
Dynamic Ehrenfeucht-Fräıssé Games for strong

logics over linear orders and other practical

results

Ryan Siders
Department of Mathematics and Statistics

University of Helsinki
Finland

October 14, 2008

Abstract

We generalize the main theorem of [4] – that the quantifier-rank-k
theory of a linear order is the 2k-fold closure of a closure process which
extends a finite set of marked elements and cuts of the linear order, by
marking, for every local type φ and sets b < a of marked elements, the
elements or cuts: inf{x : φ(x)∧ b < x < a} and sup{x : φ(x)∧ b < x < a}
– to infinitary languages, where the quantifier rank is not a finite number
k, but either an ordinal or a general linear order. We write a program to
enumerate the 82988077686330 ≡4 classes of linear orders as a proof of
concept.

1 ≡2 and ≡3 classes of linear orders

The material of this section replicate enumerations of ≡2 and ≡3 classes of linear
orders done in [2]. Our goal is to prove these results via a model existence game:

Proposition 1.1 A set U of pairs of ≡k classes is {(Thk({a ∈ λ : a < b}),
Thk({a ∈ λ : a > b}))} for some linear order λ just in case 1. there is an
≡k class ξ(U) such that for any (φ, ψ) ∈ U , we have ∃x(φ<x ∧ ψ>x) ≡k ξ(U),
and 2. there is a set W containing U and other sets of pairs of ≡k classes
such that every V ∈ W has ξ(V) as in part 1 and such that for any V ∈ W
and any element (φ, ψ) ∈ V there exist two elements V0, V1 of W such that
(ξ(V0), ξ(V1)) = (φ, ψ) and V0 + {(∅, ∅)}+ V1 = V .

The proposition can easily be proved by noting that the set W constructs a
linear order λ such that W = {U(Thk(λ(a,b))) : a < b ∈ λ}, where Uφ is the set
of Thk−1-types implied by φ.

1

Theorem 1.1 Writing 1 for Th1(1) and 0 for Th1(∅), the following sets of
pairs of ≡1 classes of linear orders are consistent:

{(1, 1)}, {(1, 1), (1, 0)}, {(0, 1), (1, 1)}, {(0, 1), (1, 1), (1, 0)}, {(1, 0), (0, 1)}, {(0, 0)}, ∅,

and the following sets of pairs of ≡1 classes of linear orders are inconsistent:

{(0, 1)}, {(1, 0)}, {(0, 0)} ∪ U, if U 6⊆ {(0, 0)}.

Let WZ = {{(1, 1)}, {(1, 1), (1, 0)}, {(0, 1), (1, 1)}, {(0, 1), (1, 1), (1, 0)}, ∅}.
The function ξ is uniformly 1 on WZ , except that ξ(∅) = 0.

• To (1, 1) ∈ {(1, 1)}, assign the pair ({(1, 1), (1, 0)}, {(0, 1), (1, 1)}). Writ-
ing 1 for ξ({(1, 0), (1, 1)}), ξ({(0, 0)}), and ξ({(0, 1), (1, 1)}) and apply-
ing the definition of addition for sets of pairs of ≡1 classes, we find:
{(1, 1), (1, 0)} +{(0, 0)} +{(0, 1), (1, 1)} = {(1, 1+1+1), (1, 0+1+1), (1+
0, 0 + 1), (1 + 1 + 0, 1), (1 + 1 + 1, 1)} = {(1, 1)} and the pair of ξ values
(ξ({(1, 1), (1, 0)}), ξ({(0, 1), (1, 1)})) = (1, 1) is the chosen element.

• To (1, 1) ∈ {(1, 1), (1, 0)} ∈WZ we assign the pair in WZ : ({(1, 1), (1, 0)},
{(0, 1), (1, 1), (1, 0)}). The value of ξ on either element of that pair is 1, so
the pair of values of ξ is (ξ({(1, 1), (1, 0)}), ξ({(0, 1), (1, 1), (1, 0)})) = (1, 1)
is the chosen element, and {(1, 1), (1, 0)}+{(0, 0)} +{(0, 1), (1, 1), (1, 0)} =
{(1, 1), (1, 0)} is the chosen set.

• To (1, 0) ∈ {(1, 1), (1, 0)} assign the pair ({(1, 1), (1, 0)}, ∅). The value
of ξ on this pair is (1, 0), the chosen element. The sets of pairs sum
to: {(1, 1), (1, 0)} +{(0, 0)}. On those summands, ξ has the value 1, so
= {(1, 1 + 1), (1, 0 + 1), (1 + 0, 0)} = {(1, 1), (1, 0)} is the chosen set.

• The choices in {(0, 1), (1, 1)} are symmetric.

• To (0, 1) ∈ {(0, 1), (1, 1), (1, 0)}, assign the pair (∅, {(0, 1), (1, 1), (1, 0)}).
The value of ξ on this pair is (0, 1), the chosen element. The sets of pairs
sum to: {(0, 0)} +{(0, 1), (1, 1), (1, 0)} = {(0, 0+1), (1+0, 1), (1+1, 1), (1+
1, 0)} which is the chosen set.

• To (1, 0) ∈ {(0, 1), (1, 1), (1, 0)} we assign the pair ({(0, 1), (1, 1), (1, 0)}, ∅),
symmetric to the previous item.

• To (1, 1) ∈ {(0, 1), (1, 1), (1, 0)} we assign the pair ({(0, 1), (1, 1), (1, 0)},
{(0, 1), (1, 1), (1, 0)}). Since ξ({(0, 1), (1, 1), (1, 0)}) = 1, the pair of ξ val-
ues is (1, 1), the chosen element. Further, the the sum {(0, 1), (1, 1), (1, 0)}
+{(0, 0)}+ {(0, 1), (1, 1), (1, 0)} = {(0, 1), (1, 1), (1, 0)} is the chosen set.

If that strategy is played against an exhaustive strategy of player I, with
initial set {(1, 1)}, the set Z × η is constructed: Every time player I plays
(1, 1) ∈ {(0, 1), (1, 1), (1, 0)}, we begin a new copy of Z. Every time player

2

I plays (1, 0) or (0, 1), we add the immediate predecessor or successor to the
greatest or least element of a copy of Z which is already being built. With the
other elements of WZ as initial sets, we get Z×λ for λ = η+1, 1+η, or 1+η+1.

Next, let W2 = {{(1, 0), (0, 1)}, {(0, 0)}, ∅, }. Again, the value of ξ are 1,
except ξ(∅) = 0.

• To (1, 0) ∈ {(1, 0), (0, 1)} we assign the pair ({(0, 0)}, ∅). The pair of ξ
values are the chosen element. The sum is: {(0, 0)} +{(0, 0)} = {(0, 0 +
1), (1 + 0, 0)} = {(1, 0), (0, 1)}, the chosen set.

• To (0, 1) ∈ {(1, 0), (0, 1)} we assign the pair (∅, {(0, 0)}). The pair of ξ
values are the chosen element. The sum is: {(0, 0)} +{(0, 0)} = {(0, 0 +
1), (1 + 0, 0)} = {(1, 0), (0, 1)}, the chosen set.

• To (0, 0) ∈ {(0, 0)} we assign the pair (∅, ∅). The pair of ξ values are the
chosen element. The sum is ∅+ {(0, 0)}+ ∅ = {(0 + 0, 0 + 0)} = {(0, 0)},
the chosen set.

If that strategy is played against an exhaustive strategy of player I, with
initial set {(1, 0), (0, 1)}, then we construct the model 2. If we play with initial
condition {(0, 0)}, then we construct the model 1.

To see that a set is inconsistent, we use first-order logic.

• Suppose {(1, 0)} = {(φ, ψ) : λ |= ∃x(φ<x ∧ ψ>x)}. Since 1, or Th1(1),
is defined by ∃y(y = y), we have: λ |= ∃x(∃y(y < x) ∧ ¬(∃y(y > x))).
But since {(1, 0)} is a singleton, we also have: λ |= ∀x(∃y((y < x) ∧ (y =
y)) ∧ ¬(∃y((y > x) ∧ (y = y)))). Assign the variables of the first conjunct
to a ∈ λ, b ∈ λ so that b < a. Now the second conjunct does not hold if we
assign x to b. That is: {(1, 0)} requires that some element is maximal and
not minimal, and that every element is maximal and not minimal. But if
a is not minimal, there exists b < a, and then b is not maximal.

• We treat {(0, 1)} symmetrically.

• {(0, 0)} ∪ U where U 6⊆ {(0, 0)}. The element of U \ {(0, 0)} implies
∃x(∃y(y < x)) or ∃x(∃y(y > x)). But (0, 0) implies ∃x(¬∃y(y < x) ∧
¬∃y(y > x)). If the former is satisfied with x, y assigned to a, b and the
latter is satisfied with x assigned to c, then by totality, a and b are related
to c, violating the second formula. �

Applying a similar analysis to ≡3 is not profitable.

