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Abstract

We investigate the conditional full support (CFS) property, intro-
duced by Guasoni et al. (2008a), for Gaussian processes with stationary
increments. We give integrability conditions on the spectral measure
of such a process that ensure that the process has CFS or not. In
particular, the general results imply that for a process with spectral
density f such that f(\) ~ c;\Pe 2" for X = oo (with necessarily
p < 1if ¢ =0), the CFS property holds if and only if ¢ < 1.
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1 Introduction

In mathematical finance there has lately been considerable interest in push-
ing beyond the by now classical setting of asset prices modelled by semi-
martingales, cf. e.g. Delbaen and Schachermayer (2006) and the references
therein. New approaches that either restrict the class of allowed trading
strategies or introduce transaction costs allow for instance for the use of
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fractional Brownian motion to model (log-)prices, cf. Bender et al. (2008),
Guasoni et al. (2008a), Jarrow et al. (2008). The results of Guasoni et al.
(2008a,b) show that when transaction costs are introduced, a satisfactory
arbitrage theory can be build up using continuous price processes that only
satisfy a mild condition on their conditional support (we will give a precise
definition below).

To understand the scope of the newly developed theories it has become
important to investigate the conditional support properties for classes of
stochastic processes. Guasoni et al. (2008a) proved that the fractional Brow-
nian motion with arbitrary Hurst parameter has the desired property. This
was recently generalized by Cherny (2008), who proved the conditional full
support property for a class of Gaussian processes that can be written as a
moving average with respect to ordinary Brownian motion.

In the present paper we focus on the class of continuous, centered Gaus-
sian processes X with stationary increments, starting in 0, i.e. Xo = 0. We
will briefly call such a process a continuous Gaussian si-process. 1t is a clas-
sical fact that with each such process we can associate a spectral measure.
This is a symmetric Borel measure g on the line such that

ei)\s_ e*i)\t_
EX, X, = /]R TS (L1)

for all s,t > 0 (cf. Doob (1953)). If u admits a Lebesgue density we call

this the spectral density of the process. The prime example is the fractional

Brownian motion with Hurst index H € (0,1), which has spectral density
sin(rH)T(1 + 2H)

— 1-2H
F) = I

see for instance Samorodnitsky and Taqqu (1994). The continuous moving
average processes considered by Cherny (2008) are particular examples of
continuous Gaussian si-processes. Included in this class are the continuous
Gaussian si-processes with spectral densities is of the form

FO) =XKW,

where K the Fourier transform of a function K € L?[0,00) . We use this
connection in the proof of our main theorem.

The conditional full support property of a process indexed by a time-
interval [0, 7] roughly means that given the information up to some time
t € [0,T], the process can go anywhere after time ¢ with positive probability.
To give the precise definition, let X = (X; : ¢ € [0,7]) be a continuous
stochastic process defined on a probability space (Q, #,P). Let (%) be
its natural filtration. The process is said to have conditional full support



(CFS) if for all ¢t € [0,T], the conditional law of (X, : u € [¢,T]) given %
almost surely has support Cx,[t, T, where C;[t, T is the space of continuous
functions f on [t,T] satisfying f(t) = z. Equivalently, this means that for
allt € [0,T], f € Co[t,T] and € > 0,

]P’( sup [ Xu — X¢ — f(u)| < g|fft) >0
u€lt,T]

almost surely. According to Lemma 2.9 of Guasoni et al. (2008a) the CFS
condition is in fact equivalent to the seemingly stronger condition that is
obtained by replacing the deterministic times ¢ in the definition by stopping
times.

The goal of this paper is to give spectral conditions for a Gaussian si-
process to have conditional full support. It turns out that we can give rather
precise conditions on the tails of the spectral density. The results quantify
the intuitively reasonable statement that a Gaussian si-process has CFS if
and only if the tails of its spectral measure are heavy enough. The sufficient
tail condition for CFS is very mild and easy to verify in concrete cases,
thus providing a wide class of processes potentially suitable for asset price
modelling in the context of Guasoni et al. (2008a,b).

2 Results

Our main result gives integrability conditions on the spectral measure of a
Gaussian si-process that ensure that the process has the CFS property or
not.

Being a symmetric Borel measure on the line, the spectral measure u of a
Gaussian si-process can always be written as p(d)\) = f(A) d\+ ps(dA) with
f a nonnegative, symmetric, Borel measurable function and ps a symmetric
Borel measure orthogonal to Lebesgue measure. As usual we call f the
density of the absolutely continuous part of u.

