:

S(B) = PE(P) - / E(5)dp
= BE(S) +log A(fB). (2.1.7)

The second law is obtained at the ideal limit n = oo (the socalled thermodynamic
limit) from a theorem of large deviations concerning the total energy U, see
Section 4.1.

Ezxample: The classical ideal gas

In the classical ideal gas there is no interaction between the particles so
that the energy comprises solely the kinetic energies of the individual particles,
see [20]: Section 2.1. Therefore it is sufficient to include in the ensemble the
momenta of the particles only:

Q={w=(01,...0,): 0; € R®} = R>".
The kinetic energy u; of particle ¢ is given by the "structure function"

_leiP
T 2m

U; = u(@l)

from its momentum 6; ("thermodynamic characteristics") and mass m. (The
non-standard terms "structure function" and "thermodynamic characteristics"
refer to their economic analogs, cf. Section 2.4.) Thus the total energy becomes
simply the sum

Uw)=> u(t:)=> 10 (2.1.8)

; L~ 2m
=1 =1

Consequently, the partition function of the ideal gas is the n’th power of the
partition function associated with a single particle:

_osh lea?
A(ﬁ)i/--'/e Z o doy - --db,, = \(B)", (2.1.9)
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where

) = /e—ﬂu(f?)dg _ /e—"z‘i’,l,Q 6 = (/ e Frdn)® = (2rm) 3874, (2.1.10)

R3 R3 R

The internal energy of the ideal gas is given by

E(B) = ne(B), (2.1.11)
where p ;
e(B) = — @bgk(ﬁ) =25 (2.1.12)

denotes the internal energy of a single particle.
It follows that the integral form (2.1.7) of the second law for the ideal gas
obtains the form

S(B) = n(log \(B) + Be(B)) = 37”(— log 8 + log 2mem). (2.1.13)

2.2 Random economies and their equilibria

We consider an economic system (shortly, economy), where certain commodities
j=1,...,14+ 1 are traded by a set of economic agents.

We assume that there is a parameter n, to be called the size parameter.
(Typically n is simply equal to the number of economic agents.) We assume
that we are dealing with a "large economy"; namely, in the exact theorems we
let n — oc.

Let Z7(p) denote the total excess demand on the commodity j € {1,...,1+1}
at the price p € Rfl. (Superscripts will refer to commodities.) We assume
that, for each j and p, the total excess demand is a random variable defined on
an underlying probability space (2, F, P), i.e.,

Z(p) = {27 (w; p); w € Q},

where Z7(w; p) is a measurable map of the variable w, see e.g. [8]: p.182.

We will refer to 2 as the macroeconomic ensemble and to its elements w
as the macroeconomic configurations. (This somewhat peculiar terminology is
due to the analogy with statistical mechanics, cf. Section 2.1.) The underlying
probability measure P will be called the apriori macroeconomic probability law.

We make the following two standard assumptions:

(i) ZI(ap) = Z?(p) for every constant a > 0 (homogeneity of degree 0); and
41

(ii) Y p'Z7(p) =0 (Walras’ law).
j=1

(As is common the symbol w will be usually omitted.)

Due to the homogeneity of degree 0, the prices can without loss of generality
be normed to belong to the price simplex

I+1
S'={peRI: ij =1}

j=1

13



(The symbol "dot" indicates equality by definition.)

Walras’ law implies that, for any price p € S' such that p!*! > 0, the total
excess demand on the [ + 1’st commodity is determined by the total excess
demands on the other commodities:

l
2% p) = =)D P 2 (p).
j=1

Thus we will omit the [ + 1’st component and call the vector
Z(p) = (Z"(p), -, Z'(p)) € R'

comprising the total excess demands on the commodities j = 1,...,1 simply the
(random) total excess demand.

The random equilibrium prices (r.e.p.’s) are defined as those price vectors
p* = {p*(w); w € N} at which the random total excess demand vanishes:

Z(w;p*(w)) =0, (2.2.1)
or, shortly:
Z(p*) =0.
Let
E2(0) = [ Z(wip)P(do)

denote the (deterministic) expected total excess demand function. Its zeros p}
will be called the (apriori) expected equilibrium prices:

BZ(p!) = 0.

Remarks:

(i) Formally, the random equilibrium prices comprise a random set:
7 ={r"(w);w € Q},

where

(W) ={pesS": Z(w;p) =0}

denotes the set of equilibrium prices at the realized macroeconomic configuration
w. Thus p*(w) denotes an arbitrary element of 7*(w).

(ii) There is a more general concept of random equilibrium:

A random variable X (p) = {X (w;p); w € Q} € R? (for some d > 1) which
depends on the macroeconomic configuration w and on the price p will be called
a macroeconomic random variable. Examples are, e.g., the total demand, supply,
production or share of these by the whole economy or by some macroeconomic
sector. Also, if the economic agents can be classified into a finite set of different
types, then the numbers of agents belonging to these classes can be regarded as
macroeconomic random variables, cf. Example (iii) below.

14



For any r.e.p. p*, let
o = X G)
denote the mean of the macroeconomic random variable at this equilibrium

price. The pair (p*,z*) is called a random composite equilibrium (r.c.e.), see
[27]: Section 4.3.

Ezamples:

(i) In the standard Cobb-Douglas exchange economy (shortly, CD economy)
comprising n economic agents ¢ = 1, ..., n, the individual excess demand by agent
1 is given by the vector

J
. a; i
Gip) = p—;p-ei —el; j=1,..,10), (2.2.2)
where a; = (a}, ..., i“) € S! denotes the share parameter, e; = (el ..., ﬁ“) €
141
R denotes the initial endowment, and p-e; = > pkeéC denotes the initial

k=1
wealth of the agent i.

In a random CD economy the share parameters a; as well as the initial
endowments e; will be random variables.

The random total excess demand equals the sum of the random individual
excess demands (;(p):

n I+1
Z(p) = Y Glp) ZZ”’“ Zq_j-l ).
=1 k=1

i=1 i=1
It follows that the random equilibrium prices are obtained from the formula

n

P = Qo)WY =1l D), (2:2.3)

i=1

where W* = (W*)!,...,(W*)'*1) is a left eigenvector (associated with the
eigenvalue 1) of the (random) stochastic matrix

n

A =" jk=1,...,1+1) Ze Zafe{; g k=1,...,14+41), (2.24)

=1 =1

normalized so that p* € S'. (In particular, it follows that, if the matrix A is
irreducible (see e.g. [32]), then there will be only one unique random equilibrium

price p*.)
The expected total excess demand on the commodity j is given by

+1

2(0) = 3 BG0) = () 3o Mt = Mli =1,

where

n
Ml = ) Ealef)
i=1
+1

n
k - k __ Jk
Me - E :Eei - E :ua;e'

i=1 j=1
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It follows that the expected equilibrium prices are given by
pe = (M)~ (wi); j=1,...,1), (2.2.5)
where w} is a left eigenvector of the stochastic matrix

Ac=(alF; jok=1,..,1+1) = ((MH)"'MY; jk=1,..,1+1),
subject to the normalization p? € S'. If A, is irreducible, then there will be
only one unique expected equilibrium price p}.

(i) In a random (one-period) random financial market (|27]: Example 2,
[28]) the parameters a; (= the risk aversion of agent i), u; (= the vector of
subjective expectations by ¢ of the values of the assets at the end of the period),
¥, (= the matrix of subjective expectations by ¢ of the correlations of the values
of the assets at the end of the period) and e; (= the initial endowment of i) are
random variables. (There is "double stochasticity" in that the agents’ subjective
expectations u; and X, are regarded as random variables.)

(iii) The concept of a random composite equilibrium can be illustrated with
the aid of the following survival model (see e.g. [7]).

Consider a random Cobb-Douglas economy as described above. Suppose
that at each price p there is a survival level w(p) such that an agent ¢ having
initial endowment e; € R'*! can survive only if his initial wealth exceeds this
level: p-e; > w(p). Let X{p.e,<w(p)} denote the indicator of non-survival, i.e., it
is 1 or 0 according as the inequality p-e; < w(p) characterizing the non-survival
is satisfied or not. Thus we can write the total number N(p) of non-surviving
agents as the sum

N(p) = Z X{p-e;<w(p)}-
i=1

The pair (p*,n*) comprising the equilibrium price p* and the mean number
n*=n"1N(p*) of non-surviving agents (at this equilibrium) is now an example
of a random composite equilibrium.

