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Abstract

Bonus-Malus systems depending both on the number and on the severity of
claims are dealt with (cf. Bonsdorff, 2005). We consider the existence and unique-
ness of an optimal BMS satisfying a monotonicity condition, guaranteeing that the
premiums do not increase after a claims-free year. Existence is considered under
several optimality criteria, analogous to those in the classic Bonus-Malus systems.
Focusing on one of these criteria, we show that under a general condition the
optimal solution is essentially unique. An algorithm for determining the optimal
solution is presented. As a special case the results are obtained also for the classic
case.
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1. Introduction

The aim of this paper is to consider optimal Bonus-Malus systems (BMS),
where the premiums depend, besides on the number of the claims, also on the
severity of the claims. When studying the optimality, we restrict ourselves to
the situation where the premiums are monotone with respect to the bonus classes
(called bonus coefficients here) in order to exclude the possibility that after a
claims-free year the premium increases. The existence of such premiums will be
shown, under general conditions, with respect to criteria which are analogous
to common criteria in the classic case. Concentrating on one of these criteria,
we consider the uniqueness of the optimal solution and the calculation of the
solution. We will show that under certain natural conditions the optimal solution
is essentially unique. We also present an algorithm for the calculation of the
solution. As a special case we get, as corollaries, corresponding results for the
classic case.

By the classic case we mean a BMS with a finite number K of bonus classes,
the transitions depending on the number of claims of the previous year. The
claims number process of an individual policy is assumed to be Poisson(λ). Under
assumption that the BMS has a superbonus class the Markov chain of the transi-
tions between the bonus classes possesses a unique invariant probability distribu-
tion (πi), i = 1, . . . , K, to which the n’th step transition probabilities converge.
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Assuming that the parameter λ obeys a probability distribution in the insurer’s
portfolio, the optimality of the premiums can be considered.

Norberg (1976) considers the optimality criterion

(1.1)

∫

(

K
∑

i=1

(yi − λ)2πi(λ)
)

dU(λ) = min(y1, . . . , yK),

where yi, i = 1, . . . , K are the premiums of a policy in class i, (πi(λ)), i = 1, . . . , K
is the invariant probability distribution associated to the parameter λ and U(λ) is
the probability distribution of the parameters λ in the portfolio. Norberg (1976)
solves the optimal solution (y1, . . . , yK) under condition (1.1.) In a pioneering
paper, Pesonen (1962) considered the optimality problem attaining the solution in
a special case.

Also other criteria are used in the classic case. Verico (2002) suggests the
criterion

(1.2)

∫
( K

∑

i=1

(yiπi(λ) − λ

)2

dU(λ) = min(y1, . . . , yK).

Instead of the quadratic deviation in (1.1) and (1.2), also absolute deviation is
used, see, e.g., Heras et al. (2004). Borgan et al. (1981) used a criterion which
takes into account the state of the BMS after a finite time from the starting point.
For other criteria, see Lemaire (1995).

Gilde and Sundt (1989) show that in a Bonus-Malus system previously used
in Norway, the optimal solution of premiums is such that in certain situations the
premium increases after a claims-free year. The Norwegian system was constructed
in a ”natural way”, especially so that after a claims-free year there occurs a transi-
tion to a ”bigger” (better) class and after at least one claim to a ”smaller” (worse)
class. However, when moving after a claims-free year from class 3 to class 4, the
premium increases in the optimal bonus scale. See Gilde and Sundt (1989), Fig. 1.
As Gilde and Sundt (1989) notice this kind of bonus scale can not be accepted by
the policyholders. In order to avoid the described phenomenon, they restricted the
admissible solutions to the case where the premiums increase linearly with respect
to the number of the classes.

In a BMS planned in a ”natural way”, the increase of the premiums after a
claims-free year can be eliminated by restricting the admissible solutions to those
which are non-decreasing with respect to the number of the classes, i.e., requiring
that the premiums y1, . . . , yK satisfy

(1.3) y1 ≤ y2 ≤ . . . ≤ yK .

(In this paper we use the order of classes opposite to that of Gilde and Sundt,
1989.) Of course, condition (1.3) is a milder restriction than that of Gilde and
Sundt (1989). Baione et al. (2002) and Heras et al. (2004) consider optimality
under condition (1.3). Heras et al. (2004) present how linear programming can be
used to solve the optimality for a criterion based on absolute deviation.
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In this paper we consider optimal premiums in the case where the transitions
depend both on the number and on the severity of the claims, and where the set
of bonus classes, called bonus coefficients here, is an interval [a, b], 0 < a < 1 < b,
say a = 0.3, b = 1.5, where 1 presents the premium before bonus or malus. See
Bonsdorff (2005) for a general background for this paper.

In the following we sketch some ideas how a BMS of this type can be con-
structed. The endpoints a and b of the interval could be chosen so that they are
suitable for a competitive market. When constructing the transition rules, the
designer has an initial thought how a claims/a non-claims year ought to influence
the premiums. On this basis the designer defines the transition rules on [a, b]. Of
course, the transition rules ought to be constructed in a logical way. The minimum
requirement is that

(1.4) after a claims-free year the transition is to the left.

These transition rules define the BMS with initial premiums. Alternative
premiums f(x), x ∈ [a, b], can be achieved via a function f : [a, b] → [a, b]. If f is
non-decreasing, it is impossible that after a claims-free year the premium increases
when condition (1.4) is satisfied.

Given a BMS with transition rules, the optimality of the premiums f(x),
x ∈ [a, b], is studied throughout this paper with the restriction that f is a non-
decreasing function on [a, b].

Note that as in the classic case, also in this case, the optimality is studied
with respect to given transition rules (which in this case can be interpreted to
induce initial premiums as mentioned above).

The claims process of a single policy is assumed to be compound Poisson.
Under general conditions the transitions between bonus coefficients establish a
general (homogeneous) Markov chain with state space [a, b], see Bonsdorff (2005).
For a general reference to Markov chains, the reader is referred to Nummelin
(1984). The compound Poisson process of a single policy is determined by the
parameter u = (v, λ), characteristic of the policy where v is the parameter of
the distribution of the severity of an individual claim and λ the parameter of the
Poisson process. The criterion (1.2) has in this case the form

min

∫

(

∫

fdπu − Eu

)2

dU(u),(1.5)

f non-decreasing

where πu is the invariant probability measure associated to the parameter u, Eu

the corresponding expected value of the yearly claims amount and U the distribu-
tion of the parameter u in the insurer’s portfolio. Correspondingly, the criterion
(1.1) has the form

min

∫

(

∫

(f − Eu)2dπu

)

dU(u).(1.6)

f non–decreasing
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We will show the existence of an optimal solution of (1.5) and that of (1.6)
under general conditions. We also prove the existence with respect to some other
optimality criteria. As a corollary we get corresponding results also for the classical
case. In each case we call the optimal solution optimal premiums scale with respect
to the optimality criterion in question.

In practice there might be a need to require also other properties concern-
ing the premiums than monotonicity. This means that the admissible optimal
premium scale is determined by a criterion with additional requirements besides
monotonicity. We will show how the existence of an optimal solution with respect
to additional requirements can be proven in certain cases.

We consider the uniqueness of the optimal premium scale under criterion (1.6)
by means of convex optimization. It turns out that under general conditions an
essential uniqueness can be reached.

We will also develop an algorithm for the evaluation of the optimal premium
scale under criterion (1.6). The treatment is based on direct methods in the
calculus of variations and convex optimization.

In Section 2 we present the basic assumptions which will be valid for the rest
of the paper.

In Section 3 we show that an optimal solution exists under several optimality
criteria. The proofs are based on the Tihonov theorem, which we recall in Section
3.

In Section 4 we consider, under criterion (1.6), uniqueness and in Section 5
determining of the optimal premium scale.

The main results are formulated under regularity conditions concerning the
invariant probability measures πu. In Section 6 we show that these conditions are
valid when certain natural conditions are fulfilled.