Definition 1.1 If ≡ respects addition, we define left equivalence: φ ≡left ψ if
there is some ≡ class γ such that for all ≡ classes α and β and all ≡ variations
α0 ≡ α and β0 ≡ β,

φ+ α+ γ + β ≡ ψ + α0 + γ + β0.

3

Likewise, φ ≡right ψ if there is some ≡ class γ such that for all ≡ and classes
α and β and all ≡ variations α0 ≡ α and β0 ≡ β,

α+ γ + β + φ ≡ α0 + γ + β0 + ψ.

Finally, for any linear orders λ and µ and assignments r and s of a nonempty
domain into λ and µ, we say λ ≡loc µ just in case

λ(≡left)rightµ.

Theorem 1.2 There is a normal form for ≡k classes of linear orders – the
2k-fold closure of the process of marking, for every local type φ and sets b < a
of marked elements, the elements or cuts: inf{x : φ(x) ∧ b < x < a} and
sup{x : φ(x) ∧ b < x < a} which are definable in that

• the quantifier rank of φ is larger than the local types in some cofinal seg-
ment of b, or

• the elements satisfying φ are not cofinal in b, and above them all is some
element of b which has quantifier rank greater than that of φ,

This theorem is proved in [4].
Different ≡3 classes are separated by their labels I{0,1}(λ) or by the ≡loc

2

classes at labels and between labels, and further:

Ik(λ) = I left
k (λ) ∪ Iright

k (λ).

Theorem 1.3 Labeling the ≡loc
0 class e0, and the ≡loc

1 class e1, if the linear
order λ has at least five elements, then I left

{0,1}(λ) is one of the following:

(de0 ∈ (∅, ∅)) = (de1 ∈ ((de0 ∈ (∅, ∅)), . . .)) = (de0 ∈ ((de1 ∈ ((de0 ∈ (∅, ∅)), . . .)), . . .)),

(le0 ∈ (∅, ∅)) < (de1 ∈ ((le0 ∈ (∅, ∅)), . . .)) = (de0 ∈ ((de1 ∈ ((le0 ∈ (∅, ∅)), . . .)), . . .)),

(le0 ∈ (∅, ∅)) < (le1 ∈ ((le0 ∈ (∅, ∅)), . . .)) < (de0 ∈ ((le1 ∈ ((le0 ∈ (∅, ∅)), . . .)), . . .)),

(le0 ∈ (∅, ∅)) < (le1 ∈ ((le0 ∈ (∅, ∅)), . . .)) < (le0 ∈ ((le1 ∈ ((le0 ∈ (∅, ∅)), . . .)), . . .)).

4

Proof: The label de0 is assigned to (∅, λ) to indicate that λ has no least
element. So for any k, there must be some ≡loc

k class such that λ has no least
element of that type. There is only one ≡loc

1 class, e1. So there is no least
element of ≡loc

1 class e1. Similarly, the label de1 must be followed by de0 again.
If λ has at least five elements, then the four labels

(le0 ∈ (∅, ∅)) < (le1 ∈ ((le0 ∈ (∅, ∅)), (ge0 ∈ (∅, ∅)))) <

(ge1 ∈ ((le0 ∈ (∅, ∅)), (ge0 ∈ (∅, ∅)))) < (ge0 ∈ (∅, ∅))

don’t exhaust λ. �

Definition 1.2 If τ0 and τ1 are ≡loc
k−1 classes and if U is a set of ≡loc

k−1 classes,
then we call the triple (τ0, U, τ1) consistent just in case there is some linear order
λ with elements a and b such that (λ, a) has ≡loc

k−1 class τ0 and (λ, b) has ≡loc
k−1

class τ1 and the set of ≡loc
k−1 classes realized between a and b is U . If U is a

set of ≡loc
k−1 classes and τ0 is an ≡loc

k−1 class, then we call the triple (τ0, U,−)
consistent just in case there is some linear order λ and element a ∈ λ such that
(λ, a) has ≡loc

k−1 class τ0 and the set of ≡loc
k−1 classes realized to the right of a is

U . Similarly, we define consistency of (−, U, τ1). (−, U,−) is consistent just in
case it is the set of ≡loc

k−1 classes realized in some linear order.

Theorem 1.4 A triple as defined above is consistent just in case there is a set
W of such triples, so that for any (τ0, U, τ1) ∈W , the following holds:

• For any label described by τ0, (or, symmetrically, τ1) defining the least
element of type τ ′, either 1. there is no element of U extending τ ′, and
either 1a. τ0 itself extends τ ′, and the union of what all elements of U
imply about the the least element of type τ ′ is consistent with τ1 being
that least element, or 1b. the union of what τ0 and all elements of U
imply about the least element of type τ ′ is extended by τ1’s description
of the least element of type τ ′ to the right of the triple, or 2. there is a
pair ((τ0, U0, τ), (τ, U1, τ1)) of triples in W such that τ extends τ ′ and U0

contains no element extending τ ′, and U0 ∪ {τ} ∪ U1 = U .

• For any label described by τ0, (or, symmetrically, τ1) defining a descending
sequence of elements of type τ ′, either 1a. that sequence limits to τ0, and
(−, U, τ1) is consistent and whenever the strategy splits (−, U, τ1) into a
pair (V0, V1) of triples in W , there is an element extending τ ′ in V0, or
1b. there is no element of U extending τ ′, and conditions 1b from the
previous item hold, or 2. there is a pair ((τ0, U0,−), (−, U1, τ1)) of triples
in W such that U0 contains no element extending τ ′ and U0 ∪ U1 = U ,
and, further, whenever the strategy splits (−, U1, τ1) into a pair (V0, V1) of
triples in W , there is an element extending τ ′ in V0.

• Symmetric conditions explain how each label described by τ1 is realized at
τ0 or is realized below τ0 or can be realized within U , splitting the triple
into two triples, to be realized to its right and its left.

5

• For any element τ ∈ U , there is a pair ((τ0, U0, τ), (τ, U1, τ1)) of elements
of W such that U0 ∪ {τ} ∪ U1 = U .

Proof: Given W , player II can last arbitrarily long in the linear consistency
game. If player I plays an exhaustive strategy, then the result will be a linear
order λ of elements between τ0 and τ1 in which τ0 implies Thleft

k−1(λ), τ1 implies
Thright

k−1 (λ), and U is the set of ≡loc
k−1 classes realized. If τ1 exists, then the

conditions in the first two items imply that the description of the linear order
right of the triple given by τ1 extends what all other played constants imply
about any label, we can choose {c ∈ λ : c > b} to be any element of the ≡left

class that is the right part of τ1; we can choose likewise {c ∈ λ : c < a} and
we have the linear order with constants (λ, a, b) that proves the triple to be
consistent. �

Now we apply the theorem to enumerate ≡3 classes of linear orders. In
I left
{0,1}(λ), all of the labels either 1. label the same gap as the preceding label,

or 2. label the element of λ which is the immediate successor of the preceding
label. If λ = 5, then I left

{0,1}(λ) and Iright
{0,1}(λ) overlap. If |λ| > 5, they don’t.

This simplifies using the local linear consistency game: we hypothesize differ-
ent combinations of I left

{0,1}(λ) and Iright
{0,1}(λ), hypothesize different ≡loc

2 classes for
the greatest element of I left

{0,1}(λ) and the least element of I left
{0,1}(λ), hypothesize

a set of ≡loc
2 classes to be realized between them, and the determine the result-

ing set to be consistent (using the preceding theorem) or inconsistent (using
first-order logic).

Theorem 1.5 There are four inextensible ≡loc
2 classes.

Proof: I left
{0} describes nothing (and is extensible) or describes either le or de,

and nothing more. Iright
{0} likewise describes nothing (and is extensible) or de-

scribes ge or ae. The four formulas ge>x∧le<lx, ge>x∧de<lx, ae>x∧le<lx, ae>x∧
de<lx are 6≡loc

2 and exhaust the inextensible ≡loc
2 classes. �

We abbreviate the ≡loc
2 classes in U as (ge, le), (ge, de), (ae, le), (ae, de) and

as gl, gd, al, ad. We abbreviate the ≡loc
2 class of the left element τ0 as d or l

(since there’s no reason examining τ0 = ad and τ0 = gd independently) and we
allow d to stand for d or −, the absence of any τ0, since either one is consistent
just in case the other is. We abbreviate the ≡loc

2 class on the right as a or g and
let a represent both a and −, likewise. We proceed to consider which triples are
consistent:

Theorem 1.6 The following lists all triples and which are consistent and in-
consistent:

1. (l, ∅, g) is consistent.

2. (l, ∅, a), (d, ∅, g), and (d, ∅, a) are inconsistent.

3. (d, {ad}, a) is consistent.

6

4. (l, {ad}, g), (l, {ad}, a), and (d, {ad}, g) are inconsistent.

5. (l, {ad, gd}, a) is consistent.

6. (l, {ad, gd}, g), (d, {ad, gd}, g), and (d, {ad, gd}, a) are inconsistent.

7. (d, {ad, al}, g) is consistent.