2.3 The second law of stochastic equilibrium economics

Let p be any price belonging to the price simplex S’.

By the observation of an equilibrium price in the §—neighborhood of the price
p we mean the observation of a random equilibrium price which is at a distance
less than § from p, i.e., the occurrence of the event

{w € Q: there exists a r.e.p. p*(w) such that [p*(w) — p| < 0}. (2.3.1)

We think (2.3.1) as the observation of the realized ("true") equilibrium price in
the §—neighborhood of the price p. The "tolerance" ¢ is supposed to be "neg-
ligible", and therefore we may speak about the observation of the equilibrium
price at the price p. In the sequel we will write the observation (2.3.1) shortly
as

Ip* : |p* —p| < 0. (2.3.2)

(In the ensuing exact theorems we let § — 0.)
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Let A be any event having probability P(A). The information content ZT(A)
in the observation of the event A is defined as the logarithm of the inverse of
its probability:

Z(A) = log

1
=—logP(A
PA) og P(4)
(see e.g. [11]). Thus the observation of a "common" event having high prob-

ability has low information content whereas the observation of a "rare" event
has high information content.

Definition 1. The economic entropy I(p) is defined as the information
content in the observation of a random equilibrium price at the price p:

I(p) =Z(Fp" : [p* —pl <d) = —log P(Fp* : [p* — p| <9). (2.3.3)

The Laplace transform (L.t.) of the total excess demand Z(p) is defined as
the function

Ao p) = Ee?2®) — /ea'Z(‘“‘p)P(dw), a € R (2.3.4)

The (macroeconomic) partition function A(p) is defined as its minimum:

A(p) = min A(a;p).
(p) min (o p)

The logarithm of the L.t. of a random variable (the socalled cumulate gen-
erating function) is known to be a convex function, see e.g. [8] p.148. It follows,
in particular, that if there exists a parameter o = a(p) € R' such that

dlog A L
5 (p)ip) =0, (2.3.5)
then necessarily,
A(p) = Aa(p); p). (2.3.6)

Due to the thermodynamic analogy with the concept of inverse temperature,
the variable a(p) will be called the conjugate variable (associated with the price
p). (Later we will show that the existence of a conjugate variable is equivalent
to p being a socalled possible equilibrium price, see Theorem 1 in Section 4.2.)

According to the second law of stochastic equilibrium economics the economic
entropy equals the negative of the logarithm of the partition function:

The Second Law of Stochastic Equilibrium Economics:

I(p) = —log A(p). (2.3.7)

Remarks: (i) The observation (2.3.1) is the economic analog of the observa-

tion (2.1.1) of temperature in thermodynamics.
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(ii) The second law is obtained at the limit n = co, 6 = 0, from a theorem
of large deviations concerning the random equilibrium prices. According to the
TLD

I@Ep* - lp" —pl < 6) +1og A(p) = e(n, 0)n,

where £(n,d) — 0 as n — oco and § — 0, see Theorem 2 in Section 4.3.

(iii) Entropy is a "measure of rareness" for the possible values p for the
random equilibrium prices. Namely, apriori non-expected "rare" values for the
r.e.p. have big entropy whereas apriori expected "common" values have small
entropy.

Thus the second law of can be interpreted as providing an information the-
oretic measure of goodness for the apriori equilibrium model:

Namely, if the apriori equilibrium model is "good", then due to the LLN,
the observed value p for the random equilibrium price p* is near to its apriori
expected value p}, and, therefore, has high apriori probability. Thus its entropy
I(p), which by the definition equals its information content, is small. On the
other hand, the realization of an apriori rare value for the random equilibrium
price has big entropy indicating the "badness" of the apriori model.

(iv) A partial observation of the r.e.p. means the observation of the r.e.p.

* in some subset of the price simplex:

p
Jp* € B, where B C S'.

This is the case, e.g., if the prices of some subset of the commodities are observed,
see [27]: Ex.3.1, [28]. Also, if in a dynamical finance market the prices of
the assets are observed only up to some time, then this represents a partial
observation (of the whole price process), see [27]: Ex. 3.2, [28].

According to the principle of minimum entropy, the entropy of a partial
observation of the equilibrium price is equal to the entropy of the entropy min-
imizing price in the observation set:

I(B) =Z(Fp" € B) = I(pp),

where

pp = argmin{l(p) : p € B}.
As a mathematical theorem this is a large deviation theorem concerning partial
observations, see [27]: Theorem 3.4.

(v) By an observation of a random composite equilibrium at the price-variable
pair (p,z) € S' x R? we mean the occurrence of the event

{w € Q : there exists a r.e.p. p*(w) such that [p*(w)—p| < d and |z* (w)—2z| < 6},

(2.3.8)

where 7*(w)=n"1X (w; p*(w)) denotes the mean of the macroeconomic random

variable X (w;p) at the equilibrium. The observation (2.3.8) will be written
shortly as

Ip* o |p* —p| <6, |z* — x| <4 (2.3.9)

(Also here ¢ > 0 is an "infinitesimally small" constant.)
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The (bivariate) entropy I(p, x) associated with the observation of a r.c.e. at
(p, x) is defined as the information content in this observation:

I(p,x) = Z(Ip":[p" —pl <6 |2" — x| <9)
= —logP(3p*:|p* —p| <4, |z* — x| <9).

The bivariate partition function A(p,x) is defined by the formula

Alp,z) = Ma(p, ), B(p, x); p),

where
Ala, B;p) = EeZ((@)+8-X(p) — /ea'Z(w;p)-FﬂX(w;p)p(dw), a € R, 3 e R,

denotes the bivariate Laplace transform, and the bivariate conjugate variables
a(p,x) and B(p,x) are the solutions of the equations

9 log A(a(p, x), B(p, x);p)

Oa =0
%bg/\(a(p,x),ﬁ(p,x);p) — (2.3.10)

cf. [27]: Section 4.3.

According to a generalized second law the entropy of a bivariate composite
equilibrium can be expressed in terms of the bivariate partition function A(p, x)
and the conjugate variable 5(p, x):

I(p,z) = —log A(p, ) + nB(p, z) - x, (2.3.11)

cf. [27]: Section 4.3.

In the case of Example 2.2(ii), the observation of a random composite equi-
librium (p*,n*) at (p,x) has the meaning of a simultaneous observation of the
r.e.p. p* at p and of the proportion n* = n~!N(p*) of non-surviving agents at
z. The bivariate entropy I(p, ) is the information content of this observation.

2.4 Ideal random economies

We will illustrate the general results with the aid of a special class of simple
random economies which, due to their analogy with the classical ideal gas of
statistical mechanics, will be called ideal random economies:

We assume that the individual excess demand (;(p) by agent ¢ is obtained
with the aid of a deterministic structure function z(6;; p) from a random param-
eter 6; (the economic characteristics of the agent ¢) and from the price p:

Gi(p) = 2(0i;p).

The economic characteristics 6; are supposed to form a sequence of R™-valued
(for some m > 1) independent and identically distributed (i.i.d.) random vari-
ables.

Note that, since statistical independence is preserved under deterministic
transformations, it follows that, for each price p, the individual excess demands
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are i.i.d., too. Thus in an ideal economy the total excess demand is the sum of

1.i.d. random variables:
n

Z(w;ip) =Y 2(6i;p). (2.4.1)
i=1
(The macroeconomic configuration w is defined now as the vector of the indi-
vidual characteristics: w = (01, ...,0,) € Q@ = R™™.)
Let f(0) denote the common probability distribution function (p.d.f.) of the
economic characteristics, i.e.,

P(6; € A) :/f(e)do fori=1,2,.., AC R™. (2.4.2)
A

We call f(6) the apriori microeconomic p.d.f.. It follows that the apriori macroe-
conomic probability law P(dw) is the product probability law, under which the
economic characteristics 6; are i.i.d. f(6)-distributed random variables, viz.