Theorem 2.1. Let X = (X; : ¢t € [0,T)) be a continuous Gaussian si-process
with spectral measure . Let f be the density of the absolutely continuous

part of u.
(i) If for some Ay > 0

SV I > —,

/°° log f())
A A2

0

then X has CFS.



(i) If for some a, g > 0

[e.e]
/ e u(d)\) < oo,
A

0

then X does not have CFS.

To illustrate the sharpness of the result, suppose for instance that for
c1,c2 > 0, p € Rand g > 0, the spectral density f of the continuous Gaussian
si-process X satisfies

fA) ~ er APe2X

as A — oo (with necessarily p < 1 if ¢ = 0). Then by combining parts (i)
and (ii) of the theorem, we see that the CFS property holds if and only if
g < 1. Taking ¢ = 0 and p = 1 — 2H for H € (0,1), this confirms the
result of Guasoni et al. (2008a) that the fractional Brownian motion with
Hurst parameter H € (0,1) has CFS. In fact, any Gaussian si-process with
a spectral density with a power tail has CFS. Another concrete example is
the integrated Ornstein-Uhlenbeck process, which corresponds to ¢ = 0 and
p=-—2

Processes with ¢ € (0,1) are in some sense peculiar. On the one hand
they are “very predictable” in the sense that their sample paths are infinitely
often differentiable. On the other hand they satisfy CFS. So in the context
of Guasoni et al. (2008a,b), modeling log-prices with such a smooth process
does not introduce arbitrage opportunities. This is of course completely
different from what happens the classical theory.

The proof of Theorem 2.1 employs the result of Cherny (2008) on Brown-
ian moving averages. Conversely, the theorem also includes a conditional full
support result for a class of moving averages. To show this, let K € L?[0, 00)
be non-trivial, i.e. in particular K vanishes on the negative half-line, and
consider the moving average process

X, = /_; (K(t _8) - K(—s)) dB,, (2.1)

where B is a standard Brownian motion. Let §(A) = [ g(z)exp(iAz) dz
denote the Fourier transform of g. By the Parseval relation we have

/ K(t = s)e™ ds = MR (<)) = MR ().
R
It follows that

1

RX, X, = o / (€2 — 1)(e M — 1)|R(N)[2 dA.
R
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Hence, X 1is a Gaussian si-process with spectral density f(\) =
A2|K(N)|?/(27). Since K is the Fourier transform of the function K €
L?[0,00) it is a non-trivial Hardy function in H?* (in the notation of Dym
and McKean (1976)), and hence

log |[K())|

see for instance Dym and McKean (1976), Section 2.6. It follows that the
spectral density f satisfies the condition of part (i) of Theorem 2.1. This
proves the following statement.

Corollary 2.2. A continuous Brownian moving average process X = (X; :
t €1[0,T)) as in (2.1), with K € L%[0,00) a non-trivial kernel, has CFS.

It should be noted that Theorem 1.1 of Cherny (2008) is more general
than Corollary 2.2. Cherny considers non-trivial kernels K that satisfy the
less restrictive condition that [(K(t — s) — K(—s))?ds < oo for all ¢ > 0.
Statement (i) of Theorem 2.1 above and Cherny’s result should be seen as
complementing each other. Some processes have tractable spectral mea-
sures, or are in fact defined through their spectrum, while a moving-average
representation might not exist or is untractable. In such cases Theorem 2.1
can be used to investigate the CFS property. Cherny’s result is appropri-
ate for situations where a moving-average representation is known to exist,
while the spectral measure may be untractable.

3 Proof of the main result

3.1 Auxiliary lemmas

The two lemmas presented in this subsection are used in the proof of The-
orem 2.1, but are also useful in their own right. They state that the CFS
property is preserved by an equivalent change of measure and by adding an
independent continuous process.

Lemma 3.1. Let X = (Xy : ¢t € [0,T]) and Y = (Y3 : t € [0,T]) be two
continuous processes. If the laws of X and Y are equivalent, then X has
CFS if and only if Y has CFS.



Proof. Consider the canonical space (€2,.#) of continuous functions on
[0,7]. On (Q,%), let Px and Py be the distributions of the processes
X and Y, respectively. It suffices to show that for every sub-o-field 4 C %
and A € %, it holds that Px (A |¥) > 0, Px-a.s. if and only if Py (4|¥) > 0,
Py-a.s..