8. (l, {ad, al}, g), (l, {ad, al}, a), and (d, {ad, al}, a) are consistent.

9. Any triple with U = {al, gd}, U = {al, gd, ad}, or U containing {gl} is
consistent.

10. Any triple with U = {al} or U = {gd} is inconsistent.

Proof:

1. In the local linear consistency game, we only have to explain where l,
the least element above the left end, is realized and where g, the greatest
element below the right end, is realized. l is realized at τ1 and g is realized
at τ0. Both of these satisfy condition 1a. in the theorem on the local linear
consistency game.

2. If there is no element of λ between two cuts, those cuts are the same cut.
We can’t have different cuts separated by ∅. Consider, for instance, that
the left end of the cut is − or d, either because I left

{0,1}(λ)’s last element is
de . . . , or because I left

{0,1}(λ) = le ∈ (∅, ∅) < lf ∈ (le, . . .) < le ∈ (lf, . . .),
and that last element has ≡loc

2 class (ge, de). These situations require an
infinite descending sequence of elements, which is not supplied by U = ∅.

3. The label d describes a sequence which limits to τ0; likewise, the label a
describes a sequence which limits to τ1. For the unique element of U , we
split U into (−, U, a), (d, U,−).

4. l describes the immediate successor to τ0. If we are to realize both τ0 and l
in a linear order, then l must have an ≡loc

2 class consistent with its having
an immediate predecessor.

5. For l, the immediate successor of τ0, we choose gd ∈ U and split U into the
pair: (l, ∅, gd), (gd, {ad}, a). Those are found to be consistent in previous
items.

6. g describes the immediate predecessor to τ1. So it must have an ≡loc
2 class

consistent with having an immediate successor. To gd ∈ U corresponds a
cut, in which U is split into (?, U0, gd) and (gd, U1, ?). The g in the first
of these triples requires an immediate predecessor, so either U0 contains
some ≡loc

2 class consistent with having an immediate successor (which
doesn’t exist in U = {gd, ad}) or U0 = ∅. But (d, ∅, gd) is inconsistent, by
a previous item.

7

7. symmetric to item 5.

8. symmetric to item 6.

9. Let U = {al, gd}. In (l, U, ?), we assign to l the pair (l, ∅, gd), (gd, U, ?).
Symmetrically, in (?, U, g), we assign to g the pair (?, U, al), (al, ∅, g).
In (−, U,−), to gd ∈ U we assign the pair (−, U, gd), (gd, U,−), and
to al ∈ U we assign the pair (−, U, al), (al, U,−). Now the five triples:
{(l, U, g), (l, U, a), (d, U, g), (d, U, a), (l, ∅, g)} are all consistent, since we can
pass from any information in any of the first four to a pair of them,
satisfying consistency conditions, and the fifth is consistent. We can
split (?, {al, gd, ad}, ?) on ad into (?, {al, gd}, ad), (ad, {al, gd}, ?), which
we have just found to be consistent. If gl ∈ U , we have a simple pro-
cedure: answer any l in (l, U, ?) with (l, ∅, gl)(gl, U, ?); answer any g in
(?, U, g) with (?, U, gl), (gl, ∅, g); split U always into U0 = U1 = U .

10. Realize al ∈ {al} at x0. x0 requires a sequence of predecessors in with ≡loc
2

class in {al}. Realize one such at x1. x1 requires an immediate successor.
Let x2 be that successor. Now the ≡loc

2 class of (λ, x2) recognizes that x2

has an immediate predecessor, so it is not al. The case of U = {gd} is
symmetric. �

With that theorem it is easy to enumerate the ≡3 classes of linear orders:

• 1. The linear order 6, in which I left
{0,1} assigns its maximal element to 2 ∈ 6

and Iright
{0,1} assigns its minimal element to 3 ∈ 6, and no element of 6 is

realized between them: 1.

• 3. There are four ways I left
{0,1} could assign its maximal element to a cut, or

assign its maximal element into λ, to an element with ≡loc
2 class (ge, de).

Likewise, there are four ways Thright(λ) could require an ascending se-
quence (a), not a maximal element (g): +16.

• 5. Only one I left
{0,1} assigns its maximal element into λ, to an element of

≡loc
2 class (ge, le). There are four ways Iright

{0,1} could assign its minimal
element to a cut, or assign its minimal element into λ, to an element with
≡loc

2 class (ae, le): +4.

• 7. Symmetric to the previous item: +4.

• 9. These 10 sets U are consistent with all 5 possible Thleft(λ) classes and
all 5 possible Thright(λ) classes: +10× 25.

• There are five linear orders of size ≤ 4: +5.

• In the linear order 5, the greatest element of I left
{0,1} and the least element

of Iright
{0,1} are assigned to the same element 3 ∈ 5: +1.

8

Definition 1.3 An almost locally closed set is any nonempty A ⊆ λ ∪ λ+ such
that for each a ∈ A there is some a0 ∈ A such that (λ, a) ≡k−1 (λ, a0) and
there is a homomorphism h from the ordered set I loc

{i:i<k−1}(λ, a0) into A sending
lτ ∈ (b, c) to the least element between h(b) and h(c) of ≡loc

k−1 class τ , and
sending dτ ∈ (b, c) to the greatest cut (e, f) in λ+ such that f contains every
element between sup b and inf c of ≡loc

k−1 class τ , and likewise for gτ ∈ (b, c)
and aτ ∈ (b, c). For each label dτ ∈ (b, c) or aτ ∈ (b, c) of I loc

{i:i<k−1}(λ, a0), A
also contains an example: an element of type τ above dτ ∈ (b, c) (or an element
of type τ below aτ ∈ (b, c)) such that for any g ∈ λ between the cut and the
example, there is an h ∈ A not between the example and the cut, such that
(λ, c, d, g) ≡k−1 (λ, c, d, h). For each ≡loc

k−2 class τ which Thloc
k−1(λ, a0) knows to

exist between two labels, A contains an example: an element of type τ between
h of those two labels.

It was not profitable to form ≡loc
2 -almost locally sets, because the ≡loc

2 classes
are very independent. To enumerate ≡4, we will surely need to know ≡loc

3 -almost
locally sets.

2 Enumerating ≡4 classes of linear order

In this section we generate trees of labels that might be I{2,1,0}(λ) for some
linear order λ and we will hypothesize ≡loc

3 classes that might complete Th4(λ).
We’ll use the local consistency game to find which of these are in fact consis-
tent. The result is an effective algorithm for enumerating ≡4 classes of linear
orders. We will write e for the unique ≡loc

0 class and f for the unique ≡loc
1 class.

We first consider “short” assignments I{1,0}, and then we consider assignments
I{1,0} = I left

{1,0}+Iright
{1,0} (by + we refer to the union of I left

{1,0} and Iright
{1,0}, with every

element of I left
{1,0} preceding every element of Iright

{1,0}). There are many different

≡loc
2 refinements of I left

{1,0} + Iright
{1,0} because, unlike ≡loc

0 and ≡loc
1 , ≡loc

2 is not a
singleton. It has four inextensible elements and the intervals in which the ≡loc

2

classes exist can overlap in various ways. We refine each possible assignment
I{2} with three singleton equivalence relations, in turn, and the results are all
the possible assignments I{2,1,0}. Then we assign an ≡loc

3 class to each element
of I{2,1,0} and we assign sets of ≡loc

3 classes to each gap in I{2,1,0}.

Definition 2.1 This is our algorithm for enumerating ≡4 classes of linear or-
ders:

1. Enumerate assignments I{0} = I∅, I{1} = I{0}, and I{1,0} = I{1} (where
the last refinement adds no labels) and assignments I{0}, I{1}, and I{1,0}
in which the last label in I left

τ and some right label in Iright
τ are assigned

to the same element.1 Hereafter, assume that the first three refinements
of I∅ are nontrivial and that I{1,0} = I left

{1,0} + Iright
{1,0}.

1There are only five such assignments, and they are enumerated in the proof.

9

2. Start with the Stack = {I left
∅ } = {∅}.

3. For each sequence A in the Stack, refine (A, ∅) with respect to the single-
ton equivalence relation ≡loc

0 and append to A any labels defined in the
refinement which are constant across an ≡left

4 class. Put the result in the
Stack.

4. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

1 and put the list of
all possible refinements in the Stack.2

5. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

0 and put the list of
all possible refinements in the Stack.3

6. Remove each sequence A from the Stack and do the following:

(a) For each label m which could follow A, append m to A and put the
result back onto the Stack.4

(b) if A doesn’t end ′de−′ or ′df−′, add A to the list of I left
{2} assignments.

7. Group I left
{2} assignments into a common class if they agree on I left

{2}\I
left
{1,0}.

5

8. Group I left
{2} assignments by the set of ≡loc

2 classes which are labeled.

9. Generate and group Iright
{2} assignments, repeating steps 2 through 8.

10. For each I left
{2} and Iright

{2} which label the same ≡loc
2 classes, we now deter-

mine all orderings of I left
{2} ∪ I

right
{2} = I{2}starting with the Stack containing

one element – the assignment I left
{2} + Iright

{2} . Remove each assignment I
from the Stack, and do the following:

(a) Add I to the set of orderings of I left
{2} ∪ I

right
{2} .