Pldw) = f(61) - f(On)dbr - - - dO. (2.4.3)

Let
MmﬁEmm=/dMW@M

denote the ezpected individual excess demand. Since

EZ(p) = nu(p),

the expected equilibrium prices are also zeros of the expected individual excess
demand:

n(pe) = 0. (2.4.4)

Due to the independence of the individual total excess demands, the Laplace
transform of the total excess demand in an ideal random economy is equal to
the n’th power of the L.t. of the individual excess demand:

Aesp) = Ee™?W
= Eea"igl ()
= Eexa®) ... e talp)

= Ma;p)",

where

AMa;p)=Ee* P = / e #0P) £(6)do.

It follows that the partition function is the n’th power of the individual
partition function A(p):
A(p) = Ap)", (2.4.5)

where
Ap)= min Aoz p) = Aa(p):p) (2:46)
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and the conjugate variable a(p) satisfies the equation

7 log Ma(p):p) = 0. (2.4.7)
of. (2.3.5).
In view of (2.3.7) the second law for an ideal economy obtains the form
I(p) = —nlog \(p). (2.4.8)
Ezamples:

(1) In an ideal random Cobb-Douglas economy the economic characteristics
0; = (ai,e;) € S' x R*?
form an i.i.d. sequence of random variables. In view of the formula (2.2.2), the
structure function is
a’

2(0;p) = z(a, e;p) = (Ep ce—el; j=1,..,1), 6=(a,e) € S' x RITL. (2.4.9)

It follows that the expected individual excess demand on the commodity j
is given by
I+1

pu(p) = ()72 pdhp® — pds j=1,...0), (2.4.10)
=1

k
where
pir.=E(alel) Z//ajekf(a,e)dade,

I+1
k- k _ § : jk
:ue_Eei - :ua;e’
=1

and f(0) = f(a,e) denotes the microeconomic p.d.f..
In view of equations (2.4.4) and (2.4.10) the expected equilibrium price is
given by

wi)l
pr=( M) =10,
€
where w} is a left eigenvector of the stochastic matrix
kg
A, = (ﬁ; Gk=1,..,1+1),
€

subject to the normalization p? € S, cf. (2.2.3) and (2.2.4). If A, is irreducible,
then there will be only one unique expected equilibrium price p.

The Laplace transform of the individual excess demand in an ideal random
CD economy is given by

AMa;p) = //ea'z(“’“p)f(a,e)dade

Sl RI+1
l . ) . .
S o ((p? )_1a-7p-efe-7)

es=t f(a, e)dade.

Sl Ri+1
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The conjugate parameter a(p) € R' is the solution of the equation (2.4.7) ,
viz., presently, of the system

/ / (P talp-e— ej)ezéflO‘j(p)((pj)fl“jp'e_ej)f(a, e)dade =0, j=1,...,1.
gl Rpi+1

For the individual partition function we obtain the formula

Ap) = Aalp);p)

5 of () (p)alpe—ei)
= //6-7:1 f(a, e)dade,

Sl Ri+1

cf. (2.4.6). In view of (2.4.8) the second law for an ideal random CD economy

obtains the form
zl': aj(p)((pj)_lajp-efej)
I(p) = —nlog/ / eI=1 f(a, e)dade.

Sl Rl+1

(ii) An ideal random financial market is formed by n statistically independent
and identical financial agents. The natural choice for the economic characteris-
tics 0; of agent i will be the m-dimensional (m = % + 2[ + 2) vector comprising
his risk parameter a; € R, the vector of his subjective expectations fiy.; € R!
and covariances Yy,; € R'*!, and his initial endowment e; € R'*1:

0; = (ai,,uw”;, Yy €), i=1,...n.
The structure function of the individual excess demand is (cf. [9])

= (amy) i e Tnope
pT(aXy)~1p

We will not pursue further with this example but plan to investigate it in a
later study [28].

(CLEw)_lp.

(iii) Consider the survival model as described in Section 2.2 (Example (iii)
therein).
Due to the LLN, under appropriate regularity conditions, the proportion
n* = n~1N(p*) of non-surviving agents at the equilibrium price p* is apriori near
to the probability of non-survival of a randomly chosen agent at the expected
equilibrium price:
n* ~ng = P(p; - e <w(pe)).

However, again, due to the imperfectness of the apriori model, the actually
realized proportion n* may well represent a large deviation within the apriori
model. The information content of the simultaneous observation of the r.e.p.
at the price p and the proportion of non-surviving agents at z is given by the
generalized second law (2.3.11) . Due to the postulated statistical independence
of the agents, the generalized second law obtains now the form (cf. (2.4.8))

I(p7 J?) = —nlog)\(p,a:) + nﬁ(pv J?) © L,
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where A\(p, z) and S(p, z) denote the individual partition function and conjugate
parameter defined as the solutions of the equations 2.3.10.

We will neither pursue further with this example but plan to investigate it
in a later study [29].

2.5 The second law and the central limit theorem

According to the law of large numbers, a r.e.p. is apriori "near to" its expected
value:
p* — p. asn — oo,

(I6], [24]).

The central limit theorem for the r.e.p.’s (|6]) characterizes the "small devi-
ations" of the r.e.p. p* from its expected value p} as asymptotically normally
distributed. Namely, under appropriate regularity conditions

Va(p® = p;) = N(0,X) asn — oo,

where N(0,%) denotes a multinormal random vector having mean zero and
covariance . Thus
p* ~ N(p:,n'¥) for bign (2.5.1)

so that the standard deviation of the distribution of the r.e.p. p* itself is of
the asymptotically small order ﬁ This means that the CLT describes the

random fluctuations at the "mesoeconomic intermediate scale” \/Lﬁ between the

"micro-" and "macroeconomic scales” % and 1.

It follows that if the observed value p for the r.e.p. p* happens to fall within
a distance of the order ﬁ from its expected value pf, then, due to (2.5.1), the
probability of this observation can be approximated with the aid of the CLT:

P(3p*:|p* —p| <0) = P(E@p*:[Vnp* —Vnp| < /nd)
~ Cnisle 3(P—P) =7 (p—p)

where C' is a constant and, again, the "tolerance" § > 0 is supposed to be

L
. 1 24!
small. Furthermore, since M

exponential order

— 0 as n — o0, this probability has the
e~ 3 (=) ST (0-p0)

Therefore, at the distance of the order % from p? the entropy is approximately

n
n

I(p) = —log P(Ip* : |p* —p| <) = 5

(p—p2)"=" 0 — p))-
This CLT-based approximation is consistent with the second law (as it ought
to be). Namely,

n * — *
—logA(p) = 5 (p — 1) "5 (p — 1),

when p is close to p} (cf. [25]: formula (3.2)] and [6]: Theorem 4.1(iii)]).
Outside its (narrow) region of validity this CLT-based approximation of the
second law is no more valid and its use is therefore mathematically unjustified.

Remark. The mesoscopic scale in statistical mechanics refers to the small
Gaussian random fluctuations of the thermodynamic equilibrium.
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3 Gibbs Conditioning Principle

3.1 Gibbs conditioning principle in thermodynamics

Let 8 > 0 be an arbitrary fixed inverse temperature.
In view of the definition (2.1.3) of the thermodynamic partition function

A(B),
P(dw|B) = A(B) " te PV dw (3.1.1)

is a probability law on the thermodynamic ensemble 2. It is called the canon-
ical probability law (at 3). The corresponding probability distribution function

(p.d.f.)
p(w|B) = A(B) e VW (3.1.2)

is called the canonical probability distribution function.

The energy U = (U(w);w € Q) can be regarded as a random variable under
the canonical probability law P(dw|3), and the internal energy FE(3) can be
interpreted as its expectation. Namely, in view of (2.1.3) and (2.1.4) we have

EWIS) = / U(w) P(dw]f)
= A(ﬁ)_l/U(w)e_ﬁU(“’)dw

= —%log/e_ﬂww)dw

= E(D). (3.1.3)
According to Gibbs conditioning principle (GCP) a thermodynamic system is
governed by the canonical probability law at the measured temperature. (Recall

that the measurement of the temperature 7' = 1 means that the energy U(w)
is in the neighborhood of the associated internal energy E(f), see (2.1.1).)