In the Appendix we give a reduced example in the classic case, where the
optimal solution of (1.1) is not monotone, and show how the optimal solution
under the monotonicity requirement can be found.

2. Basic assumptions

In this Section we present the basic assumptions which are supposed to be valid
throughout this paper and will not be repeated later.

We denote the σ-algebra of Borel sets in Rn by B and the restriction of the
Lebesgue measure to B by l. The measurability of functions on Rn means mea-
surability with respect to B. Correspondingly, we say that a probability measure
µ on [a, b] is absolutely continuous, if it is absolutely continuous with respect to l,
i.e. if l = 0, then µ = 0. For a measurable function f and a probability measure v
we often write vf instead of

∫

fdv.
Basic assumptions for the Bonus-Malus system and for the claims

process of an individual policy: Let the number of claims be a Poisson pro-
cess with intensity λ and let the claims be i.i.d. and independent of the claims
number process, i.e. the claims process is compound Poisson. The set of the bonus
coefficients is [a, b], 0 < a < b.
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The transitions from a bonus coefficient to another are determined as follows:

Xo is the initial coefficient,

(2.1)

Xn = gk(Xn−1, Yn−1), n = 1, 2, . . .

where Xn is the bonus coefficient in year n, Yn−1 the total amount of claims in year
n− 1, k the number of claims in year n− 1, k = 0, 1, 2, . . . and gk are measurable
functions from [a, b] × R+ (g0 from [a, b] × {0}) to [a, b], where R+ denotes the
positive real axis. According to (1.4) it will be assumed that g0(Xn−1, 0) < Xn−1,
when a < Xn−1 and g0(a, 0) = a.

Further we assume that there exists a number n0 such that starting from any
x ∈ [a, b], after n ≥ n0 claims-free years the policy is in the coefficient a. We call
a the superbonus coefficient and the last-mentioned assumption the superbonus
assumption.

It follows from the assumptions above that the sequence (Xn) is a Markov
chain with transition probability kernel

(2.2) P (x,A) =

∞
∑

k=0

pk

∫

Bk

µk(dy),

where P (x,A) is the probability that the chain transfers from the bonus coefficient
x to the Borel set A in one step, Bk = {y | gk(x, y) ∈ A}, pk is the probability of
k claims and µk are the conditional probability distributions of the total amount
of the claims in one year given k claims. It follows from Theorem 3.1 of Bonsdorff
(2005) that the Markov chain (Xn) has a unique invariant probability measure
π and that the n-step transition probabilities Pn(x,A) converge to π(A) for all
x ∈ [a, b] and all Borel sets A ⊂ [a, b]. The n-step transition probabilities are
defined as follows

Pn(x,A) =

∫

P (x, dz)Pn−1(z, A),

x ∈ [a, b], A ⊂ [a, b], A ∈ B. Note the notation typical of Markov chains where in
integrals the measure lies before the integrand.

Basic assumptions for the insurance portfolio: We assume that the size
of an individual claim of a single policy is distributed due to the distribution Fv,
where v is the policy’s characteristic parameter in a distribution family {Fv}. Let
the parameter v obey the distribution V and let the Poisson parameter be distributed
according to the distribution W . The parameter u = (v, λ) characterizes a single
policy. Let the joint distribution of V and W , i.e. the distribution of u, be U . With
each u are associated the corresponding transition probability Pu(x,A) and its limit
(invariant) probability measure πu. We assume that the functions u 7→ Pn

u (x,A)
are measurable for all x ∈ [a, b] and for all Borel sets A ⊂ [a, b].

Denote by Eu the expectation of the total amount of claims of a policy with
the parameter u. We assume that the functions u 7→ Eu are measurable and that

(2.3)

∫

E2
udu = M <∞.

5



We call the set of all parameters u the parameter space.
Finally, we assume that

with exception of a finite set H = {b = x0, . . . , xm = a, xi ∈ [a, b]},

(2.4)

the probability measures πu are absolutely continuous and that

πu(xi) > 0 for all u ∈ U and xi ∈ H.

Let us comment the last assumption. It follows from the superbonus assump-
tion that πu(a) > 0 for all u, see Bonsdorff (2005), p. 315. If the BMS has the
property that for all u,

after exceeding a certain total amount of claims a certain number no

(2.5)

of consecutive years, the policy starting from any x ∈ [a, b] is in b,

also πu(b) > 0 for all u. This can be seen similarly as πu(a) > 0 in Bonsdorff
(2005). Further, it follows from the superbonus assumption that there exists a
finite number of points

(2.6) x0 = b > x1 > x2 > . . . > xm0
= a

such that after claims-free years the policy, starting from b, transfers from xj to
xj+1, j = 0, . . . , m0 − 1 and from xm0

to xm0
. The set D = {x0, . . . , xm0

} will
be called the skeleton of the BMS. Again, we can verify that if the BMS has the
property (2.5), πu > 0 at all the skeleton points. Therefore, in a BMS designed in
a natural way, πu is positive at the skeleton points for all u.

However, later in Section 6 we will show that the probability measures πu are
absolutely continuous outside a finite set under certain natural conditions.

3. Existence of an optimal monotone premium scale

In this Section we prove the existence of an optimal monotone premium scale
under certain optimality criteria. Technically we do it so that we first prove the
result for criterion (1.5) and then attain the other results as corollaries, especially
for criterion (1.6), on which we will focus later in this paper. As a corollary, we
get the results in the classic case. We also show how the existence of an optimal
solution can be proven in certain cases with respect to additional requirements
besides monotonicity.

The proofs are based on the Tihonov theorem, which we recall in the following.
The reader is referred e.g. to Kelley (1955) for a thorough treatment of general
topology. Let (Tα,Aα) be topological spaces, where Tα is a set and Aα its topology,
α ∈ J, J being an arbitrary index set.
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The product topology D is defined for the cartesian product
∏

α∈J

Tα as follows:

D is the topology which has the base

D′ = {
∏

α∈J

Vα where Vα ∈ Aα for all α and Vα = Tα for all α

with at most a finite number of exceptions}.

Hence D consists of the unions of the sets E ⊂ D′.
The Tihonov theorem states that if every (Tα,Aα) is compact, then (

∏

α∈J

Tα,D)

is compact.
If Tα = T for all α,

∏

α∈J

Tα = T J = the set of all functions J → T . In the sequel

we consider the case where for all α, (Tα,Aα) = [a, b] equipped with the ordinary
topology (relative to [a, b]) and J = [a, b]. Hence, by the Tihonov theorem the set
of all functions [a, b] → [a, b] is compact with respect to the product topology.

LetG be the set of all functions [a, b] → [a, b] and F = {f ∈ G : f non-decreasing}.
As mentioned, we first consider criterion (1.5). Let A be the functional defined on
F as follows (cf. 1.5)

(3.1) Af =

∫

(

∫

fdπu − Eu

)2

du =

∫

(πuf − Eu)2du,

where du means integration with respect to U .
Throughout this paper by a minimum we mean absolute minimum, if not oth-

erwise stated. Accordingly, if Q is a class of functions and α is a functional defined
on Q and f ∈ Q is such that α(f) ≤ α(g) for all g ∈ Q, we say that α gets its
minimum in Q at f .

We will now prove the following fundamental existence theorem for an opti-
mal solution by showing that the class F of non-decreasing functions is compact
and the functional A is continuous with respect to D. Note that compactness
of a topological space and continuity of a function on it are somewhat opposing
properties. Roughly speaking, the less open sets in the topology, the easier/more
possible to show compactness and the more difficult/impossible to show continu-
ity. The product topology with ”small” amount of open sets has been chosen in
order to reach compactness. Also continuity can be proven but the proof is not
straightforward with respect to the product topology. Continuity will play an im-
portant role also later in this paper. Therefore, it is separately mentioned in the
following Theorem, as well as in Corollary 3.1.