(b) For each ordered pair of labels p < q in I, if p is “d . . . ” or “l . . . ”
and q is “a . . . ” or “g . . . ” and p and q don’t label the same ≡loc

2 type,
switch them so that q < p and push the result onto the Stack.

2If the last label in A is ′de′, the only left refinement of (A, ∅) is A with a new label ′df ′

assigned to be equal to the last element of A. Otherwise, return the two assignments: A with
the new greatest element ′lf ′, and A with the new greatest element ′df ′.

3If the last label in A is ′df ′, the only left refinement of (A, ∅) is A with a new label ′de′

assigned to be equal to the last element of A. Otherwise, return the two assignments: A with
the new greatest element ′le′, and A with the new greatest element ′de′.

4The subroutine which finds the labels which could follow A is called the routine of Left
Legal Extensions and is described at the end of this definition.

5This is similar to the classification of ≡left
3 classes into {de, le− df, le− lf − de, le− lf − le

with the last label in (ge, de)} and {le− lf− le with the last label in (ge, le)} which was useful
when enumerating ≡3 classes.

10

(c) For each ordered pair of labels p < q in I, if p = “lα ∈ (I left
{1,0}, ∅)”

and q = “gα ∈ (∅, Iright
{1,0})”, replace p and q by the single label “oα ∈

(I left
{1,0}, I

right
{1,0})”

6 and push the result onto the Stack.

11. Part (a) of the previous item has listed the set of possible I{2} assignments.
For each assignment I{2}, initialize a set Available of ≡loc

2 classes so that
Available = ∅. Go through the ordered pairs of labels p < q in I{2} in turn
from least to greatest (from left to right) and:

(a) if p is “d . . . ” or “l . . . ” and m labels ≡loc
2 class α, then add α to

Available.

(b) if q is “a . . . ” or “g . . . ” and m labels ≡loc
2 class α, then remove α

from Available.

(c) look up the triple (p, Available, q) in a Branching Table, which de-
termines the possible refinements I{2,0} I{2,1} and I{2,1,0} in that cut
of I{2} and, for each refinement, the possible ≡loc

3 class of each label
and the set of ≡loc

3 classes realized in each cut.

The Branching Table constructs all possible assignments I{1,0}[p, q] = {labels
m ∈ I{2,1,0} such that p ≤ m ≤ q} as the union I left

{1,0}[p, ∅) ∪ I
right
{1,0}(∅, q] so

as to list the possible left and right assignments in the ≡loc
0 refinement of the

≡loc
1 refinement of the ≡loc

0 refinement of (p, q) separately. The ≡loc
0 and ≡loc

1

refinements label the least element above p just in case p 6= ′a . . .′. In that case,

1. If (p, q) could be empty7 then add that to the set of possible assignments
I{1,0}[p, q].

2. If least elements above p and greatest elements below q are both labeled by
≡loc
n refinements of {p, q}, for n < 2, consider that (p, q) may be exhausted

before we refine it three times.

3. If the least elements above p are labeled, and the greatest elements below
q are not, consider that (p, q) may be exhausted before we define three
successors to p.

4. If the last elements below q are labeled, and the least elements above p are
not, consider that (p, q) may be exhausted before we define three predeces-
sors to q.

5. Hereafter, assume that I{1,0}[p, q] = I left
{1,0}[p, ∅) + Iright

{1,0}(∅, q], where +
refers to the ordering on the union in which the left ordered set pre-
cedes the right ordered set. We’ll list possible assignments I left

{1,0}[p, ∅) first.
If the least element(s) greater than p should be labeled in the ≡n refine-
ment of {p, q} for n < 2, start with Stack the singleton containing only

6This labels the “only” element of type α in the cut (Ileft{1,0}, I
right
{1,0}) ∈ I

+
{1,0}.

7That is, p could be the predecessor of q, and q could be the successor of p.

11

I left
∅ [p, ∅) = {p}. If the least element(s) greater than p should remain unla-

beled in a low-rank refinement of {p, q}, let Stack the singleton containing
only the word unlabeled and skip steps 6 through 9. 8

6. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

0 and put the list of
all possible refinements in the Stack.9

7. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

1 and put the list of
all possible refinements in the Stack.10

8. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

0 and put the list of
all possible refinements in the Stack.11

9. For each sequence A in the Stack, choose the possible ≡loc
3 classes of the

last element of A.12

Symmetrically, construct possible assignments of labels Iright
{1,0}(∅, q] and pick ≡loc

3

classes for each label. Then, for each assignment I left
{1,0}[p, ∅) and ≡loc

3 classes

for those labels, for each assignment Iright
{1,0}(∅, q] and ≡loc

3 classes for those labels,

8We will pair this Stack to the list of possibilities for Iright
{1,0}(∅, q] and sets U of ≡loc

3 types

and determine which sets U are consistent with which left and right ends.
9The possible refinements of the left half of (A, ∅) are:

(a) If the last label in A is ′l . . .′ or ′g . . .′ or ′o . . .′ and labels the ≡loc
2 type (ge, de) or

(ae, de) and Available is not ∅, then the only refinement of the left end of (A, ∅) with
respect to a singleton equivalence relation is the assignment which assigns the label
′de ∈ (A, ∅)′ to immediately follow the last element of A (by the natural ordering on
elements and cuts, p < ({x ∈ λ : x ≤ p}, {x ∈ λ : x > p}), and no cut or element is
between that element and that cut), and that assignment is a consistent refinement of
the left end of (A, ∅).

(b) If the last label in A is ′le′ or ′lf ′ and Available contains (ge, de), then the label ′de′

can follow A.

(c) If the last label in A is ′l . . .′ or ′g . . .′ or ′o . . .′ and labels the ≡loc
2 type (ge, le) or

(ae, le), then the label ′le′ can follow A.

(d) If the last label in A is ′le′ and Available contains (ge, le), then the label ′le′ can follow
A.

10This is the same as the previous item, but with ≡loc
1 class f replacing ≡loc

0 class e.
11This is the same as footnote 10.
12If the last label of A is ′le . . .′ and if Available contains (ge, le) then assign the ≡loc

3 class
(l, r) where l is determined by A (that is, l gives the names ge − gf − ge to the elements
p− le− lf of A, and l assigns the ≡loc

2 class to ge or p which is the ≡loc
2 class which p labels)

and r is the ≡left
3 class with Ileft{1,0} = le−lf−le and the last element in ≡loc

2 class (ge, le). If the

last label of A is ′le . . .′ and if Available contains (ge, de) then assign the ≡loc
3 class (l, r) where

l is determined by A, and r is any of the four ≡loc
3 classes with Ileft{1,0} = de, le−df, le− lf−de,

or le− lf − le with the last element in ≡loc
2 class (ge, de).

12

construct all possible sets U of ≡loc
3 types to be realized between (I left

{1,0}[p, ∅) and

Iright
{1,0}(∅, q]).

13 The ≡loc
3 types are always realized in groups, which describe

1. A sequence of n elements with a sequence of elements descending from
above to the greatest of the n elements and a sequence of elements ascend-
ing from below to the least of the n elements, for 1 ≤ n ≤ 7.

2. The ≡loc
3 class (l, r) such that l describes 3 elements ge − gf − ge, the

least of which is in ≡loc
2 class (ae, le) indicating that it is the limit of a

sequence of elements ascending from below, and r describes 3 elements
le− lf − le, the greatest of which is in ≡loc

2 class (le, ge) indicating that it
has an immediate successor.

3. The ≡loc
3 class (l, r) such that r describes 3 elements of which the greatest

is the limit of a sequence of elements descending from above and l describes
3 elements of which the least has an immediate predecessor.

4. The ≡loc
3 class (l, r) such that r describes 3 elements, the third of which

has an immediate successor and l describes 3 elements, the third of which
has an immediate predecessor.

We name these sets of ≡loc
3 classes:

1. 1 = {(ae = af = ae, de = df = de)} contains the isolated element by itself.

2. 2 = {(ae = af − ge, de = df = de), (ae = af = ae, le − df = de)}
contains a pair of 2 elements, one the immediate successor of the other,
with sequences limiting to them from above and below.

3. N = {3, 4, 5, 6, 7}, where 3 = {(ae − gf − ge, de = df = de), (ae = af −
ge, le − df = de), (ae = af = ae, le − lf − de)} and in general, n has n
elements (2 < n < 8), describes the finite set of between three and seven
element elements, with sequences limiting to them from above and below.

4. The last three sets of a single ≡loc
3 class each, as enumerated above, we

name: W , X, and Z.