Ezxample: The ideal gas

In view of (2.1.9) and (2.1.10) the canonical probability law for the ideal gas
has the following product form:

P(dwlf) = AB) e 5" dw = £(0118) - £(8,18)d6, - - dB,
where
FO18) = A(B) e 4O = (2rm) 3 pte | 0 RP, (3.1.4)

is a Gaussian probability distribution function on R3, called the microcanonical
p.d.f..

Thus, according to Gibbs conditioning principle, the momenta 6; of the
particles in the ideal gas are i.i.d. random variables obeying the Gaussian mi-
crocanonical p.d.f..
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3.2 Gibbs conditioning principle in stochastic equilibrium
economics

Gibbs conditioning principle has an analogy in stochastic equilibrium economics:

Suppose that we observe the random equilibrium price p* at the price p (see
2.3.1). Due to the law of large numbers the observed value p is necessarily equal
(or at least "near") to the expected equilibrium price under the unknown "true"
aposteriori macroeconomic probability law P(dw|3p* : [p* — p| < d). Thus at
the ideal limit n = oo, § = 0 we ought to have

E(Z(0)3" : " —p| < )= / Z(w:p)P(dw|3p" : |p" — p| < 8) =0.

This implies that the aposteriori macroeconomic probability distribution func-
tion g(w|3p* : |p* — p| < §) defined as the density of the aposteriori macroeco-
nomic probability law w.r.t. the apriori law,

g(w|3p* : [p* — p| < 0)P(dw) = P(dw|3p” : |[p* — p| < 6)

ought to satisfy the relation
[ Zwimigtelzy s = 5l < OP) =0 (3:21)

Although condition (3.2.1) is a necessary condition for the aposteriori p.d.f.,
it alone is not sufficient for its unique characterization. The economic analog of
Gibbs conditioning principle will characterize the socalled canonical macroeco-
nomic p.d.f. as the aposteriori p.d.f.. As it should, the canonical macroeconomic
p.d.f. satisfies (3.2.1), see (3.2.5).

Suggested by condition (3.2.1) we make the following definition:

Definition 2. A price p will be called an (apriori) possible equilibrium price
(p.e.p), if there is a strictly positive probability distribution function g(w;p) >
0, [ g(w;p)P(dw) = 1, such that p is an expected equilibrium price under the
transformed macroeconomic probability law P, (dw;p) = g(w;p)P(dw), viz.

B,20) = [ Zinglos)Pde) <o (3:22)

A probability distribution function g(w;p) which satisfies (3.2.2) can be regarded
as a candidate for the aposteriori macroeconomic p.d.f. g(w|3p* : |p* —p| < 9).

With any price p, for which the conjugate parameter a(p) satisfying the
equation (2.3.5) exists, we can associate a p.d.f., which, due to the thermody-
namic analogy, will be called the canonical macroeconomic p.d.f.:

g(wlp) = A(p)~tex®rZ@p) (3.2.3)

We will prove later in Theorem 1 that the existence of a conjugate parameter
a(p) is equivalent to p being a possible equilibrium price. (The notation for the
canonical macroeconomic p.d.f anticipates its role as the aposteriori macroeco-
nomic p.d.f..)

The probability law

P(dwlp) = g(wlp)P(dw) = A(p)~'e* @ 20 P(dw) (3.2.4)
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will be called the canonical (macroeconomic) probability law.
In analogy with the thermodynamic formula (3.1.3) , the price p is an ex-
pected equilibrium price under the associated canonical probability law :
Namely, in view of relations (2.3.4), (2.3.5) and (2.3.6) we have

EZ@p) = / Z(w; p)g(w|p) P(dw)

— A / Z(w: p)e® 7<) p(d)

_1%/\(&(19);19)

0
0.

= A(a(p);p)

(3.2.5)

The result of (3.2.5) means that the canonical p.d.f. is a candidate for the
aposteriori macroeconomic p.d.f..

Now, in fact, according to the economic analog of Gibbs conditioning prin-
ciple, conditionally on the observation of the random equilibrium price at a
possible equilibrium price, the ensuing aposteriori macroeconomic probability
distribution function is given by the canonical macroeconomic p.d.f.:

Gibbs Conditioning Principle in Stochastic Equilibrium Economics:

g(w|Fp* : p* —p| < 8) = g(wlp). (3.2.6)

Remarks:

(i) Of course, equivalently with (3.2.6), the aposteriori macroeconomic prob-
ability law is given by the canonical macroeconomic probability law:

P(dw|3p* : |p* — p| < 0) = P(dwlp).

In what follows we shall often formulate GCP in terms of probability laws rather
than probability distribution functions.

(ii) Geometrically, the definition of the possible equilibrium price means
that 0 belongs to the topological interior of the convex hull of the support of
the distribution of the total excess demand, see Theorem 1 in Section 4.2.

(iii) As a mathematical theorem GCP is a conditional law of large num-
bers concerning macroeconomic random variables (Theorem 3 in Section 5.2).
According to the conditional LLN, conditionally on the observation of the ran-
dom equilibrium price, macroeconomic random variables are centered at their
canonical expectations.

(iv) According to the principle of minimum entropy (PME), conditionally on
a partial observation of the random equilibrium price (see Remark 2.3(iv)), the
aposteriori r.e.p. is equal to the entropy minimizing price which is compatible
with the observation:
3p* € B=p" =pg,
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cf. [27] : Theorem 3.7. Combining this with GCP it follows that, condition-
ally on a partial observation of the equilibrium price, the aposteriori macroeco-
nomic probability law is given by the canonical law associated with the entropy-
minimizing price:

P(dw|3p* € B) = P(dw|pp),

cf. [27]): Theorem 4.7.
In the forthcoming study [28] we apply this principle in the prediction of
asset prices in a dynamical asset market.

(v) In analogy with the characterization of a possible equilibrium price as a
zero of the derivative of the c.g.f. of the total excess demand, one may char-
acterize a possible composite equilibrium (p.c.e) as such a pair (p,z) € S! x R?
with which it is possible to associate the conjugate variables a(p, z) and B(p, x)
satisfying the equations (2.3.10).

The canonical macroeconomic probability law associated with a p.c.e. (p,x)
is defined by

P(dwlp, z) = A(p, z) "t Z(@p)+Bp.o)-X (W) p(d). (3.2.7)

According to a generalized Gibbs conditioning principle, conditionally on the
observation of a random composite equilibrium at the price-variable pair (p, ),
the governing aposteriori macroeconomic probability law is given by the canon-
ical macroeconomic probability law (3.2.7) associated with the observation:

P(dw|3p* : [p* —p| <0, |z — 2| <) = P(dwlp, ),

see [29].

3.3 Gibbs conditioning principle for ideal random economies

Consider an ideal random economy as described in Section 2.4. In view of
(2.4.1), (2.4.3), (2.4.5) and (3.2.4) the canonical macroeconomic probability law
has the product form

3 a(p)-2(8:;p)
Pwlp) = A@)te= T E(01) - £(00)d0: - - dB,

= [(O:lp)- - F(0ulp)doy - db,. (3.3.1)

where
FOlp) = A(p)~'e®)=0P) £ (9) (3.3.2)

is a probability distribution function on the set © of economic characteristics.
It will be called the canonical microeconomic p.d.f. (associated with the price
p). Thus, under the canonical macroeconomic probability law the economic
characteristics are i.i.d. random variables obeying the canonical microeconomic
p.d.f..