Theorem 3.1: The functional A : F → R is continuous with respect to
D and gets its minimum in F , where F is the class of non-decreasing functions
[a, b] → [a, b].

Proof. We prove the assertion in the following steps:
1o F is compact
2o A is continuous in F .
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Thus the assertion follows, since a continuous real-valued function on a com-
pact set attains its minimum.
1o We show that F is compact. By the Tihonov theorem G is compact with

respect to the product topology. We will show that F is closed, and hence
compact as a closed subset of a compact set. It suffices to show that every
point of F c is an interior point. Let f ∈ F c. Then there exist x1, x2 ∈ [a, b]
such that x1 < x2, f(x1) > f(x2). Denote ε = f(x1) − f(x2). Then the
neighbourhood of f

U = {ξ ∈ G | ξ(x1) > f(x1) − ε/2, ξ(x2) < f(x2) + ε/2} ⊂ F c.

2o We now turn to the functional A. Let f ∈ F . To begin with, we show that the
integral

(3.2)

∫

(πuf − Eu)2du

exists.
First we note that the functions u 7→ (πuf −Eu)2 are measurable. The mea-

surability of the functions u 7→ Eu follows from the basic assumptions. Further,
it follows from the assumptions that the functions u 7→ πu(A) are measurable for
all A ∈ B, A ⊂ [a, b]. It is then easy to verify that the functions u 7→ πuf are
measurable.

Secondly, we notice that the integral (3.2) is finite. We get

(3.3)

∫

(πuf −Eu)2du =

∫

(πuf)2du− 2

∫

Euπufdu+

∫

E2
udu.

The first term of the right-hand side is ≤ b2, the second ≤ 0, and the third one is
finite by assumption.

Now we turn to the continuity of the functional A from F to R+, where
F is equipped with the product topology. By (3.3) it suffices to show that the
functionals

(3.4) A1f =

∫

(πuf)2du

and

(3.5) A2f =

∫

Euπufdu

are continuous. We first consider case A1.
Let f ∈ F, ε > 0. We have to show that there exists a neighbourhood U ⊂ F

of f such that |A1f − A1ξ| < ε for all ξ ∈ U . To begin with, we construct two
sequences of step functions which approximate the function f .
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For each integer n, divide the interval [a, b] into 2n subintervals by the points

(3.6) xk = a+ k
b− a

2n
, 0 ≤ k ≤ 2n.

For each n we define the functions hn, kn as follows: if x ∈ [xk, xk+1), hn(x) =
f(xk), kn(x) = f(xk+1), k = 0, . . . , 2n − 1, hn(b) = f(x2n−1), kn(b) = f(x2n) =
f(b). It follows from the monotonicity of f that

hn ≤ f ≤ kn,

(3.7)

hn ≤ hn+1, kn+1 ≤ kn

and that f has at most denumerable discontinuity points. It is easy to see that
hn → f, kn → f at all continuity points of f . Hence the convergence is almost
everywhere (a.e.) with respect to l.

In the following, to begin with, we restrict ourselves to the set Hc = [a, b]−H
where H is the finite exception set (cf. the basic assumptions). We denote the
restrictions of the probability measures πu to Hc by π∗

u. Since by assumption πu

is absolutely continuous for each u in Hc, hn ↑ f, kn ↓ f π∗

u-a.e. for each u. Thus

(3.8) π∗

uhn ↑ π∗

uf, π
∗

ukn ↓ π∗

uf

by the Lebesgue monotone convergence theorem, for all u.
We will show that

∫

π∗

uhndu ↑

∫

π∗

ufdu,

∫

π∗

ukndu ↓

∫

π∗

ufdu.

Let δ > 0 be arbitrary. By the Egoroff theorem there exists a set Eδ in the
parameter space (cf. the basic assumptions) such that U(Eδ) < δ and that the
convergences (3.8) of the sequences of measurable functions of u, (π∗

uhn) and
(π∗

ukn) are uniform in Ec
δ . Hence, there exists nδ

1 such that when n ≥ nδ
1, then for

all u ∈ Ec
δ

|π∗

uhn − π∗

uf | < δ,

whence
∫

|π∗

uhn − π∗

uf |du ≤ δ + (b− a)δ = cδ,

where c = (1 + b− a). Correspondingly, there exists nδ
2 such that when n ≥ nδ

2

∫

|π∗

ukn − π∗

uf |du ≤ cδ.

Thus, when n ≥ nδ = max(nδ
1, n

δ
2)

(3.9)

∫

π∗

ukndu−

∫

π∗

uhndu ≤ 2cδ.
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We define the neighbourhood of f, Unδ as follows: Unδ = U ′

nδ ∩ V where

U ′

nδ = {ξ ∈ F | hnδ − δ < ξ < knδ + δ at points x0, . . . , x2nδ ,(3.10)

where the condition hnδ − δ < ξ is substituted

by condition a ≤ ξ at points where hnδ − δ < a

and condition ξ < knδ + δ is substituted by

condition ξ ≤ b at points where knδ + δ > b}

and

V ={ξ ∈ F | f − δ < ξ < f + δ at points z ∈ H, where(3.11)

the conditions with respect to a and b

are adjusted similarly as in U ′

nδ}.

Clearly, Unδ is a neighbourhood of f . By definition, the inequalities

(3.12) hnδ − δ < ξ < knδ + δ

hold true for all ξ ∈ Unδ at all points x0, . . . , x2nδ . Next we will show that it
follows from the monotonicity of the functions ξ that the inequalities (3.12) hold
true for all points x ∈ [a, b]. Let x ∈ [a, b], then x ∈ [xk, xk+1] for some k. We
have ξ(xk) > hnδ (xk)− δ. If ξ(x) ≤ hnδ (xk)− δ, ξ would not be monotone. Thus
ξ(x) > hnδ (xk) − δ = hnδ (x) − δ. Similarly, ξ(x) < knδ(x) + δ.

Let now ξ ∈ Unδ . By (3.7) and (3.12) we have

(3.13) |f − ξ| ≤ knδ − hnδ + 2δ.

Hence, for all u
π∗

u|f − ξ| ≤ π∗

uknδ − π∗

uhnδ + 2δ,

whence by (3.9)

(3.14)

∫

π∗|f − ξ|du ≤

∫

π∗

uknδdu−

∫

π∗

uhnδdu+ 2δ ≤ 2(c+ 1)δ.

Thus, by (3.14) and (3.11)

∣

∣

∣

∫

πufdu−

∫

πuξdu
∣

∣

∣
≤

∫

|πuf − πuξ|du ≤

∫

πu|f − ξ|du(3.15)

=

∫

π∗

u|f − ξ|du+

∫

H

πu|f − ξ|du ≤ 2(c+ 1)δ + δ = (2c+ 3)δ

= mδ, where m denotes (2c+ 3).
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By (3.15) we get

∣

∣

∣

∫

(πuf)2du−

∫

(πuξ)
2du

∣

∣

∣
≤

∫

(πuf + πuξ)|πuf − πuξ|du

≤ 2bmδ < ε, when δ is chosen to be < (2bm)−1ε.

This completes the proof of the continuity of the functional A1. Consider now the
functional A2f =

∫

Euπufdu. Let ξ ∈ Unδ . By the Schwarz’s inequality

∣

∣

∣

∫

Euπufdu−

∫

Euπuξdu
∣

∣

∣
≤

∫

Eu|πuf − πuξ|du

≤
(

∫

E2
udu

)1/2(
∫

|πuf − πuξ|
2du

)1/2

.

The first factor is M1/2 by the basic assumptions. Consider the second factor. Let
E be the set of the parameter space where |πuf−πuξ| ≥ 1. By (3.15), U(E) ≤ mδ.
Hence, by (3.15)

∫

|πuf − πuξ|
2du =

∫

E

|πuf − πuξ|
2du+

∫

Ec

|πuf − πuξ|
2du

≤ (b− a)2mδ +

∫

Ec

|πuf − πuξ|du ≤ [(b− a)2 + 1]mδ.