The subroutine Con(U) declares the triple (I left
{1,0}[p, ∅), U, I

right
{1,0}(∅, q]) to be

consistent just in case the following tests are met:14

13That is done by the subroutine Con(U).
14Footnote 7 carefully describes the case in which (p, q) = ∅ and the ≡loc

0 refinement of
[p, q] describes q as the immediate successor of p and describes p as the immediate predecessor
of q. This leaves the case in which the ≡loc

0 refinement of [p, q] doesn’t describe the least
element(s) above p or doesn’t describe the greatest element(s) below q, so that the current
subroutine will describe, for instance, [p−unknown left −U = ∅−unknown right−q]. Step
2 of the branching table describes [p − le − df = de = q = (U = ∅) =unknown right= q],
since (p, q) is exhausted before three refinements can be made, with Ileft{1,0}[p, ∅) preceding

Iright
{1,0}(∅, q]. However, le − df = de is a complete Ileft{1,0}[p, ∅) assignment, so we will consider

that triple again in this subroutine. Rather than make arbitrary distinctions, when writing

13

1. Each element of U implies the existence of a number of ≡loc
2 types. Check

that all of those are in Available.

2. If I{1,0}[p, q] contains the label ′de′ or ′ae′, then U 6= ∅.

3. If p is ′dx′0 = ′dx′1 . . . or q is ′ax′0 = ′ax′1 . . . , check that U contains an
extension of each xi into ≡loc

3 .

4. If U contains W then it must contain X or Z or Iright
{1,0}(∅, q] has three

predecessors to q, the least of which requires a predecessor.

5. If U contains X then it must contain W or Z or I left
{1,0}[p, ∅) has three

successors to p, the last of which requires a successor.

6. If I left
{1,0}[p, ∅) has three successors to p, the last of which requires a suc-

cessor, then U contains X or Z or U is empty and Iright
{1,0}(∅, q] has three

predecessors to q, the least of which requires a predecessor.

7. If Iright
{1,0}(∅, q] has three predecessors to q, the least of which requires a

predecessor, then U contains W or Z or U is empty and I left
{1,0}[p, ∅) has

three successors to p, the last of which requires a successor.

8. If I left
{1,0}[p, ∅) requires a sequence limiting to p or to p− le or to p− le− lf

or to p− le− lf − le, then U contains 1 or 2 or Z or an element of N or
both W and X.

9. If Iright
{1,0}(∅, q] requires a sequence limiting to q or to ge−q or to gf−ge−q

or to ge − gf − ge − q, then U contains 1 or 2 or Z or an element of N
or both W and X.

10. If W ∈ U then U contains 1 or 2 or Z or X or an element of N .

11. If X ∈ U then U contains 1 or 2 or Z or W or an element of N .

The subroutine Left Legal Extensions accepts an assignment A and deter-
mines which labels might follow A as parts of an ≡loc

2 refinement of I{1,0}.

1. initialize a set Available

2. If A labels the ≡loc
2 class (ae, le) or (ge, le), add the term predecessor to

Available.

code we double-check the counting of U = ∅ by listing all short possibilities (for I{1,0}[p, q],

≡loc
3 classes of those labels, and the set U = ∅ of ≡loc

3 classes in the center) and then listing
those which are accepted by Con(U), and then identifying and removing redundancy.

This is not to blur the theoretical distinction between assignments I{1,0}[p, q] which assign

the least and greatest (sequences of, or single) elements of ≡loc
0 type e or declare that element

to be unknown, and those which know the least and greatest elements but find the interval to
be empty – either the ≡loc

0 refinement of I∅({p, q}) = {p, q}, I{0}[p, q], or the next refinement,
I{1}[p, q], or the next, I{1,0}[p, q], assign the least and greatest element to be equal, and be
the unique element, or assign no labels at all.

14

3. If A labels the ≡loc
2 class (ge, de) or (ge, le), add the term successor to

Available.

4. If A labels the ≡loc
2 class (ge, le) or (ae, de) or both (ae, le) and (ge, de),

add the term repeatable to Available.

5. if the last label in A is ′le′ or ′lx′ for x one of the ≡loc
2 classes (ae, le) or

(ge, le),

(a) if Available contains the term successor,

i. if Available contains the term predecessor, then ′lx′ can follow
A, for x either (ge, de) or (ge, le).

ii. ′lx′ can follow A, for x either (ae, le) or (ae, de).
iii. A can be followed by dx0 = dx1 = . . . , for {xi : i ≤ n} any

consistent descending sequence.15

(b) if Available doesn’t contain the term successor, then only ′lx′ can
follow A, for x either (ge, de) or (ge, le).

6. if the last label in A is ′le′ or ′lx′ (for x one of the ≡loc
2 classes (ae, de)

or (ge, de)) or ′dx′ for any ≡loc
2 class x,

(a) if Available contains the term repeatable,

i. if Available contains the term predecessor, then ′lx′ can follow
A, for x either (ge, de) or (ge, le).

ii. ′lx′ can follow A, for x either (ae, le) or (ae, de).

(b) A can be followed by dx0 = dx1 = . . . , for {xi : i ≤ n} any consistent
descending sequence.16

Theorem 2.1 The program in the preceding definition enumerates ≡4 classes
of linear orders.

Proof:

• Steps 1 through 5 list all possible assignments I{1,0}. Step 1. lists those
assignments I{1,0} for which it does not hold that I left

{1,0} < Iright
{1,0}. Those

are I{0} = ∅, I{0} = oe, I{1} = le − ∅ − ge, I{1} = le − of − ge, I{1,0} =
le − lf − ∅ − gf − ge, I{1,0} = le − lf − oe − gf − ge. This same list
was constructed as an initial step in enumerating ≡3 theories of linear
order. Steps 2 through 5 define I left

{1,0}: Step 2 initializes I left
∅ = ∅. Steps 3

through 5 add ′de′ or ′le′, ′df ′ or ′lf ′, and ′de′ or ′le′. When enumerating
15For each nonempty set U of ≡loc

2 types, if

A. ((ae, le) ∈ U → ((ge, le) ∈ U or (ge, de) ∈ U or Available contains the term predecessor))
and

B. ((ge, ae) ∈ U → ((ge, le) ∈ U or (ae, le) ∈ U or Available contains the term successor)),

then the labels {′dx′ : x ∈ U} can all be equal, and be the next distinct element of A.
16See the previous footnote.

15

≡3 theories of linear order, we found that there are four possibilities for
I left
{1,0}. But at this point our program ceases to imitate the enumeration

of ≡3 classes of linear orders.

• Step 6 defines the ≡left
4 equivalence class of the ≡loc

2 refinement of I left
{1,0}

by adding a label to A, then putting the result back on the stack. Step 6
calls a subroutine to determine which labels can be next.

We claim that if A is ever on the stack (each label of an ≡loc
2 class mentioned

in A is a legal extension of the preceding sequence) and the last label is not ′de′,
then then A is the assignment I left

{2}(λ) for some linear order λ. Conversely, we
claim that if A is ever on the stack and its last label is ′de′, then A is not the
assignment I left

{2}(λ) for some linear order λ, and if m is a label which is not a
legal extension of A, then appending m to A produces an inconsistent sequence.

First, suppose the last label of A is ′de′. That label corresponds to a sequence
of elements limiting to the left, each of which has some ≡loc

2 classes x0, x1 . . . , so
if A were I{2}(λ) for some λ, A should label the least elements of type x0, x1, . . . ,
so A should end ′de′ = ′dx′0 = ′dx′1 To be precise, suppose B = Iright

{2} (λ)
so that A < B is I{2}(λ). Now A and B should label the same ≡loc

2 classes.
Since the last label in A is ′de′, A labels no ≡loc

2 classes, so in the initial state of
the local linear consistency game is (de, ∅, B). As we argued in the enumeration
of ≡3 classes, this is inconsistent, since de < B and de requires a sequence of
elements to descend from above, a terminal segment of which is < B, hence in
the gap.

The other A = I left
{1,0} which can be on the stack when we first read step 6

is le − lf − le. This is consistent. Let B = ge − gf − ge, A < B, U = ∅; the
triple (le, ∅, ge) is consistent, since le can refer to the right end and ge can refer
to the left end.

The subroutine Legal Extension announces in steps 5 and 6 which labels can
follow A. For instance, le − le − le − l(ge, de) − l(ae, de) is inconsistent, since
the fourth label requires something to limit to it from the right, and nothing is
available yet to make up that limiting set. On the other hand, le − le − le −
l(ge, le)−l(ae, de) is consistent, since the fourth label requires a successor, which
can have ≡loc

2 type (ge, le) and the fifth label requires something to limit to it
from the left, which can be an infinite sequence of elements in ≡loc

2 class (ge, le).
If A labels no ≡loc

2 classes, and m is a label, then m can follow A just in case the
triple (A, ∅,m) is consistent. 17 Now suppose A contains already some labels in
I left
2 . In the next triple (A,U,m), U will contain only ≡loc

2 types labeled in A.
Steps 1 through 4 describe possibilities for U . Step 2: A predecessor is an element
of U that player II can play, in response to player I’s play at g in (?, U, g). Step 3:
A successor is an element of β that player II can play in response to l in (l, U, ?).
Step 4: A repeatable subset of U is a set U0 of ≡loc

2 classes such that for each
τ ∈ U0, player II can answer τ in (?, U, τ) or in (τ, U, ?) with another element

17For that reason, ′le′ can be a final element of A and ′de′ cannot be a final element of A
–∅ cannot follow ′de′.