Now it follows, according to Gibbs conditioning principle (3.2.6) , that in an
ideal random economy, conditionally on observing a r.e.p. at p, the economy
is still ideal, i.e., the economic characteristics are i.i.d., and the aposteriori
microeconomic p.d.f. is given by the canonical microeconomic p.d.f.:

f(013p" = [p" — pl < 6) = f(0]p). (3.3.3)
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Ezamples:

(i) Consider again an ideal random CD economy. According to GCP, con-
ditionally on the observation of an equilibrium price, the aposteriori economy
is still an ideal CD economy having the canonical microeconomic p.d.f. as the
aposteriori microeconomic p.d.f.:

fla,el3p" : [p* —p| <6) f(a,elp)
- )\(p)flea(p)%(a,e;p)f(a’ e)

Alp)~teZim @ D) alpe=e) (4 0Y(3.3.4)

cf. (3.3.2) and (2.4.9).

(ii) Consider again the survival model of Example 2.2(iii) and assume that
the underlying Cobb-Douglas economy is ideal. Suppose that the random equi-
librium price p* is observed at the price p and the proportion z* of non-surviving
agents at z (cf. Remark 2.3(iv)). The ensuing aposteriori microeconomic p.d.f.
is now given by the associated canonical microeconomic p.d.f. f(a,e|p, z):

f(aaeElp* : |p* _p| < 5a |£C* - £C| < 5) = f(a,e|p,x).

If only the proportion x* of non-surviving agents is observed, i.e., we have
only a partial observation of the random composite equilibrium (p*,z*), then,
according to the PME and GCP, the aposteriori microeconomic p.d.f. is given
by

fla,ella™ — =z <6) = f(a, elz) = f(a, elp(z),x),
where p(x) denotes the price which minimizes the bivariate entropy (2.3.11) over
the price variable:

1(p(@), ) = min I(p,) = min(~nlog A(p. ) + nf(p.) - ).

see [29).

PART II: EXACT RESULTS

4 Theorems of Large Deviations

4.1 The second law of thermodynamics as a theorem of
large deviations

Let 8 > 0 be an arbitrary fixed inverse temperature.

Recall from Section 3.1 that the energy U = {U(w);w € Q} of a thermody-
namic system can be regarded as a random variable on the ensemble 2 under
the canonical law P(dw|B) (Section 3.1 ). Also recall that then the internal
energy F(f) equals the expectation of U.
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Suppose that the energy satisfies the (weak) law of large numbers under the
canonical probability law P(dw|3); namely,

lim P(n~'|U — E(B)| < ¢|B) =1 for all € > 0. (4.1.1)

Under this hypothesis the thermodynamic second law can be formulated as
a theorem of large deviations concerning the energy.

To this end, let § > 0 be an arbitrary fixed constant. Then one can prove
that

|log Vol(|[U — E(B)| < nd) — (log A(B) + BE(B))| < nd eventually.  (4.1.2)

(The phrase "eventually" means the same as "for all sufficiently big n".) Clearly
this implies also the following:

lim lim sup In"Hlog Vol(|JU — E(B)| < nd) — (log A(B) + BE(B))]| = 0. (4.1.3)
The (integral form of the) thermodynamic second law (2.1.8) is obtained from
(4.1.3) at the ideal limit n = 0o, § = 0.

In order to prove (4.1.2) note first that, due to the hypothesis (4.1.1),

]
v = log P(JU — E(B)| < ;—ﬂ) —0asn — oo.
On the other hand, in view of the definition (3.1.1) of the canonical probability

law, we can also write

= log / e PU@ dw —log A(B). (4.1.4)
{lU-E®)|<3518}
Since clearly,
log [ ey —logVal(U - E(B)] < 55) + BEO)| < 5

{(IlU-EB)|<55

(4.1.5)
we obtain by combining (4.1.4) and (4.1.5) :
[log V(U ~ E(9)] < 32) ~ (g A(8) + BEE)] < 3 + 0,
from which (4.1.3) clearly follows.
Example: The ideal gas
The energies u; = ‘21‘ of the particles of the ideal gas are i.i.d. random vari-

ables under the canonical laws. Therefore, due to the classical LLN concerning
iid. random variables, the hypothesis (4.1.1) for the TLD is automatically
satisfied:

3
lim P(jn~'U — ﬁ' < §|B) =1for all § > 0.

(Recall from (2.1.11) and (2.1.12) the formula for the internal energy.)
In view of the formula (2.1.13) for the entropy of the ideal gas, the TLD
(4.1.2) obtains the form

lim lim |n~!log Vol(|n~ 1U——| <0)+ 5 10g5—§10g27rem| < né eventually.

d—0n—oo
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4.2 Characterization of possible equilibrium prices

In order to be able to formulate the economic second law as a theorem of large
deviations we need the following characterization of possible equilibrium prices.
We say that a random variable X € R! is degenerate, if there is a lower
dimensional affine hyperplane H ¢ R with I’ < [ such that P(X € H) = 1.
Otherwise we call X non-degenerate.
The support of a random variable X is defined as the minimal topologically
closed set F' such that P(X € F') = 1.

Theorem 1. Let p be an arbitrary price belonging the interior
St={peS': p>0forall j=1,..1+1}

of the price simplex S'. Suppose that the excess demand Z(p) is non-degenerate.
Then the following four conditions are equivalent:

(i) p is a possible equilibrium price;

(i) 0 belongs to the topological interior of the convex hull of the support of the
distribution of the total excess demand;

(iii) there exists a conjugate parameter a(p) € R' satisfying (2.3.5);

(iv) the price p is an expected equilibrium price under the canonical probability
law:

E(Z(p)lp) = / Z(w; p) P(dwlp) = / Z(w:p)g(wlp) P(dw) = 0.

Proof: Suppose that p is a possible equilibrium price, i.e., there exists a
strictly positive probability density function g(w;p) such that p is an expected
equilibrim price under the transformed probability law Py (dw; p)=g¢(w; p)P(dw).
Since P and P, are mutually absolutely continuous (as measures, cf. [8]: p.422),
it follows that Z(p) is non-degenerate under P,, too. Now, it is a general
fact that the expectation of a non-degenerate random variable belongs to the
topological interior of the convex hull of the support of the distribution of the
random variable. This proves (ii).

Suppose now that (ii) holds true. It is known that the derivative of the
cumulant generating function (= the logarithm of the Laplace transform) of a
random variable defines a bijection between the domain of the c.g.f. and the
interior of the convex hull of the support of the random variable ([31]: Theorem
26.5, [5]: Proposition 9.7, [23]). Thus it follows that 0 belongs to the range of
the derivative of the c.g.f. log A(a;p), i.e., a conjugate parameter a(p) € R'
exists, indeed.

That (iv) follows from (iii) was proved already in (3.2.5).

The implication (iv) = (i) is trivial.

4.3 The second law of stochastic equilibrium economics as
a theorem of large deviations

We are now able to formulate the second law as a a theorem of large deviations
concerning the random equilibrium prices.
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To this end, let p be an arbitrary possible equilibrium price belonging to the
interior S’ of the price simplex S!. We postulate three hypotheses:

(i) The random total excess demand Z(p) satisfies the (weak) law of large
numbers under the canonical probability law P(dw|p), i.e.,

lim P(jn"'Z(p)| < elp) = 1 for all £ > 0.

n—oo

(Recall from Theorem 1 that E(Z(p)|p) =0.)

(ii) The second derivative of the mean total excess demand n~'Z(q) is
bounded on some closed neighborhood U of the price p; namely, there is a
constant Ay < oo such that

In"1Z"(q)| < Ay for q€U.

(iii) The derivative (matrix) Z'(p) € R'*! is invertible, and moreover, the
inverse of the derivative of the mean total excess demand is bounded; namely,
there is a constant A_; < oo such that

InZ'(p)~'| < A_;.

Theorem 2. Under the stated hypotheses, for any § > 0,
|Z(3p* : |p* — p| < d]) — log A(p)| < €(0)n eventually,
where £(6) —» 0 as 6 — 0.
Remark. Clearly, the statement of Theorem 1 implies that

;im limsup [n~'Z(3p* : [p* — p| < §) +log A(p)]| = 0.

n—oo

Proof of Theorem 2. The first half of the proof is analogous to the proof of
the thermodynamic TLD, cf. Section 4.1.
First note that, due to the hypothesis (i),

Yo = log P(|Z(p)| < nelp) — 0 as n — oo.