Hence

|A2f−A2ξ| ≤ (M [(b−a)2+1]m)1/2δ1/2 < εwhen δ is chosen to be < (M [(b−a)2+1]m)−1ε2.

This completes the proof of Theorem 3.1.

In the following we present some corollaries of Theorem 3.1 with different
optimality criteria. In Corollary 3.1 the criterion is analogous to that of (1.1),
whereas in Corollary 3.2 a criterion based on absolute deviation is used.

Corollary 3.1: The functional B : F → R (cf. 1.6)

(3.16) Bf =

∫

πu(f − Eu)2du

is continuous with respect to the product topology D and gets its minimum in F ,
where F is the class of non-decreasing functions [a, b] → [a, b].

Proof. Similarly as in the proof of Theorem 3.1, we see that the integral in
(3.16) exists. We have

Bf =

∫

πuf
2du− 2

∫

Euπufdu+

∫

E2
udu.
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At the end of the proof of Theorem 3.1 it was shown that the functional A2f =
∫

Euπufdu is continuous. It remains to show the continuity of the functional
f 7→

∫

πuf
2du.

Let ξ ∈ Unδ
. We get

∣

∣

∣

∫

πuf
2du−

∫

πuξ
2du

∣

∣

∣
≤

∫

πu(f + ξ)|f − ξ|du ≤ 2b

∫

πu|f − ξ|du.

Hence the assertion follows from (3.15).

Corollary 3.2: The functional Cf =
∫

|πuf −Eu|du gets its minimum in F .
The result holds true with the weaker assumption

∫

Eudu <∞ than (2.3).

Proof. Note that
∫

|πuf − Eu|du is the distance ρ of πuf and Eu in the
L1-metric. By the triangle inequality we get

Cf − Cξ = ρ(πuf, Eu) − ρ(πuξ, Eu) ≤ ρ(πuf, πuξ).

Similarly Cξ − Cf ≤ ρ(πuf, πuξ). Hence |Cf − Cξ| ≤
∫

|πuf − πuξ|du. The
assertion follows from (3.15).

For the rest of this paper we will mainly focus on the functional B. In practical
situations there may naturally arise a need for additional restrictions on premiums
than that of monotonicity. For example, the growth of the premium on the interval
[a, b] should be limited, cf. Heras et al. (2004). Recall that in Theorem 3.1 and in
the Corollaries above the existence of an optimal solution was proven with respect
to the set F = {f : [a, b] → [a, b] : f non-decreasing}. The additional requirement
means that instead of F , one should prove the existence of an optimal solution in
a subset F ′ of F . If F ′ is closed, it is compact since F is compact. Accordingly,
we have the following Corollary.

Corollary 3.3: Let F ′ ⊂ F be closed. Then the functional B gets its mini-
mum in F ′.

We give two examples how Corollary 3.3 can be applied.

1o We set an additional requirement which limits the growth of the premiums
on [a, b]. Let c1 and c2 be constants, c1 ≥ 0, c2 > 1. Let

F ′ =F ∩ {f : [a, b] → [a, b] : f(x2) − f(x1) ≤ c1 + c2(x2 − x1)

for all x1, x2 ∈ [a, b], x1 < x2}.

One can easily verify that F ′ is closed and thus compact.
2o In Theorem 3.1 it was not assumed that

(3.17) f(a) = a, f(b) = b.

However, the assertion of Theorem 3.1 remains true if the additional assumption
(3.17) is made, since the corresponding subset F ′ of F is closed, as one can imme-
diately verify.
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In the proof of Theorem 3.1 and its Corollaries the invariance of the proba-
bility measures πu has not been used. The only things used are that πu and U
are probability measures, the functions u 7→ πu(A) and u 7→ Eu are measurable,
∫

E2
udu < ∞ and that with exception of a finite set H ′ ⊂ [a, b] the probability

measures πu are absolutely continuous. Accordingly, we have the following Corol-
lary, where the optimality criterion is closely connected to that of Borgan et al.
(1981).

Corollary 3.4: Denote by νu the probability measures

(3.18) νu = aoπu +

n0
∑

i=1

aiP
i
u(x, ·),

where n0 ≥ 1, ai ≥ 0, i = 0, 1, . . . , n0,
n0
∑

i=0

ai = 1, the starting point x ∈ [a, b] and

P i
u are the i-step transition probabilities associated with the parameter u.

If the i-step transition probabilities P i
u(x, ·) are absolutely continuous outside

a finite exception set H ′, then Theorem 3.1 and Corollaries 3.1–3.3 hold true when
the probability measures πu are substituted by those of νu.

Proof. The measurability of the functions u 7→ νu(A) follows from the basic
assumptions for the insurance portfolio.

In Section 6 we give examples where the last-mentioned assumption of Corol-
lary 3.4 holds true.

The classical BMS is a special case of our treatment, where the single claims
are equal to 1 with probability 1 and there are only a finite number of bonus
coefficients (classes). We have the following Corollary.

Corollary 3.5: We make the following standard assumptions. The BMS has
a finite number s of bonus classes. The BMS possesses a superbonus class, say s,
i.e., starting from any class, after a sufficient number of consecutive claims-free
years, the policy is in class s. The transitions between bonus classes depend on the
class of the preceding period and on the number of claims of the preceding period
only. For each policy the number of claims is Poisson distributed with an intensity
λ, characteristic of the policy. The parameter λ is assumed to obey the probability
distribution U in the insurance portfolio, and

∫

λ2dU(λ) is assumed to be finite.
Under the assumptions above, the functional

B =

∫

(

K
∑

i=1

(yi − λ)2πi(λ)
)

dU(λ)

attains its minimum in F , where

F = {(y1, . . . , yK) ∈ RK , a ≤ y1 ≤ y2 ≤ . . . ≤ yK ≤ b}

and {π1(λ), . . . , πs(λ)} is the invariant limit distribution of the Markov chain as-
sociated with the BMS.

13



Corresponding Corollaries associated with Theorem 3.1 and Corollaries 3.2
and 3.4 hold true, as well.

Remark 3.1: As observed above, Corollary 3.5 and those associated with
it follow as special cases from earlier results of this paper. However, they can be
proven directly essentially more easily. Let us take as an example the proof of
Corollary 3.5 in the classic case. We have to show the compactness of F and the
continuity of the functional B : F → R

B(y1, . . . , yK) =

∫

(

K
∑

i=1

(yi − λ)2πi(λ)
)

dU(λ).

In this case F is trivially compact as a closed and bounded subset of RK ; thus the
Tihonov theorem is not needed. The proof of the continuity of B is straightforward
and is left to the reader.

4. Uniqueness

In this Section we consider the uniqueness of the minimum of the functional
B in F , cf. Corollary 3.1. A complete uniqueness cannot be attained, because the
value of the premium function f can be changed at single points such that the
value of B does not change. Further, if the BMS is such that there are, roughly
speaking, areas in [a, b] which the BMS does not visit, the probability measures πu

vanish on such areas. Accordingly, the premium function can be defined arbitrarily
in such areas without any effect on the value of the functional. However, if we
assume that the BMS ”sufficiently” visits ”big” sets of [a, b], we can attain an
essential uniqueness. We shall also deal with the classic case.