16

of U0 and such that (d, U0, a) is consistent – i.e., U0 can form infinite sequences
which ascend to a and descend to d. A repeatable element satisfies every need it
creates during the local linear consistency game. Step 4 claims that {(ge, le)},
{(ae, de)}, and {(ae, le), (ge, de)} have this property and that any repeatable
set contains one of those. That these sets are repeatable is clear. Conversely,
the only sets which contain none of {(ge, le)} or {(ae, de)} or {(ae, le), (ge, de)}
are: ∅, {(ae, le)}, and {(ge, de)}. Clearly, ∅ doesn’t contain anything that can
be repeated infinitely and descend to d or ascend to a. {(ae, le)} requires an
immediate successor, and doesn’t contain one; {(ge, de)} requires an immediate
predecessor and does not contain one. Steps 5 and 6 of the subroutine legal
extension match situations, in which player I can force a certain ≡left

2 or ≡right
2

class, to requirements on U having a successor or a predecessor or repeatable
elements.

Suppose A is on the stack in Step 6 and the last label of A is not ′de′ nor ′le′.
Then a nonempty set x0, x1, . . . of ≡loc

2 types are labeled in A. Until the first
≡loc

2 type, it has sufficed to check whether two labels will label the same gap,
and to check triples (l, ∅, g). Only when we introduce the second, third, and final
≡loc

2 classes do we consider nonempty triples. We create a simple Thright(λ) to
pair with A, in order to determine the consistency of A followed by a given next
label. We choose: ax0 = ax1 = · · · = ae for the right end. If the last element of
A is the ≡2

loc class (x, y), e.g., (x, y) = (ae, de), then (y, {x0, x1, . . . }, ae) is the
triple between A and (λ, ∅), the common image of all labels in the right end. A
is only consistent if this triple is consistent.

• Step 7 is justified because the initial labels of I left
{2} are irrelevant in every

further situation where we use I left
{2}.

• Step 8: We must only pair assignments I left
{2} and Iright

{2} which label the
same elements. For, in the definition of the ≡loc

2 -refinement of I{1,0}, we
label every ≡loc

2 type which is realized in λ because 2 is greater than the
indices of I{1,0}.

• Step 10: Let’s check that this process constructs all orderings of the union
of the left assignment and the right assignment. For instance, given 12345
and abc, we’d initialize the stack with 12345abc, then find the pair that
can be switched, yielding the order 1234a5bc, then find further pairs that
can be switched, yielding the orders 123a45bc and 1234ab5c, and again,
yielding the orders 12a345bc and 123a4b5c (twice) and 1234abc5, and so
on. We claim that every ordering of two sets A ∪ B respecting an initial
order on A and an initial order on B is found this way: if we want the
least element of B to precede n0-many elements of A, we switch it n0-
many times with the greatest elements of A; then, if we want the next-
least element of B to precede n1 < n0-many elements of A, we switch it
n1-many times with the greatest elements of A; and so on. This routine is
inefficient for finding all the orderings of A ∪B. But it is efficient for our
purposes for two reasons: 1. each switch is illegal just in case it considers

17

switching an element of A and an element of B which label the least
and greatest elements of the same ≡loc

n class (the least must precede the
greatest), and 2. if we consider elements of A and B which label the least
and greatest elements of an ≡loc

n class, we can enumerate the possibility
that those labels are equal, labeling the unique element in that class.

• Step 11: We claim that this pass correctly finds the set of ≡loc
2 classes α

which can be realized in each cut (b, c) ∈ I+
{2}, i.e., the set of α such that

the least element(s) in α is/are labeled in b and the greatest element(s) in
α is/are labeled in c. For each α, we put α in the set available when we see
the least element(s) in that class, and we take α out of the set available
when we see the last element(s) in that class.

Now we claim that the subroutine branching table correctly describes the
≡4-different possibilities for the interval [p, q], where (p, q) ∈ I+

{2}.

• Step 1: The interval [p, q] could be just the pair {p, q}, if p is the least or
greatest (or unique) element of type (ae, le) or (ge, le) and q is the least
or greatest element of type (ge, le) or (ge, de). That happens, as in step
1, just in case p can be a predecessor and q can be a successor. In any
other case, the interval must be nonempty – p = ′d . . .′ or p = ′lx′ for
x = (ae, de) or x = (ge, de), so that the triple for [p, q] is (−, U, ?).

• For n < 2, steps 2 through 4 consider whether an ≡loc
n -refinement of I{2}

labels the first element(s) in ≡loc
n class α above p ∈ I{2} (and below q).

That occurs just in case: p = ′d . . .′ or p = ′l . . .′ or p = ′g . . .′, since the
condition n > 2 fails, and the final condition – that p = ′a . . .′ and there
exists a boundary b < p such that α is not realized in (b, p) – fails because
≡loc
n is a singleton equivalence class, hence every element of (b, p) realizes

α; further, (b, p) is not empty because p = ′a . . .′.

• In step 2, if (p, q) is such that both the least elements and the greatest
elements there are labeled in a ≡loc

0 refinement, the interval (p, q) could
have < 6 elements so that three refinements exhaust the interval and label
some element twice just in case p is ′g . . .′ or ′l . . .′ or ′o . . .′ and labels ≡loc

2

type (ae, le) or (ge, le), if q is ′g . . .′ or ′l . . .′ or ′o . . .′ (where o means that
the least and greatest element are assigned to the same element, a unique
element of the describe type) and labels ≡loc

2 type (ge, de) or (ge, le), and
if z is in Available. In this case, we add all possible ≡loc

0 refinements in
the cut (p, q) for which some labels are assigned to the same element, ≡loc

1

refinements of ≡loc
0 refinements in the cut (p, q) for which some labels are

assigned to the same element, and ≡loc
0 refinements or ≡loc

1 refinements
of ≡loc

0 refinements in the cut (p, q) for which some labels are assigned
to the same element: the least of this is the possibility that ′le > p′ is
assigned to q and ′ge < q′ is assigned to p or that ′le > p′ and ′ge < q′

are assigned to the same element; next-least is: ′oe ∈ (p, q)′; largest is
possibility that the first two refinements occur without overlap, and then

18

the final refinement assigns the least and greatest element to be equal.
The full list is: p− oe− q, p− le− ge− q, p− le− of − ge− q, p− le− lf −
gf − ge − q, p − le − lf − oe − gf − ge − q. The next-larger assignment,
p − le − lf − le − ge − gf − ge − q, is a case in which the third element
after p has 3 successors, the greatest of which has ≡loc

2 type (ge, le) and in
which the third element before q has 3 successors, the least of which has
≡loc

2 type (ge, le), and in which the cut (I left
{1,0}[p, ∅), I

right
{1,0}(∅, q]) happens

to contain no ≡loc
3 classes at all.

• In step 3, if (p, q) is such that the least elements are labeled and the
greatest elements are not labeled, then add all ≡loc

0 refinements on the left
of ≡loc

1 refinements on the left of ≡loc
0 refinements on the left in (p, q) for

which I left
{1,0}[p, ∅) defines every element between p and q, leaving no ≡loc

3

elements in the gap (I left
{1,0}[p, ∅), q), without defining all three refinements

and assigning ≡loc
3 types to them. This is possible just in case p is ′g . . .′

or ′l . . .′ or ′o . . .′ and labels ≡loc
2 type (ae, le) or (ge, le). Then, if x is in

Available, add p− le−∅− q to the list of possible I left
{1,0}[p, q]. The list has

one or two elements: if (ge, de) ∈ Available, then p− le− q could exhaust
[p, q]; if if (ge, de), (ge, le) ∈ Available, then p − le − le − q could exhaust
[p, q].

• Step 4 is symmetric.

• We have not considered all possibilities in which p leaves the least element
unlabeled or q leaves the greatest element unlabeled– we have only consid-
ered the possibilities in which that happens and in which one side can be
labeled but its labels don’t get refined three times without exhausting the
interval (p, q). We must still consider the 6≡4 possibilities in which three
refinements of the left side of (p, q) and and their ≡loc

3 class exhaust the
gap, while the right side is not labeled, and we also consider the possibility
that both left and right ends are unlabeled. We achieve this by making
Stack the singleton containing the word unlabeled, if that side is unlabeled,
in Step 5.

• Steps 6,7,8 develop the possible labels on the left end of (p, q) if that end
of the interval should be labeled. This completes I{2,1,0}

• If we find ≡loc
3 types for the elements discovered in step 8, then we will

know ≡loc
3 types for all elements of I{2,1,0}.

Let’s prove the grouping of ≡loc
3 classes described in the definition.