On the other hand, in view of the definition (3.2.4) of the canonical macroeco-
nomic probability law we can also write

Yn = log / e Z@iP) P(dw) — log A(p). (4.3.1)
{IZ(p)I<ne}
Since clearly,
Ilog / 20 P(d) — log P(IZ(p)] < ne)| < |alne,  (4.3.2)
{1Z(p)I<ne}

we obtain by combining (4.3.1) and (4.3.2):

[log P(|n™"Z(p)| < €) —log A(p)| < |alne + 7. (4.3.3)
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Now, it can be proved by using the standard mean value theorem and a
special inverse function theorem (see [27]: Lemma 2.5) that the hypotheses (ii)
and (iii) imply that the mean total excess demand n~!Z(p) is in a neighborhood
of 0 if and only there is a random equilibrium price in a neighborhood of p, see
[27]: the proof of Theorem 2.2. Therefore it is possible to deduce from (4.3.3)
that

[log P(3p* : |p* — p| < d]) — log A(p)| < €(d)n eventually,

where €(6) — 0 as § — 0. This proves the assertion the TLD.
Remarks:

(i) Hypothesis (i) is the analog of hypothesis (4.1.1) for the thermodynamic
TLD.

(ii) In terms of probabilities the statement of the TLD can be written as:
A(p)e ™) < P(3p* : |p* — p| < 8) < A(p)e™®) eventually.
If only the right hand inequality holds true, viz.
P(3p* : |p* —p| < 68) < A(p)e™® eventually,

then the LD upper bound is said to hold true at p. The LD upper bound alone im-
plies the law of large numbers for the random equilibrium prices ([27]:Theorem
3.5).

(iii) For an alternative weaker hypothesis for hypothesis (iii), see [16]) .

(iv) According to the TLD concerning partial observations, under appropri-
ate regularity conditions, we have
lim n~|Z(3p* € B) +log A(p};)| = 0,
n—oo
where B C S is convex and pp denotes the entropy-minimizing price in B, cf.

[27]: Theorem 3.4. The principle of minimum entropy for partial observations
(cf. Remark 2.3(iii)) is obtained from this at the ideal limit n = co.

4.4 The theorem of large deviations for ideal random economies

The following corollary of Theorem 1 gives sufficient conditions for a price p to
be a possible equilibrium price in an ideal random economy.
Let © denote the set of parameter values at which the microeconomic p.d.f.
is strictly positive:
©={0cR™ f(0) >0}

Its topological closure © equals the support of the economic characteristics 6; of
the economic agents, cf. Section 4.2.

Corollary 1. Let p be an arbitrary price belonging to the interior St of the
price simplex. Suppose that

(i) the economic characteristics 6; are bounded random variables with dimension
m =1

(i) the microeconomic p.d.f. f(6) is continuous on its support ©;
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(iii) the derivative % of the structure function is continuous on © x S%; and

(iv) there exists a parameter § = 0(p) € © such that z(6(p);p) = 0 and the
matrix % € R™*! has full rank (=1) at 0 = 0(p).

Then p is a possible equilibrium price.

Proof. Due to the hypotheses (i) and (ii), the support © is compact, and ©
is its (relatively) open subset.

Due to the hypotheses (iii) and (iv), and due to the implicit function the-
orem (see e.g. [17]), the structure function function z(#;p) is invertible in a
neighborhood of 6(p), i.e., there is a constant & > 0 such that for |z| < § there
exists 6 = (p, z) € O© such that

z(0(p, 2);p) = 2.

Moreover the inverse 0(p, z) is a continuous function of its variables p and z. Let
€ > 0 be an arbitrary positive constant. Due to the continuity of the structure
function z(0; p) (implied by the hypothesis (iii)), there is a constant n. > 0 such
that |z(0;p) — z| < € whenever |0 — 0(p, z)| < n.. In view of the hypothesis (ii)
it follows that f(0) is strictly positive in a neighborhood of 6(p, z) € ©, whence
for any |z| < 6,

P(2(05:p) — 2| < £) > P(6: — 0(p; 2)| < n.) — / £(6)d6 > 0,
{16—0(p;z)|<ne}

i.e., 0 belongs to the topological interior of the support of the distribution of
the individual excess demand (;(p) = z(6;;p). Recalling the argument used in
the proof of Theorem 1, it follows that 0 belongs to the range of the derivative
%bg AMa;p). In view of the same theorem and the relation (2.4.7), p is a
possible equilibrium price.

In the following corollary we formulate a set of sufficient conditions for the
TLD to hold true for an ideal random economy:

Corollary 2. Let p € S! be arbitrary. Suppose that the hypotheses (i)-(iv)
for Corollary 1 hold true (so that p is a possible equilibrium price).
Moreover, suppose that

2 . J— J—
(v) the derivative g ggi’p ) is continuous on © x U for some closed neighborhood

Ucs of p; and

(vi) z(0; p) is a bounded perturbation of a deterministic function z(p) (i.e., z(p)
does not depend on the parameter 6) in the following sense:

o= max|Z(0:p)7 () — 1] < 1.
9ce Op

Then the TLD holds true at the price p.

Proof. We show that the hypotheses (i)-(iii) for the general TLD (Theorem
2) hold true.

Recall that under the canonical macroeconomic probability law the economic
characteristics are i.i.d. and obey the canonical p.d.f. f(6|p). It follows that
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as their deterministic transforms the microeconomic random variables ¢;(p) =
2(0;;p) are also i.i.d.. Thus the hypothesis (i) for the general TLD follows
directly from the LLN for i.i.d. random variables.

2 .
Due to the hypothesis (v), %ﬂ’q) is bounded by some constant Ay on the
compact set © x U. Therefore

"L 022(0;; _
2@ =13 A% D) < gnon T

2
i=1 q

Thus the hypothesis (ii) for the TLD is satisfied.
In view of the hypothesis (vi) we have

B B B n 8 B
In='Z'(p)2'(p) " = I| = |n 1Z(£(ﬁi;p)2'(p) L1 <p,
=1

whence ()]
_ Z'\p)
Z'(p)7t < ==,
707 < o
i.e., condition (iii) for the TLD holds true with A_; = ‘Zlfli):‘
Remarks:

(i) Condition (vi) can be considerably weakened ([16]). Namely, it suffices
to assume the the derivative p/(p) of the individual expected excess demand is
non-singular. Clearly, in the Cobb-Douglas case Det u/(p) = 0 is a polynomial
equation, and therefore p/(p) is non-singular except for a set of prices p having
Lebesgue measure zero.

(ii) Suppose that [ = 1 so that p and z(6;p) are scalars. It is natural to
assume that z’(p) < 0. In this case the hypothesis (vi) becomes

(vi") (2 -6)2'(p) < %(G;p) < 62'(p) for some § > 0.
p
Ezxample:

The following corollary of Corollary 1 gives sufficient conditions for a price
p € S' to be a possible equilibrium price in an ideal CD economy:
Let
O = {0=(a,e) €S x R*: f(a,e) >0}

Corollary 3. Suppose that
(i) the initial endowments e; are bounded;
(ii) the microeconomic p.d.f. f(a,e) is continuous on the support ©; and

(iii) the microeconomic p.d.f. f(a,e) is strictly positive at a = p, e = 1, (i.e.,
0(p) = (p,1) € ©).
Then p is a possible equilibrium price.

Proof. We verify the hypotheses (i)-(iv) for Corollary 1:
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For an ideal random CD economy, the dimension m of the economic char-
acteristics § = (a,e) is 21 + 1, which is > [ as required for Corollary 1. Since
the share parameters belong to the (bounded) simplex S', it follows that the
economic characteristics 8; = (a;, ¢;) are bounded as required.

Clearly, the structure function (2.4.9) of a CD agent is infinitely many times
differentiable w.r.t. its variables a € S, e € R and p € S'. Thus the
hypothesis (iii) for Corollary 1 is automatically satisfied.

A direct calculation shows that

2(0(p);p) = 2(p, 1;p) = 0.
Moreover, as is easy to see, already the derivative

9z(a, e;p) (I+1)x1
—a €ER )

has the (full) rank (= I) at 8(p) = (p,1). Thus also the hypothesis (iv) for
Corollary 1 holds true.