Our treatment is based on convex optimization. In the following we introduce
some concepts and results of convex optimization in vector space context, see, e.g.,
Luenberger (1969) for a general reference to the topic. Let L be a vector space.
A set C ⊂ L is said to be convex set if x1, x2 ∈ C implies that all points of form
αx1 + (1 − α)x2, 0 ≤ α ≤ 1 are in C. A real-valued functional J defined on a
convex set C of L is said to be convex functional if

(4.1) J(αx1 + (1 − α)x2) ≤ αJ(x1) + (1 − α)J(x2)

for all x1, x2 ∈ C and all α, 0 < α < 1. If (4.1) holds as a strict inequality
whenever x1 6= x2, J is called strictly convex. If a strictly convex functional J
attains its minimum x0 in a convex set C, i.e., J(x0) ≤ J(x) for all x ∈ C, the
minimum is unique. The well-known result above is an immediate consequence of
Proposition 2, p. 216 of Luenberger (1969), which states that if J is convex, the
set S = {x : x ∈ C, J(x) ≤ J(x0)} is convex. In fact, let J be strictly convex. If
J(x1) = J(x0) such that x1 ∈ C, x1 6= x0, we have αx1 + (1 − α)x0 ∈ S, whence
J(αx1 + (1 − α)x0) = J(x0). On the other hand, αJ(x1) + (1 − α)J(x0) = J(x0)
which contradicts the strict convexity.
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Let us define the measure σ on [a, b] as follows: In the restriction to Hc, σ = l
and σ(xi) = 1, i = 0, . . . , m when xi ∈ H, cf. (2.4). Let L be L∞([a, b], σ), briefly
L∞, i.e., the equivalence classes of bounded functions [a, b] → R where functions
in the same class differ from each other only in a σ–null set. We denote by f the
class represented by f and by F the set F = {f : f has a representant f ∈ F}. It
is easy to verify that F is convex.

If B attains its minimum in F at the function f , we say that f is a minimal
function of B in F , cf. Corollary 3.1.

Let E ∈ B. If Pn
u (x,E) > 0 for some n, we denote Lu(x,E) > 0. We will

show that if for sufficiently many u, Lu(a, E) > 0 for all l–positive sets E, we have
an essential uniqueness.

Theorem 4.1. Assume that there exists a U–positive set U ′ in the parameter
space such that for all u ∈ U ′

(4.2) Lu(a, E) > 0 for all l–positive E ∈ B, E ⊂ [a, b].

Then
(i) the minimal functions of B in F have a common set Γ of continuity points.

The corresponding set of discontinuity points Γc is at most denumerable,
(ii) if f and g are two minimal functions of B in F , then f = g in Γ ∪H, where

H is the finite exception set defined in (2.4),
(iii) there exists a unique minimal function of B in F which is right continuous in

Hc,
(iv) if a minimal function of B in F is continuous in Hc, it is the unique minimal

function.

Proof. We first show that the minimal functions f and g differ from each
other at most in an l–null set Ω ⊂ Hc. We define B in L∞ as follows Bf = Bf .
One easily verifies that B is well defined. It follows from Corollary 3.1 that B gets
a minimum in F . We will show that B is strictly convex on L∞. Consequently
the minimum of B in F is unique, since F is convex. Hence two minimal functions
can differ at most in an l–null set Ω ⊂ Hc.

Let f1, f2 ∈ F, 0 < α < 1. By a straightforward calculation we get

B(αf1 + (1 − α)f2) − (αBf1 + (1 − α)Bf2)

=

∫

πu(αf1 + (1 − α)f2 − Eu)2du− α

∫

πu(f1 −Eu)2du

− (1 − α)

∫

πu(f2 − Eu)2du = α(α− 1)

∫

πu(f1 − f2)
2du ≤ 0.

As a consequence, we get

(4.3) B(αf1+(1−α)f2)−(αBf1 +(1−α)Bf2) = α(α−1)

∫

πu(f1−f2)
2du ≤ 0
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for all f1, f2 ∈ B. Hence B (as well as B) is convex. In (4.3) equality holds if and
only if

(4.4)

∫

πu(f1 − f2)
2du = 0.

We will show that from (4.4) follows that f1 = f2, which implies the strict
convexity of B on L∞. Let now (4.4) hold true for f1, f2 ∈ F . Note first
that if f1(xi) 6= f2(xi) for some xi ∈ H, it follows from the assumption (2.4)
that

∫

πu(f1 − f2)
2du > 0. Hence (4.4) implies that f1 = f2 in H. Denote

E = {f1 6= f2}. Let us make an antithesis that l(E) > 0. Let u ∈ U ′. Then
Lu(a, E) > 0. By the superbonus assumption Lu(x, a) > 0 for all x ∈ [a, b]. Hence

(4.5) Lu(x,E) > 0 for all x ∈ [a, b].

The chain Pu is uniformly ergodic (see Bonsdorff, 2005). Hence, by Corollary,
p. 34 of Orey (1971), it follows from (4.5) that πu(E) > 0, whence πu(f1−f2)

2 > 0.
Since U ′ is U–positive,

∫

πu(f1 − f2)
2du > 0, which contradicts (4.4). Thus B is

strictly convex on F and has a unique minimum in F . Hence two minimal functions
f and g differ from each other at most in an l–null set ⊂ Hc. Consequently, f = g
in H.

We will now prove the assertion by means of the result above. Let f and g be
minimal functions. As noted above, f = g in H, especially f(a) = g(a), f(b) =
g(b). Denote the set of the continuity points of f by Γ. Since f is monotone, Γc

is at most denumerable. In order to prove (i) and (ii) it must be shown that g is
continuous at x if and only if x ∈ Γ, and that in Γ f = g.

Let x0 ∈ (a, b) be a continuity point of f . Since f and g differ from each
other at most in an l–null set, it can be chosen sequences (xn) and (yn) so that
xn ↑ x0 and yn ↓ x0 and f(xn) = g(xn), f(yn) = g(yn). Since f is continuous at
x0, lim f(xn) = lim f(yn) = f(x0). Thus

(4.6) lim g(xn) = lim g(yn) = f(x0).

Since g is monotone, it follows from (4.6) that g(x0) = f(x0). Further, from the
monotonicity of g follows that there exist lim g(x0−), lim g(x0+). It follows from
(4.6) that lim g(x0−) = lim g(x0+) = f(x0) = g(x0). Hence g is continuous at x0.
Since f(a) = g(a), f(b) = g(b), similarly as above we see that if f is continuous
at a or b, then also g is continuous at a or b, respectively. Conversely, if g is
continuous at y0, then f is continuous at y0, and f(y0) = g(y0). Thus we have
shown (i) and (ii).

Let now f be a minimal function of B in F . Since f is monotone, there
exists at each point x the right-hand side limit f(x+). Define g = f in Γ∪H and
g(x) = lim f(x+) in (Γ ∪H)c. Clearly, g ∈ F . Since the probability measures πu

are absolutely continuous in Hc, g is a minimal function of B in F and, evidently,
the unique in Hc right continuous minimal function of B in F .

The last part of the assertion is obvious.
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In Section 6 we give examples where assumption (4.2) of Theorem 4.1 holds
true, see Theorem 6.1.

We turn to the classic case. If the BMS is such that there are classes which
can not be reached from the superbonus class a, the invariant measures πλ vanish
at those classes, and the uniqueness of B cannot be attained with respect to them.
An example of such a BMS is given in Bonsdorff (1992), p. 222 where the BMS
never returns to its initial class. If the BMS does not posses such transient bonus
classes, complete uniqueness can be attained, cf. Theorem 4.2 below. If the BMS
has transient bonus classes, uniqueness can be achieved for the recurrent bonus
classes by dropping the transient bonus classes and considering the remaining
irreducible Markov chain.

Theorem 4.2. Let in the classical case for some λ > 0

(4.7) Lλ(a, i) > 0 for all i = 1, . . . , K.

Then B gets its minimum in F at a unique premium scale (y1, . . . , yK), where B
and F are defined in Corollary 3.5.

Proof. We will show that B is strictly convex in RK . Let f1 = (f1
1 , . . . , f

K
1 ),

f2 = (f1
2 , . . . , f

K
2 ) ∈ F . In order to show the strict convexity, it is sufficient to

show (c.f. 4.4) that from

(4.8)

∫

(

K
∑

i=1

(f i
1 − f i

2)
2πi(λ)

)

dU(λ) = 0

follows that

(4.9) f i
1 = f i

2 for all i = 1, . . . , K.