Let’s introduce a shorthand notation for inextensible ≡left
3 classes: ′de′,′ le−

df ′,′ le− lf − de′,′ le− lf − le′ with the third element in ≡loc
2 class (ge, de), and

′le− lf − le′ with the third element in ≡loc
2 class (ge, le) imply the existence of

exactly 0, 1, 2, or 3 least elements, or 4 or more least elements. So we’ll refer to
these ≡left

3 classes as 0, 1, 2, 3, 4. From this we obtain shorthand notations for
≡loc

3 class: (n,m) where n,m < 5.

19

Whenever the ≡left
3 classes (2, 4) is realized, it has 4 or more immediate

successors; the first of these is in ≡left
3 class (3, 4) or (3, 3). In this way, many

types imply each other:

1. (0, 0) implies nothing.

2. (0, 1)⇔ (1, 0)

3. (0, 2)⇔ (1, 1)⇔ (2, 0)

4. (0, 3)⇔ (1, 2)⇔ (2, 1)⇔ (3, 0)

5. (0, 4)⇐ (1, 3)⇔ (2, 2)⇔ (3, 1)⇒ (4, 0)

6. (0, 4)⇐ (1, 4)⇐ (2, 3)⇔ (3, 2)⇒ (4, 1)⇒ (4, 0)

7. (0, 4)⇐ (1, 4)⇐ (2, 4)⇐ (3, 3)⇒ (4, 2)⇒ (4, 1)⇒ (4, 0)

8. (3, 4)⇒ (4, 3) ∨ (4, 4)

9. (4, 3)⇒ (3, 4) ∨ (4, 4)

10. (4, 4) implies nothing.

The lines of this enumeration are not an equivalence relation on ≡loc
3 classes,

but they have the following properties: they are a set of sets of ≡loc
3 classes

such that any ≡loc
3 class is in one of the given sets, the sets are closed under the

implication between ≡loc
3 classes (l, r) and (p, q) which holds in case ∃x(l<x ∧

r>x) → ∃x(p<x ∧ q>x), any any two sets A and B are distinguished by some
≡loc

3 class which is in one and not in the other.
If the ≡loc

3 class (n,m) for n < m < 3 exists, its existence is implied by the
existence of its neighbor (n + 1,m − 1). The ≡loc

3 classes are thereby grouped
into between 1 and 7 elements in a short chain of immediate predecessors and
successors, and the final three classes.

When the program asserts that N exists, that should be interpreted as saying
that one of the groups of 2, 3, 4, 5, 6 or 7 chains of ≡loc

3 classes in the list above
exists.

• In Step 1, if a ≡loc
3 type γ exists in the gap (b, c) ∈ I{2,1,0} and implies the

existence of an ≡loc
2 type γ′ then (b, c) is a subinterval of (e, f) ∈ I{1,0}. So

the type γ′ must exist in the interval (e, f) and the least element(s) and
greatest element(s) of type γ′ should be labeled in the ≡loc

2 -refinement of
I{1,0}. Two ≡loc

3 classes in the same group imply the same sets of ≡loc
2

classes:

– ≡loc
3 classes in 1 imply {(ae, de)},

– ≡loc
3 classes in 2 imply {(ae, le), (ge, de)}.

– ≡loc
3 classes in N imply {(ae, le), (ge, le), (ge, de)}.

– ≡loc
3 classes in W imply {(ae, le), (ge, le)}.

20

– ≡loc
3 classes in X imply {(ge, le), (ge, de)}.

– ≡loc
3 classes in Z imply {(ge, le)}.

• Step 2 is necessary, since if U = ∅, then in the labeled linear consis-
tency game beginning with no labels (A = ∅) and α((∅, ∅)) ≡left

3 the ≡left
3

class that the the main program picked (in step 9.) for the last element
of I left

{1,0}[p, ∅) and the α((∅, ∅)) ≡right
3 the ≡right

3 class that the the main
program picked (in the paragraph after step 9.) for the least element of
I left
{1,0}(∅, p].

• In the labeled linear consistency game beginning with no labels (A = ∅)
and α((∅, ∅)) an ≡3 class which implies the existence of x0, x1, . . . , player
II has lost unless there is an extension of each of those classes in β((∅, ∅)) =
U . So Step 3 is necessary.

• The remaining steps, 6 through 11, describe how W and Z and one ≡left
3

class require a successor, which require a predecessor, which requires a
sequence limiting from below or above, and under what conditions these
requirements are satisfied. The linear consistency game makes that sort
of reasoning precise.

This notion of “grouping” can be extended to almost locally closed sets. For
instance, each of the ≡loc

2 classes {ad, al, gd, gl} requires either an ascending
sequence of elements or a greatest predecessor and requires either a descending
sequence of elements or a least successor. We can track when those requirements
are satisfied. But we could consider, instead, a set of four ≡loc

2 -almost locally
closed sets, each of which is always consistent:

• {97, 98, 99} ⊆ ω is an almost-locally closed set in which every element has
≡loc

2 class gl.

• {97, (ω, ω× 2 \ ω), ω, ω+ 1, ω+ 2} ⊆ ω× 2∪ (ω× 2)+ is an almost-locally
closed set realizing the two ≡loc

2 classes gl and al.

• A symmetric subset of (ω × 2)∗ realizing the ≡loc
2 classes gl and gd.

• {(0,−97), ({b ∈ 2 × η : b < (0, 0)}, {b ∈ 2 × η : b ≥ (0, 0)}), (0, 0), (1, 0),
({b ∈ 2×η : b ≤ (1, 0)}, {b ∈ 2×η : b > (1, 0)}), (0, 99)} ⊆ 2×η∪ (2×η)+

is an almost-locally closed set realizing the two ≡loc
2 classes gd and al.

If we want to completely replace ≡loc
2 classes by ≡loc

2 - almost locally closed sets,
one further item is sufficient:

• {−97, ({b ∈ η : b < 0}, {b ∈ η : b ≥ 0}), 0, ({b ∈ η : b ≤ 0}, {b ∈ η :
b > 0}), 99} ⊆ η is an almost-locally closed set in which every element has
≡loc

2 class ad.

Similarly, for ≡3, we can realize all of the ≡loc
3 classes in each of the first 7

groups in an almost locally closed set of size n + 4, containing n + 2 elements
of n × η and two cuts, where n is 1, 2, . . . , or 7. The remaining ≡ classes are
realized in the following almost-locally-closed sets:

21

• {(0,−97), ({b ∈ 2 × η : b < (0, 0)}, {b ∈ 2 × η : b ≥ (0, 0)}), (0, 0), (1, 0),
(2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), ({b ∈ 2 × η : b ≤ (8, 0)}, {b ∈
2 × η : b > (8, 0)}), (0, 99)} is an almost-locally closed set found in the
linear order 8 × η, realizing the ≡loc

3 classes {(0, 4), (1, 4), (2, 4), (3, 4),
(4, 3), (4, 2), (4, 1), (4, 0)}.

• {95, (ω, ω × 2 \ ω), ω, ω + 1, ω + 2, ω + 3, ω + 4, ω + 5, ω + 6, ω + 7} is an
almost-locally closed set realizing in ω × 2 the ≡loc

3 classes {(0, 4), (1, 4),
(2, 4), (3, 4), (4, 4)}, since (ω × 2, ω + 4) ≡3 (ω × 2, 95).

• A symmetric subset of (ω × 2)∗ realizes the ≡loc
3 classes {(4, 0), (4, 1),

(4, 2), (4, 3), (4, 4)}.

• {91, 92, 93, 94, 95, 96, 97} ⊆ ω is an almost-locally closed set realizing in ω
the ≡loc

3 class (4, 4).

Different sets of these almost locally closed sets realize the same set of ≡loc
3

classes. For instance, the almost locally closed sets in (ω × 2)∗ and ω × 2 given
as examples above together realize the same elements as the almost locally closed
sets in 8× η and ω. Thus, the power set of this set of almost locally closed sets
counts certain consistent sets of ≡loc

3 classes multiple times, and this should be
discounted in an enumeration of ≡4 classes.

This concludes the proof that definition 2.1 defines an enumeration of the
≡4 classes of linear orders. �

Implementing the program described in the definition in Perl, it ran on this
laptop in about two minutes and counted 82988077686330 ≡4 classes of linear
orders.

3 infinitary logic

For any linear order λ, let EFλ(µ, π) be the game in which player I chooses an
element a ∈ λ, players I and II choose elements m ∈ µ and p ∈ π (a normal turn
of the EF game) and then the players play EF{b∈λ:b<a}((µ,m), (π, p)). After
this process has been repeated, and elements ai : i ∈ I of λ have been chosen
by player I, and pairs mi ∈ µ, pi ∈ π have been played by both players, then
the players play EF{b∈λ:∀i∈I(b<ai)}((µ,mi)i∈I , (π, pi)i∈I). We call λ the clock in
this game. If player II wins EFλ(µ, π), then we say µ ≡λ π.

For the rest of this section, suppose that the clock λ is an ordinal. We want
to express ≡λ as a tree of labels of local classes; now that tree will have a rank
for every descending sequence A ∈ λ and have infinitely wide ranks.