In the following corollary we formulate a set of sufficient conditions for the
TLD to hold true for an ideal random CD economy:
For simplicity we assume that [ = 1.

Corollary 4. Suppose that [ = 1 and that the hypotheses (i)-(iii) for
Corollary 3 hold true. In addition, suppose that

(iv) the initial endowment of the commodity 2 is bounded away from zero and
bounded from above, and that the share parameter of commodity 1 is bounded
away from zero, i.e., €2 < e? < €2, and a! < a! for some constants e? > 0, €2 <
00, a* > 0. Then the TLD holds true.

Proof:

We check that the conditions (i)-(v) and (vi’) for Corollary 2 are satisfied.
The conditions (i)-(iv) for Corollary 2 were verified already in the proof of
Corollary 3. Condition (v) follows from the smoothness of the structure function
of a CD agent in the interior of the price simplex, cf. the proof of Corollary 3.
In order to see that condition (vi’) is satisfied note first that

0z -2 1 2
—(a,e;p) = —p “a-e”.
8p( p)=-p

Let z(p) denote the individual excess demand by a deterministic CD agent

having parameters a = (3, 1), e = (1,2¢*) so that

1-p_,
z(p) = e —
p

3

N =

and,
/(p) = —p~ e

Now, a straightforward calculation shows that condition (vi’) is true with

a'e?
[3
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5 Conditional Laws of Large Numbers

5.1 Thermodynamic Gibbs conditioning principle as a con-
ditional law of large numbers

Let B8 > 0 be a fixed inverse temperature.

Recall that the measurement of the inverse temperature at § means that the
particle configuration w belongs to the energy shell {|U — E(3)| < A}, where
E(B) denotes the internal energy at 3, and A denotes the thickness of the energy
shell. In the exact formulation of the conditional LLN A = nd, where n is the
total number of the particles and § — 0.

A variable X = {X(w);w € Q} which depends on the particle configuration
w € Q will be called a thermodynamic variable. Such a variable can be regarded
as a random variable under the canonical probability laws P(dw|3), 8 > 0.

As a mathematical theorem thermodynamic Gibbs conditioning principle is
a conditional law of large numbers concerning thermodynamic variables.

We will call a thermodynamic variable X regular (at (), if the (weak) law
of large numbers holds true for X under the canonical probability law P(dw|3)
with geometric rate, i.e., for all € > 0 there exists a constant n = n(e; 3) > 0
such that

P(n7'|X — E(X|B)| < ¢|B)) > 1 — e~ eventually. (5.1.1)

According to the conditional LLN, conditionally on the measurement of the
inverse temperature at 3, regular thermodynamic variables are centered at their
canonical means; namely, the proportion of the total volume of those particle
configutarions w in the energy shell {|{U— E(5)| < A} where the thermodynamic
variable X (w) is near to its canonical expectation E(X|/3) is near to 1.

In exact terms, the conditional LLN is as follows:

Suppose that the statement (4.1.3) of the thermodynamic TLD holds true
at 3, i.e.,

im lim sup |n ! [log Vol(|JU — E(B)| < nd) — (log A(B) + BE(B))]| = 0. (5.1.2)

1
=0 nooo

Let X be an arbitrary regular thermodynamic variable and let € > 0 be an
arbitrary constant. Then for all sufficiently small § > 0,

lim YOUIX — E(X|f)] < ne, |U — E(B)| < nd)

n—oc Vol([U — E(B)] < nd) =t (5:1.3)

In order to prove this, note first that by inversing the defining formula (3.1.1)
of the canonical probability law, we can express the volume of any (Borel) subset
A C Q with the aid of the canonical probability law:

Vol(A) = /A dw = A(B) /A PV P(dw|f).
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Let € > 0 be an arbitary constant, and let n = n(e; 3) be such that (5.1.1)
holds true. Moreover, let 0 < § < % be arbitrary. We can now write

VOl(|X — E(X|8)| > ne, | U— E(B)| < nd)
A(B) / PV P(dw|6)

{IX-E(X|B8)|zne, |U-E(B)|<nd}
A(B)ePFOHmP (X — B(X|B)| = nel|B)
A(B)ePEB+BM =1 oyentually, by (5.1.1),

A(B)ePEPe="2 because § < %

VANVAN VA

Now, according to the hypothesis (5.1.2) :
Vol(|U — E(3)| < nd) > A(B)e’PPe="3 eventually,
if § is sufficiently small. Therefore, for sufficiently small § we have eventually

Vol(|X — E(X|B)| = ne, |U — E(B)] < nd) - A(ﬁ)eﬁE(ﬁ)e_"% ey

Vol(|U — BE(B)| < nd) A(B)ePE@ a3

This proves that (5.1.3) holds true (the convergence having geometric rate).

Ezxample: The ideal gas

Recall that the TLD is true for the ideal gas (Section 4.1). Therefore the
conditional LLN holds true automatically for any regular thermodynamic vari-
able.

There is a natural class of regular thermodynamical variables for the ideal
gas:

To this end, let A C R? be an arbitrary (Borel-measurable) subset of R?, and
let x4(0)=1 or 0, according as 8 € A or § € A¢, denote the indicator function
of A.

Recall that under the canonical probability law the momenta 6; of the par-
ticles are i.i.d. random variables. Therefore their (deterministic) transforms
xA(0;) form also an i.i.d. sequence.

Let us define the thermodynamic variable N4 as the number of particles 4
having momentum 6; € A :

Naw) = " xa (0

Now it follows that V4 is automatically regular. This is due to a general result,
according to which for bounded i.i.d. random variables the convergence in the
LLN is always geometric (see e.g. [14]: Section 2.3). Clearly

E(N4|8) = nP(6; € A|p) = n / 1(019).
A

where f(0]5) denotes the Gaussian canonical p.d.f. given by the formula (3.1.4).
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Let fig=n"'N4 denote the proportion of particles i having momentum 6;.
It follows that the conditional LLN for the variable N4 obtains the form

Vol(|fia —f{f@lﬁ)l <&, |U —ne(B)| <nd)
L Vol(|U — ne(B)| < nd) =1

(5.1.4)

where e(f) = % denotes the internal energy of a single particle (see (2.1.12))
and € and ¢ are small in the same sense as in (5.1.3). Thus, at the ideal limit
¢ = 0, in accordance with Gibbs conditioning principle, at a measured inverse
temperature, for "most" particle configurations, the proportion of particles with
momentum in A equals the canonical probability of A.

In the standard terminology of probability and statistics, the proportions
na, A C R3, form the empirical probability distribution of the momenta 6;.
The result (5.1.4) of the conditional LLN means that at the thermodynamical
limit n — oo the empirical probability distribution n converges to the canonical
probability distribution associated with the measured inverse temperature.

5.2 The economic Gibbs conditioning principle as a con-
ditional law of large numbers

As a mathematical theorem the economic Gibbs conditioning principle is a con-
ditional law of large numbers concerning macroeconomic random variables.

Let p € S! be a fixed possible equilibrium price (see Definition 2 in Section
3.2). We postulate three hypotheses (i)-(iii):

(i) The statement of the theorem of large deviations holds true at p, i.e.,

;im limsup [n~Z(3p* : [p* — p| < §) +log A(p)]| =0,

n—oo

cf. Theorem 2.

Let X (p) = {X(w;p);w € Q} be a macroeconomic random variable, viz. a
random variable which depends on the price p. We will call it regular (at the
price p) if the following condition is satisfied (cf. (5.1.1)):

(ii) The law of large numbers holds true for X (p) under the canonical probability
law P(dw|p) with geometric rate: for all € > 0 there exists a constant n =
n(e;p) > 0 such that

P(n Y X(p) — E(X(p)|p)| < €|p)) > 1 — e~ eventually; and

Moreover, we assume the following:

(iii) The derivatives of the mean total excess demand and of the mean of the
macroeconomic variable are bounded on some closed neighborhood U of the
price p; namely, there is a constant A < oo such that

In"'Z'(q)] < Aon U and |n ' X'(q)] < Aon U.