It is easy to see that if (4.7) holds true for some λ, it holds for all λ > 0. Using
this fact one can see similarly as in the proof of Theorem 4.1 that (4.8) implies
(4.9).

5. Numerical calculation of the optimal solution

In this Section we consider how the optimal solution for the functional B in F
can be calculated. Minimizing of B is in fact a problem of calculus of variations.
We treat the question by means of direct methods in the calculus of variations,
see, e.g., Gelfand and Fomin (1963), pp. 192–193. Throughout this Section it is
assumed that assumption (4.2) of Theorem 4.1 holds true.

We will construct a sequence of step functions ξn such that Bξn converges to
the optimal solution. For each n divide the interval [a, b] into 2nm subintervals as
follows: The partition D0 consists of the exception set H = {x0, . . . , xm} (see the
basic assumptions for the insurance portfolio). The partition Dn consists of Dn−1
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and of the midpoints of the subintervals of Dn−1. We denote the points of Dn by
a = x0, x1, . . . , x2nm = b.

For each n, we define a subset Fn of F as follows: Fn is the set of non–
decreasing step functions [a, b] → [a, b] which are constant on the intervals [xj, xj+1),
i = 0, . . . , 2nm− 1, i.e.,

Fn = {f : [a, b] → [a, b] such that f(x) = yj when(5.1)

x ∈ [xj , xj+1), j = 0, . . . , 2nm− 1, f(b) = y2nm where yj ≤ yj+1,

j = 0, . . . , 2nm− 1}.

It is easy to verify that Fn is compact for each n. Since B is continuous by
Corollary 3.1, there exists for each n a function ξn ∈ Fn such that

(5.2) Bξn ≤ Bξ for all ξ ∈ Fn.

One easily verifies that Fn is convex. Next we show that B is strictly convex in Fn.
Let f1, f2 ∈ Fn. It follows from the proof of Theorem 4.1 that (4.4) implies that
f1 = f2 in H and that f1 and f2 can differ from each other at most in an l–null
set in Hc. Evidently, this implies f1 = f2. Consequently, B is strictly convex in
Fn and the minimal function of B in Fn is unique. Hence the sequence (ξn) is
uniquely determined.

By the Helly compactness theorem, see Ewing (1985), p. 183, F is sequentially
compact in terms of pointwise convergence, i.e., each sequence of F has at least
one subsequence which converges pointwise to a function of the class F . Hence the
sequence (ξn) has a subsequence (ξnk

) which converges pointwise to limit function
ξ0 ∈ F . Pointwise convergence is equivalent to convergence with respect to the
product topology D. Since B is continuous with respect to D, we have

limBξnk
= B(lim ξnk

) = Bξ0.

The sequence (Bξn) is monotonically non-increasing because Dn+1 ⊂ Dn, whence
also (Bξn) converges, and consequently limBξn = Bξo. Thus we have

(5.3) Bξn ↓ Bξ0

and

(5.4) Bξ0 = limBξn ≤ Bξn for all n.

Theorem 5.1. Let assumption (4.2) of Theorem 4.1 be valid. Then for all
ξ ∈ F, Bξ0 ≤ Bξ, where ξ0 ∈ F is the above-defined limit function of a convergent
subsequence (ξnk

) of the uniquely determined sequence (ξn) defined in (5.2). The
sequence (Bξn) converges monotonically non–increasing to Bξ0.

Proof. By Corollary 3.1 there exists g ∈ F such that for all f ∈ F, Bg ≤ Bf .
Hence Bg ≤ Bξ0. We will show that Bξ0 ≤ Bg. For each n, we define the function
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hn on [a, b] as follows: On each interval [xj , xj+1) of the above-defined partition
Dn, j = 0, . . . , 2nm − 1, hn(x) = g(xj), hn(b) = g(b). Clearly, hn ∈ Fn. Since
H is included to every partition Dn, hn = g on H. Similarly as in the proof
of Theorem 3.1, we see that hn → g, with exception at most in a denumerable
set E ⊂ [a, b]. Clearly, E ⊂ Hc. Since πu is absolutely continuous in Hc for all
u, πu(E) = 0 for all u. Hence hn → g in Ec, where πu(E) = 0 for all u ∈ U .

Let h
′

n = hn on Ec, h
′

n = 0 on E and let g′ = g on Ec, g′ = 0 on E.

Since E is a πu–null set for all u, Bh
′

n = Bhn and Bg′ = Bg. The sequence (h
′

n)

converges pointwise to g′. Since B is continuous, limBh
′

n = Bg′, and consequently
limBhn = Bg.

Let ε > 0. Then there exists n0 such that Bhn < Bg + ε, when n ≥ n0. By
(5.2) and (5.4), Bξ0 ≤ Bhn since hn ∈ Fn. Thus Bξ0 ≤ Bg + ε, where ε > 0 is
arbitrary. Hence Bξ0 = Bg. The last part of the assertion follows from (5.3).

We have reduced the problem to minimize B in the set Fn instead of F .
The functions of the class Fn can be identified with vectors (y0, . . . , yn) satisfying
the monotonicity condition in (5.1). Here we have written n instead of 2nm.
Accordingly, we have the following problem. Minimize

(5.5) B(y0, . . . , yn) =

∫

(

n
∑

i=0

(yi −Eu)2πu(Ii)
)

dU(u),

where Ii = [xi, xi+1), i = 0, . . . , n− 1, In = b (cf. 5.1), with constraints

(5.6) a ≤ y0 ≤ y1 ≤ · · · ≤ yn ≤ b.

Note the similarity of (5.5) to the problem of determining the optimal BMS
in the classic case under constraints (5.6). Observe, however, that in our case U
is in general at least two-dimensional.

In what follows we will consider the case where U is a discrete distribution
concentrated on a finite number k of points. In this case the problem (5.5) can be
written in the form: Minimize

(5.7) B(y1, . . . , yn) =

k
∑

j=1

( n
∑

i=1

(yi − Euj
)2πuj

(Ii)

)

pj

under constraints (5.6), where pj > 0, j = 1, . . . , k,
k
∑

i=1

pj = 1 denote the proba-

bilities of the distribution U at points uj , j = 1, . . . , k. For each i and j, πuj
(Ii)

can be evaluated by a simulation method, see Section 4 of Bonsdorff (2005), cf. also
Nummelin (2002) and Robert and Casella (2000). As stated earlier in this Section,
the optimal solution of (5.7) (y′0, . . . , y

′

n) is unique. Using the differentiability and
the strict convexity of B in (5.7), the unique optimal solution (y′1, . . . , y

′

n) under
constraints (5.6) can easily be found. We illustrate this by an example in the clas-
sic case in the Appendix (see also the examination of the classic case below). The
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consideration in the general case (5.7) is similar. The optimal solution of (5.7) can
also be found by means of existing software packages for convex optimization, see
e.g. Ben–Tal and Nemirovski (2001).

Let us assume that U is a discrete distribution concentrated on a finite number
of points. In view of the considerations of this Section we can now present an
algorithm for the evaluation of the optimal solution of the minimizing problem for
the functional B in F .

Algorithm:

1o Form a sequence of partitions Dn as described above. The partitions define
the function classes Fn, see (5.1).

2o Let n be fixed. Solve the unique ξn ∈ Fn such that Bξn ≤ Bξ for all ξ ∈ Fn

in the following steps
a) Evaluate the values of πuj

(Ii), see (5.7), by the simulation method described
in Section 4 of Bonsdorff (2005).

b) Then solve the convex optimization problem (5.7) as illustrated in the
Appendix or with help of existing software packages. Denote (y′0, . . . , y

′

n) the
unique optimal solution.

3o Calculate Bξn = B(y′0, . . . , y
′

n) for growing values of n. The sequence (Bξn)
converges monotonically non-increasing to Bξ0 where ξ0 is an essentially unique
optimal solution of B in F , cf. Theorems 4.1 and 5.1. Terminate the process for
some n0 and use ξn0

for an estimate for the optimal solution.