So suppose that Px(A|¥) > 0, Px-almost surely and consider the set
B = {Py(A|¥) = 0}. Clearly we have B € ¢. Hence, by the definition of
conditional expectation and the definition of B,

]Py(AﬂB) = /B]P’y(A|g) dPy = 0.

But Px and Py are equivalent by assumption, so we also have Px (ANB) = 0.
It follows that

/ Px(A|9)dPx = Px(AN B) = 0.

Since Px(A|¥) > 0, Px-a.s., this implies that Px(B) = 0. By equivalence

we then also have Py (B) = 0, which means that Py (4|¥) > 0, Py-a.s..
Repeating the argument with the roles of X and Y reversed completes

the proof. U

Lemma 3.2. Let X = (Xy : ¢t € [0,T]) and Y = (Y3 : t € [0,T]) be two
independent continuous processes. If X has CFS, then X +Y has CFS as
well.

Proof. Define Z = X +Y and let (%;) be the natural filtration of Z. Let
(Z7X) (resp. (F))) be the filtration generated by the process X (resp. Y).

Fix t € [0,T], f € Co[t,T] and € > 0. By the tower property of condi-
tional expectations,

P(uzlﬁpT]‘Z“ ~Zy— f(u)] < €|c%)
:]E(]P’( sup |Zu — Zy — f(u)] < | X vgf%’) \%).

u€[t,T]

By independence the inner conditional probability equals Z((f(u) — (Y, —
Yt))uE[t,T}at)a Where, for g€ CO[taT]a

S(g,t) = P( sup Xy — X — glw)] < | 7).
u€lt,T]



Hence, since X has CFS, the inner probability is strictly positive almost
surely. By the strict positivity of the conditional expectation operator, it
follows that also

11»( sup |Zy — Zi — f(u)] <€|<%5) >0
u€[t,T

almost surely. O

3.2 Proof of Theorem 2.1

We begin with the proof of part (i). First observe that X can be written
as the sum of two independent Gaussian si-processes, one with spectral
density f and one with a singular spectral measure ps. In view of Lemma,
3.2 it suffices to show that the process with spectral density f has CFS.
Therefore, we proceed without loss of generality under the assumption that
i is absolutely continuous, i.e. that us = 0.

The condition on f implies that f(A) > 0 for almost every A outside
[— Ao, Ag]- Since changing f on a Lebesgue null set does not change the law
of the si-process, we may assume that f is strictly positive outside [—Ag, Ag].
Now define a new spectral density g : R — R by

_ f(A)a |A| > Ao
o) = {AZ, AL < o

Let Y be a Gaussian si-process with spectral density g. By construction it
holds that

i.e. Y is purely non-deterministic, in the terminology of Van Zanten (2007).
Since the spectral densities f and g are equal outside a bounded set, Theorem
5.1 of Van Zanten (2007) then implies that the laws of (X; : ¢ € [0,7"]) and
(Y; : t € [0,T]) are equivalent. Hence, by Lemma 3.1, it suffices to prove
that the process (Y; : ¢t € [0,7]) with spectral density g has CFS.

It follows from the assumption on f and the construction of g that

g(A)
R

and

d\ > —o0.

/loggO\)//\2
r 1+2A2



Hence, we have the representation g(\)/A? = |¢(A)|? for an outer Hardy
function 9 € H2t satisfying 1(\) = ¥(—\), cf. Dym and McKean (1976),
p- 38. By the Paley-Wiener theorem for Hardy functions, see Section 2.3 of
Dym and McKean (1976) or Rudin (1987), Theorem 19.2, we have 9 = K
for some real-valued K € L2[0,00). We conclude that g()\) = A2|K())[?
and hence, by the computations carried out in the preceding section before
Corollary 2.2, Y is a moving average process of the type (2.1) considered by
Cherny (2008). By Theorem 1.1 if Cherny (2008) the process (Y; : t € [0,7T])
then has CFS, which completes the proof of part (i).

For the proof of statement (ii) we note that by (the proof of) Lemma
2.1 of Van der Vaart and Van Zanten (2007), the condition on g implies
that the natural filtration (%) of the process X satisfies .#; = %#; for all
0 < s < t. In other words, the process is completely determined by what
happens immediately after time 0. It follows that for ¢ € (0,7), the support
of (Xy : u € [t,T]) given % equals the support of (X, : u € [t,T]) given
Zr. The latter is obviously almost surely degenerate, which implies that
the process does not have CFS. This completes the proof of part (ii).
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