Let X* = X (p*) denote the wvalue of the macroeconomic random variable
X (p) at the equilibrium.
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According to the conditional LLN, conditionally on the observation of a
random equilibrium price at the price p, regular macroeconomic random vari-
ables are centered at values at which they would be centered if they obeyed the
canonical probability law associated with the observed equilibrium:

Theorem 3. Under the hypotheses (i)-(iii), for any fixed ¢ > 0, all suffi-
ciently small § > 0:

lim P(n ' X* — E(X*|p)| <el3p* : |p* —p| <6) =1.

n—oo

Proof. By inversing the defining formula (3.2.4) of the canonical probability
law we can express the apriori macroeconomic probability law with the aid of
the canonical probability law:

P(dw) = A(p)e P Z(«P) P(dy|p).

Let € and v > 0 be arbitary constants. (v will be fixed soon.) We can now
write

P(n~'X(p) — EXp)p)=e ntZ(p) <)
A(p) efa(p)-Z(w;p)p(de)

{n=tHX(p)—-E(X(p)lp)|=e, n='Z(p)|<7}

< AP P(n X (p) — BE(X(p)Ip)| > <[p)
< A(p)e"‘o‘(p)he*m’ eventually, by (iii),
_nn . n
= A(p)e "7 if we choose vy = . 5.2.1
) 2a(p) 021

Now, due to the hypothesis (iii) and the standard mean value theorem we can
conclude that, if 6 > 0 is sufficiently small, then the event Jp* : [p* — p| < §
implies the event

In'Z(p)| < 7.

Therefore, for sufficiently small § we have also
P(n~'|X(p) — E(X(p)|p)| =&, " : |p* —p| < 8) < A(p)e "2 eventually.
Now, according to the hypothesis (i):
P(3p* : |p* —p| < 8) > A(p)e ™% eventually.
Therefore, for sufficiently small § we have eventually

P(n ' X(p) — E(X(p)lp)|=>el Ip*:|p" —pl <)
P(n~'X(p) — E(X(p)lp)| > e, Ip* : [p* —p| < )
P3p* : [p* —p| <9)

= "8, (5.2.2)

39



In order to complete the proof note first that, due to (iii) and the mean value
theorem, if |p* — p| < §, then

"I X(p*) —n T X (p)| < Ad.
Therefore, if § < & is sufficently small, then
P(n~ [ X*=E(X*|p)| > 32| 3p* : [p*—p| < 8) < P(n | X (p)—E(X(p)|p)| > €| Ip* : [p*—p| < 9),
which — 0 as n — oo as proved above.

Remarks:
(i) For a sufficient condition for hypothesis (ii) c¢f. Lemma 4.2 in [27].

(i) Note that if X (w;p) = X (w) is a macroeconomic random variable, which
does not depend on the price, then hypothesis (iii) is trivially true for it. In this
case the conditional LLN obtains the form

lim P(n Y X — E(X|p)| <e|3p* : |p* —p| <6) =1.

n—oo

5.3 The conditional law of large numbers for ideal random
economies

Consider an ideal random economy as described in Section 2.4. A random
variable &;(p) = x(0;;p) which depends via a deterministic structure function
z(0;p) on the economic characteristics 8; and on the price p will be called a
microeconomic random variable (associated with the agent 7). Examples are,
e.g., the agent’s individual demand, supply, production or type (cf. the example
below). Recall that statistical indepedence is preserved under deterministic
transformations. Therefore the microeconomic r.v.’s & (p) are i.i.d., too.

Let us define the macroeconomic random variable X (p) as the sum

and let £(p)=n"'X(p) denote its mean.

Let X*=X(p*) and &r=¢ (p*) denote the value and the mean, respectively,
of the macroeconomic random value X (p) at the equilibrium.

Clearly

B(X*|p) = nEE@)p) = n / £(6:p") £ (8]p)do.

The conditional LLN of Theorem 3 obtains now the following form:

Corollary 1. Suppose that conditions (i) and (ii) for Corollary 1 in Section
4.4 hold true. In addition, suppose that

(iii) the TLD holds true at the price p (cf. Corollary 2 in Section 4.4); and

are continuous on © x U for some closed

(iv) the derivatives azéO;q) and 630{()9;(1)
q q

neighborhood U C S' of p.

40



Then

lim P(Jé* — / 2(6;p°) f (Olp)db) < e|3p" < [p* —pl <) = 1.

n—oo

Proof. We show that the hypotheses (i)-(iii) for Theorem 3 hold true.

Recall that under the hypotheses (i) and (ii) for Corollary 1 in Section 4.4,
the economic characteristics are bounded and their support © is compact. In
view of hypothesis (iv) the structure function x(6; p) of the microeconomic r.v.’s
&(p) is continuous on © rendering &(p), i = 1,2,... bounded. Also recall that
under the canonical macroeconomic probability law the economic characteristics
are i.i.d. and obey the canonical p.d.f. f(]|p). The hypothesis (ii) for Theorem
3 now follows from a general result, according to which the convergence in the
LLN for bounded i.i.d. random variables is always geometric.

Due to the hypothesis (iv), %Zm and %Zm are bounded on the compact

set © x U. Therefore also

|nflzl 71282 i;d

and

n1X(q)] = |n _1Z<9x01,q

are bounded by the same constant on U. Thus the hypothesis (iii) for Theorem
3 is satisfied.

Ezamples:

(i) Consider the survival model of Example 3.2(ii), and let us define the mi-
croeconomic random variable §; (p)=X {p.c, <w(p)} as the indicator of non-survival.

Let us define the macroeconomic variable N (p) as the number of non-surviving
agents ¢ at the price p:

N(p) = Zx{p'ei<w(p)}
=1

~1N(p) denote the proportion of nonsurviving agents at the price

and let 7i(p)=n
p.

The proportion 7(p)=n"1N(p) can be interpreted as the empirical probabil-
ity of non-survival at the the price p. As a sum of i.i.d. random variables the
macroeconomic variable N(p) is automatically regular.

Let N*=N(p*) and A*=n(p*) denote the equilibrium values of N(p) and
7(p), respectively. Clearly

E(N*[p) = nP(p" - e; < w(p)lp) = n / F(0lp)do
{p*-ei<w(p*)}

It follows that the conditional LLN for the variable N4 obtains the form

n—oo

lim P(|a" — / FOp)d6] < e[3p : |p — p| < 8) = 1.

{p*-ei<w(p*)}
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This means that, conditionally on the observation of an equilibrium, the
empirical probability of non-survival converges to its canonical probability.

Thus, at the ideal limit € = 0, in accordance with Gibbs conditioning princi-
ple, at an observed equilibrium price, for "most" macroeconomic configurations
w, the proportion of non-surviving agents equals the canonical probability of
non-survival.

The conditional LLN implies also the convergence of the whole empirical
probability distribution of the economic characteristics (cf. the ideal gas as the
analogy, Section 5.1).

To this end, let A C © be an arbitrary (Borel) subset of the support © C R™
of the microeconomic p.d.f. f(6), and let x4(60) denote the indicator function
of A.

Let us define the macroeconomic variable N 4 as the number of agents i with
characteristics 6; € A :

As a sum of i.i.d. bounded random variables the macroeconomic variable
N, is automatically regular. Clearly

E(Nalp) = nP(6; € Alp) = n / £(61p)db.
A

Let 7 y=n"' N, denote the proportion of agents i with characteristics 6; € A.
The proportions n4, A C O, form the empirical probability distribution of the
economic characteristics 6;.

According to the conditional LLN, the empirical probability distribution
converges to the canonical probability distribution associated with the observed
equilibrium:

Jim Pl — [ f6lp)d6] < <"l —pl < 8) = 1.
A

cf. (5.1.4). Thus, at the ideal limit ¢ = 0, in accordance with Gibbs condi-
tioning principle, at an observed equilibrium price, for "most" macroeconomic
configurations w, the proportion of agents having their economic characteristics
in A equals the canonical probability of A.
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