Remark 5.1. From computational point of view, the rapid growth of the
number of subintervals of the partitions Dn might be problematic. Alternatively,
the partitions can be defined so that the number of subintervals does not grow fast,
e.g., as follows: Let D̂0 = H, D̂n+1 = D̂n+ the midpoint of the longest subinterval
of D̂n. If the longest interval is not unique, choose that one with the smallest left
endpoint xj . The sequence (D̂n) fulfils the essential features of (Dn) : 1o H ⊂ D̂n

for all n, 2o D̂n ⊂ D̂n+1, 3o the length of the longest subinterval converges to
zero. Similarly as above, the sequence (D̂n) of partitions induces function class

F̂n corresponding to Fn, and further, a uniquely determined sequence (ξ̂n) of

minimal functions ofB in F̂n having a subsequence (ξ̂nk
) which converges pointwise

to ξ̂0, where ξ̂0 is a minimal function of B in F . Correspondingly as above,
Bξ̂n ↓ Bξ̂0 = Bξ0.

Let us now consider the classic case. We assume that, besides the assumptions
of Corollary 3.6, assumption (4.7) of Theorem 4.2 holds true. The minimization
problem can be written as follows: Minimize

(5.8) B(y1, . . . , yK) =
k

∑

j=1

( K
∑

i=1

(yi − λj)
2πj(i)

)

pj ,

with constraints

(5.9) a ≤ y0 ≤ y1 ≤ · · · ≤ yK ≤ b,
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where K is the number of bonus classes, πj = (πj(1), . . . , πj(K)) is the invariant
probability distribution of the transition probability matrix Pλj

associated with
the parameter λj , j = 1, . . . , k and pj ’s are as in (5.7).

For each j the distribution πj can be calculated, e.g., by norming the left
eigenvector associated with the eigenvalue 1 of the transition probability matrix
Pλj

. Then the unique optimal solution of (5.8) can be calculated as illustrated in
the Appendix or by means of existing software packages for convex optimization
problems.

See Heras et al. (2004) for solving the optimality by means of a method based
on linear programming for the functional C in the classical case.

6. Absolute continuity of πu and νu outside a finite set

In this section we will show that the conditions (2.4), (4.2) and the assump-
tions of Corollary (3.4) hold true under certain natural conditions, when the BMS
has smooth and monotone transition rules. Following the usual practice, we say
that a random variable is continuously distributed if its distribution function has
a continuous derivative.

The following result is mentioned to serve as an example, and it does not aim
to be exhaustive.

In this Section we write m instead of m0 for the index appearing in the defi-
nition of the skeleton, see (2.6).

We make the following assumptions concerning the distribution of the indi-
vidual claims (6.1), transfers after a year when claims have happened (6.2) and
transfers after a claims-free year (6.3).
(6.1)For all policies (i.e., for all u ∈ U) the size of an individual claim is contin-

uously distributed with a positive density function on R+.
(6.2)After a number k ≥ 1 of claims, the policy transfers from x ∈ [a, b) to the

right, determined by the functions gk in (2.1). For each x and k there exists
yk,x > 0 such that if y ≥ yk,x, then gk(x, y) = xj(k, x) where xj(k, x) is
some of the skeleton points > x depending on k and x. For all x ∈ [a, b) and
k ≥ 1 lim gk(x, 0+) = x and the functions g(y) = gk(x, y) have a continuous
derivative g′ > 0 on the interval [0, yk,x) and are continuous at yk,x, where
g(0) is defined to be equal to lim gk(x, 0+) = x. Further, we assume that
gk(b, y) = b for all y > 0, for all k ≥ 1.

(6.3)We assume that either of the following conditions, 1o or 2o, is valid.
1o After a claims-free year, the policy transfers from x ∈ (xj+1, xj] to xj+1,

and if x = a, it transfers to a, where the xj’s are the skeleton points, cf. (2.6).
2o Let ψ be a continuously differentiable function from [xm−1, b] onto [a, x1]

with ψ′ < 0 on [xm−1, b], cf. (2.6). After a claims-free year the policy transfers
from x ∈ [xm−1, b] to ψ(x) and from x ∈ [a, xm−1] to a.

Theorem 6.1: Under assumptions (6.1), (6.2) and (6.3), πu is absolutely
continuous outside the finite set D, the skeleton of the BMS, for all u ∈ U . For
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all u ∈ U and xi ∈ D, πu(xi) > 0. Condition (4.2) of Theorem 4.1 is valid. In
addition, νu is absolutely continuous outside a finite set.

Proof. First we observe that πu(xi) > 0 for all u ∈ U, xi ∈ D. In fact, it
follows from assumption (6.2) that (2.5) holds for all u, whence πu(xi) > 0 for all
xi ∈ D, cf. the discussion after the basic assumptions for the insurance portfolio.

In the following, we will show that πu is absolutely continuous outside D in
both cases, 1◦ and 2◦.

Let u ∈ U be arbitrary. To begin with, we deal with the event that at least
one claim has occurred in the year in question. Note first that the total amount
of claims in one year Y is continuously distributed. In fact, Y can be expressed
as follows:

Y = Z1 +

n(λ)
∑

k=2

Zk,

where the Zi’s are individual claims and n(λ) is the random number of the claims.
(We have excluded the trivial case n(λ) = 1.) Thus Y is continuously distributed as
a convolution of two variables, from which at least one is continuously distributed.

Next we will show that, for fixed x and k ≥ 1, the random variable g(Y ), cf.
(2.1) and (6.2), is continuously distributed on [x, b] with the exception of the point
g(yk,x) ∈ D. Let Fg(Y ) be the distribution function of g(Y ). Let x ≤ t ≤ g(yk,x).
Then we have Fg(Y )(t) = FY (g−1(t)), where FY is the distribution function of Y
and g−1 is the inverse function of g. Thus by (6.1) and (6.2),

dFg(Y )(t)

dt
= F ′

Y (g−1(t))
1

g′(t)
> 0, when x ≤ t < g(yk,x) and(6.4)

= 0, when t > g(yk,x).

Hence Fg(Y ) is continuously differentiable on the interval [x, g(yk,x)), and on
(g(yk,x), b] if g(yk,x) < b. Accordingly, the distribution of g(Y ) is absolutely con-
tinuous on [x, b] outside the point g(yk,x) ∈ D. Thus, if k ≥ 1 and A is an l–null
set such that yk,x /∈ A, then P (g(Y ) ∈ A) = P (gk(x, y) ∈ A) = 0. Consequently,
from all x ∈ [a, b] the probability distributions of the transition to the right, i.e.,
given at least one claim, are absolutely continuous outside the set D.

We will now consider the absolute continuity in case 1o. Let x ∈ [a, b], C ⊂
[a, b]−D, C ∈ B, l(C) = 0. We have for all n

(6.5) Pn
u (x, C) =

∫

Pn−1
u (x, dz)Pu(z, C),

where Pn
u is the n-step transition probability. If there is at least one claim in the

(n − 1)′th year, Pu(z, C) = 0 for all z, since Pu(z, ·), given at least one claim, is
absolutely continuous outside D. Thus Pn

u (x, C) = 0 for all u and all x.
On the other hand, if the (n − 1)’th year is claims-free, Pu(z, C) = 0 for all

z by the construction. Hence Pn
u (x, C) = 0 for all n and all u, whence πu(C) =

limn P
n
u (x, C) = 0. Consequently, πu is absolutely continuous in Dc.
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We turn to case 2o. Let x ∈ [a, b], C ⊂ [a, b]−D be a Borel-null set and u ∈ U
be arbitrary. We will show that Pn

u (x, C) = 0 when n is big enough. Assume that
n ≥ m, where m is the subindex in (2.6) in the definition of the skeleton, denoted
m0 in (2.6). Denote the event {Xn ∈ C | X0 = x} by E. It follows from the
definition of the skeleton that E can be divided into subevents EB0, . . . , EBk,
where

B0 = {at least one claim in year n− 1},

(6.6)

Bj = {years n− 1, . . . , n− j claims free, at least one claim in year

n− j − 1}, j = 1, . . . , m− 1.

As in case 1o, Pu(EB0) = 0. Consider the event Bj, 1 ≤ j ≤ m−1. Note that
it follows from the definition of the skeleton that ψ(xi) = xi+1, i = 0, . . . , m− 1,
where xi ∈ D, and that from (6.3), 2◦ follows that ψ is one-to-one from [xm−1, b]
to [a, x1]. Hence it follows from the construction that Xn ∈ C if and only if
Xn−j ∈ (ψ−1)j(C) and, in addition, that (ψ−1)j(C) ⊂ Dc.

The function (ψ−1)j is continuously differentiable on the closed interval [a, x1].
Hence the derivative of (ψ−1)j is limited on [a, x1]. This implies that l[(ψ−1)j(C)] =
0. We have

Pu(EBj) = Pu(Bj)Pu(E|Bj) ≤ Pu(E|Bj)

=

∫

Pn−j−1
u (x, dz)pu(z, (ψ−1)j(C),

where pu(z, (ψ−1)j(C)) is the probability that the chain moves from z to (ψ−1)j(C),
given at least one claim in year n−j−1. Since there exists at least one claim in year
n−j−1, (ψ−1)j(C) ⊂ Dc and l[(ψ−1)j(C)] = 0, it follows that pu(z, (ψ−1)(C)) = 0
for all z. Consequently, Pu(EBj) = 0 for all j, whence Pn

u (x, C) = 0 for all x and
all u when n ≥ m. Similarly as in case 1o, we get that the probability measures
πu are absolutely continuous in Dc for all u.

We turn to the absolute continuity of νu outside a finite set, with starting
point x ∈ [a, b], see (3.18). The proof in case 1o is similar to that for πu. We turn
to case 2o. We choose the finite exception set to be (cf. Corollary 3.4)

H ′ = D ∪ {ψn(x) | n = 1, . . . , m− 1}.

We have shown that when n ≥ m, the measures πu and Pn
u (x, ·) are absolutely

continuous outside D ⊂ H ′. Thus it suffices to show that the probability measures
Pn

u (x, ·) are absolutely continuous outside H ′ when n < m.
Let n < m and C a null set, C ⊂ [a, b] − H ′. We have the corresponding

partition for the event {Xn ∈ C|X0 = x} as in (6.6) with the ”additional” event
B′ = {years 1, . . . , n are claims–free}. It remains to notice that Pn

u (x, C), given
B′, is equal to zero. This is clear since Pn

u (x, ψn(x)), given B′, is equal to 1.
It follows from (6.2) and (6.4) that condition (4.2) is valid. This completes

the proof.
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Appendix

We give an example in the classic case where the unconstrained minimizing
problem (see 5.8) gives a non-monotonic solution and show how the problem can
be solved when the monotonicity condition (5.9) is required. Our example is a
reduced version of an example in Gilde and Sundt (1989). It does not aim to be
realistic but only to serve as an illustration of the phenomenon and of the solution
of the problem.

Before going to the example, we briefly consider the minimizing problem (5.8)
under constraints (5.9) generally. Let assumption 4.7 be valid. We have

B(y1, . . . , yK) =

k
∑

j=1

(

K
∑

i=1

(yi − λj)
2πj(i)

)

pj =

K
∑

i=1

(

k
∑

j=1

(yi − λj)
2πj(i)pj

)

.

The functions

fi(yi) =
k

∑

j=1

(yi − λj)
2πj(i)pj , i = 1, . . . , K

are differentiable and strictly convex and get a unique minimum at the point

(A1) y0
i =

k
∑

j=1
λjπj(i)pj

k
∑

j=1

πj(i)pj

,

where f ′

i = ∂B
∂yi

= 0. Consequently,

B = B(y1, . . . , yK) =

K
∑

i=1

fi(yi)

gets its unique minimum in RK at y0 = (y0
1, . . . , y

0
K). This can be proven also

by probabilistic arguments, cf. Pesonen (1963) and Norberg (1976). Let F be
the set of the vectors of RK which satisfy constraints (5.9). If y0 ∈ F , it is the
unique optimal solution in F (and in any case the unique optimal solution of the
unconstrained minimizing problem).

If y0 6∈ F , the existing unique optimal solution in F can be found by decom-
posing B to lower-dimensional differentiable strictly convex functions. We will
demonstrate this in a special case by means of the following Example.

Example: We describe the transition mechanism of the BMS by means of
the table below. The table should be read as follows: ai,m = l means that l claims
cause a transition from class i to class m, and ai,m = l+ that a number of claims
≥ l cause transition from class i to class m. Note that in this Example we have
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followed a common convention in the classic case that after claims-free years the
policy moves ”to the right”, not to the left as in the general case in this paper.

Table

1 2 3 4 5

1 1+ 0

2 1+ 0

3 1+ 0

4 2+ 1 0

5 2+ 1 0

=



















a1,1, . . . , a1,5

a5,1, . . . , a5,5



















We assume that

there are two claims intensities λ1 = 0.1 and λ2 = 0.7 with associated

(A2)

probabilities p1 = 0.8, p2 = 0.2, respectively.

We consider the problem minimizing B under constraints

(A3) λ1 ≤ y5 ≤ · · · ≤ y1 ≤ λ2

and denote the set of vectors (y1, . . . , y5) fulfilling (A3) by F .
The claims intensities λ1 and λ2 associated with the table above induce

Markov chains Pλ1
and Pλ2

, respectively. Solving the corresponding invariant
probability distributions gives

π1(1) = 0.0133, π1(2) = 0.0078, π1(3) = 0.0741, π1(4) = 0.0861,(A4)

π1(5) = 0.8187

π2(1) = 0.3308, π2(2) = 0.0869, π2(3) = 0.0857, π2(4) = 0.2500,

π2(5) = 0.2466.

Thus we get by (A1), (A2) and (A4)

(A5) y0 = (0.6169, 0.5398, 0.2346, 0.3523, 0.1420).

We notice that y0
4 > y0

3 , whence y0 6∈ F , cf. (A3). We will now seek for the existing
unique vector (y′1, . . . , y

′

5) where the strictly convex continuous function B gets its
minimum in the convex compact set F .

We make the following decomposition

(A6) B(y1, . . . , y5) = B(y1, y2, y5) + B̃(y3, y4),

25



where B =
2
∑

j=1

(

∑

i=1,2,5
(yi − λj)

2πj(i)
)

pj and B̃ =
2
∑

j=1

(

∑

i=3,4
(yi − λj)

2πj(i)
)

pj .

Both B̃ and B are differentiable and strictly convex. Let us consider B̃. Since B̃
is continuous and strictly convex, it gets unique minimum in the compact convex
set

F̃ = {(y3, y4) ∈ R2 : α1 ≤ y4 ≤ y3 ≤ α2}.

Since y0
3 < y0

4 , the point (y0
3 , y

0
4) where the partial derivatives vanish, does not

belong to F̃ . Hence B̃ cannot get its minimum in F̃ at an inner point of B̃.
Accordingly, B̃ gets its minimum in F̃ on the border of F̃ , i.e., on one of the
lines y3 = α2, y4 = α1, y3 = y4. The restriction of B̃ to the line y3 = α2 has a
minimum at (0.7,0.3523), to the line y4 = α1 at (0.2346,0.1) and to the line y3 = y4
at (0.3063,0.3063). Comparison of the values of B̃ at the points above shows that
B̃ is smallest at (0.3063,0.3063), whence B̃ gets its unique minimum in F̃ at this
point. Further, B gets its unique minimum in R3 at (0.6169, 0.5398, 0.1420), cf.
(A5). Let ŷ = (0.6169, 0.5398, 0.3063, 0.3063, 0.1420). Clearly, ŷ ∈ F , and by (A6)
B gets at ŷ its unique minimum in F .
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