Definition 3.1 If α is an ordinal and µ is a linear order and I is an assignment
of labels into µ ∪ µ+ then the ≡loc

α -refinement of I is the assignment I ′ which
contains I and in addition, for each cut (b, c) in I and for each inextensible ≡loc

α -
equivalence class τ realized in λ between b and c, a label for the least element or
elements of type τ if one of the following conditions hold:

22

1. b = ∅ or

2. there is a maximal b′ ∈ b (for all e ∈ b, b′ ≥ e) such that the label of b′

begins “g . . . ” or “l . . . ” or “d . . . ” or b′ is “aτ ′ ∈ (e, f)” for τ ′ an ≡loc
β

class such that β < α or

3. labels xτ ′ . . . where τ ′ has quantifier rank ≥ α are bounded in b by some
element of µ or

4. elements n ∈ µ such that (µ, n) is in ≡loc
α class τ are bounded in b by some

element of µ. 18

In those cases, I ′ labels the least element in class τ above b with the label “lτ ∈
(b, c)”, or I ′ labels the cut below the least decreasing sequence of elements in
class τ above b with the label “dτ ∈ (b, c)”. 2. Similar conditions determine
whether I ′ labels the greatest element or elements of type τ below c.

The item which allows τ to be defined above sup b if b is ultimately of low
rank (the 3rd item in the preceding definition) does not pass over limits: suppose
β is the least element of A and α < β and α is a limit and τ is an ≡loc

β class and
“aτ . . . ” is a label in IA assigned to the cut (b, c) in λ+. Suppose that for each
γ < α no ≡loc

γ class which is realized in λ is realized in b is not bounded in b. It
does not follow that the ≡loc

α type τ is realized in b. Nor does it follow that, if
τ is realized in b, then it is not bounded in b. Thus, the least α for which some
≡loc
α type’s least occurrence above b is defined in the ≡loc

α refinement of IA can
be any α < β.

Let’s see how condition 3 (in the preceding enumeration) works in an exam-
ple.

• For any n < ω there is an m < ω such that ωm ≡n ωω. In particular, the
equivalence holds if n ≤ 2m.

• ωω ≡ω ωω + ωω (So for any ordinal α, ωω + α ≡ω ωω + ωω + α).

• ωω × 2 ≡ω+1 ω
ω × 3 (So for any ordinal α, ωω × 2 + α ≡ω+1 ω

ω × 3 + α).

• ωω × 4 ≡ω+2 ω
ω × 5.

Now let’s compute the labelings of those last two linear orders. For n = 4 or
n = 5, the assignment ∪n∈ω ∪A⊆n IA(ωω × n) labels every element of the least
copy of ωω and labels the gap at the right end, (ωω×n, ∅). The elements of ωω×n
which are not labeled by ∪n∈ω ∪A⊆n IA(ωω × n) form an interval. Let’s name
the interval of unlabeled elements in each model λ0 ⊆ ωω × 4 and µ0 ⊆ ωω × 5
so that ωω × 4 = ωω + λ0 and ωω × 5 = ωω + µ0. The assignment I{ω}(ωω × n)
labels the least and greatest element of each ≡ω type in λ0 and µ0. This labels
every element of the second copy of ωω in ωω×n. The elements of ωω×n which
are not labeled by I{ω}(ωω×n) are an interval, too. Let’s call that interval λ1 in

18That is, there is some bounding element m: ∃m ∈ µ((m < supb) ∧ ¬∃n(n ∈ µ(m,supb) ∧
(µ, n) ∈ τ)).

23

one model and µ1 in the other model, so that ωω× 4 = ωω +λ0 = ωω +ωω +λ1

and likewise ωω × 5 = ωω + ωω + µ1.
For any finite set A ⊂ ω, for n = 4 or n = 5, the assignment I{ω}∪A(ωω ×n)

labels nothing; if the least ordinal not in A is n, no ≡loc
n type can be labeled

in the interval (b, c) = (ωω + ωω, ∅) between the elements of ωω × n which have
been defined by I{ω}(ωω × n), because b is an unbounded sequence of labels of
quantifier rank ω and ω > n. For each label in I{ω}(ωω × n), the ≡loc

ω+1 class of
that label is the same in both models. All intervals (b, c) are empty, since every
element is defined, except for the interval (b, c) = (ωω+ωω, ∅). There, the ≡loc

ω+1

classes (Thright
ω+1 (ωω + α), Thleft

ω+1(ωω)) and (Thright
ω+1 (ωω + α), Thleft

ω+1(ωω + ωω))
are realized, for all ordinals α < ωω, and nothing else is realized.

The reader who has patiently followed this description of the labels relevant
to ≡ω+2 will now see the role of condition 3: if condition 3 were not required
and I{ω}∪A(ωω × n) were to define every element of the third copy of ωω, then
the interval of elements not defined in ωω × 4 would not contain the ≡loc

ω+1 class
(ωω×2+α, ωω×2), whereas the interval of undefined elements of ωω×5 would
indeed contain that ≡loc

ω+1 class, indicating that these linear orders would be
6≡ω+2.

The four conditions enumerated in definition 3.1 prevent the labeling of many
≡loc
α classes in many intervals. In the case of finite k, these conditions make the

assignment of labels which is relevant to ≡k seem to me like an unusual subset
of the set of all first and last elements of all types in all intervals. But when
the quantifier rank is infinite, defining τ only above b which are not aτ and
which are ultimately of low rank eliminates many labels from the assignment,
often reducing the cardinality of the assignment which labels the first and last
element of each ≡loc

α class in all intervals.

Definition 3.2 For any linear order µ, for any finite sets A and B of ordinals
in λ, we define IA(λ) before IB(λ) just in case

∑
α∈A 2α <

∑
α∈B 2α.19 Let

I∅(λ) = ∅.
For each ordinal β, for each finite (possibly empty) set A of ordinals all

greater than β, let IA∪{β}(λ) be the ≡loc
β refinement of ∪{IA∪B(λ) : B is a finite

subset of β}.

The reader should notice that if β 6= 0, I{β}(λ) is the ≡loc
β refinement – not

of ∅, but of an already rich set of labels, indeed, the union of labels in the tree
up to the rank indexed by {β}.

Lemma 3.1 Let α+1 be any successor ordinal. Player I has a winning strategy
in the game EFα+1(µ0, µ1) after the first move has identified ai ∈ µi if there is
a finite subset A ⊆ α such that conditions 1 ∧ 2 ∧ 3 or 4 ∧ 5 ∧ 6 hold:

1. for some β < α, A ⊆ β, and
19This is the usual lexicographical ordering on decreasing sequences of ordinals where A < B

holds just in case the greatest element of B is larger than any element of A or the greatest
elements of A and B are both α, and A \ {α} < B \ {α}.

24

2. IA(µ0) and IA(µ1) induce the same ordering ≤ on the same labels and the
elements a0 and a1 are in the same cut (b, c) ∈ (IA(µi))+, and

3. some ≡loc
β type δ (the discrepancy) is realized between sup b and ai in µi

and δ is not realized between sup b and a1−i in µ, and the least occurrences
of δ are definable above sup b in the sense of definition 3.1, or

4. 1 A contains the predecessor, α− 1, of α and

5. for each B ⊆ α−1, IB(µ0) and IB(µ0) induce the same ordering ≤ on the
same labels and there is some cut (b, c) ∈ (∪B⊆α−1IB)+ such that ai and
a1−i are between b and c, and the same ≡loc

α−1 classes are realized between
b and ai as are realized between b and a1−i, and

6. for some ≡α−1 class ρ, for some i < 2 and pi ∈ µi and for all p1−i ∈ µ1−i
if IA\{α−1}(µ

>p0
0) and IA\{α−1}(µ

>p1
1) assign the same labels in the same

order, then conditions (1 ∧ 2 ∧ 3) ∨ (4 ∧ 5 ∧ 6) hold at rank A \ {α − 1}
in the tree of labels after a0 ∈ µ>p00 and a1 ∈ µ>p11 are played on the first
move in the game EFα(µ>p00 , µ>p11).

Proof: Suppose there exists a finite set A ⊆ α such that conditions 1∧ 2∧ 3
hold. Player I plays the element of ≡loc

β type δ (the discrepancy) between sup b
and ai in µi. Player II must respond with an element of type δ, since β-many
moves will remain after this turn is completed (player I could begin the next turn
by choosing β < α to be the “number of moves” remaining). By assumption,
player II will only find such an element below ≤ b or above ≥ c in µ. But if
this was a winning second move in EFα+1, then it was a winning first move in
EFα({a ∈ µi : a < ai}, {a ∈ µ1−i : a < a1−i}). This contradicts theorem 3.3.

Suppose there exists a finite set A ⊆ α such that conditions 4 ∧ 5 ∧ 6 hold.
Player I plays so that on the second move the players have identified p0 ∈ µ0

and p1 ∈ µ1 with the properties described in condition 6. If the antecedent
of condition 6 fails, then by theorem 3.3, player I has a winning strategy in
the game in which (a0, a1) was the first move in the game EFα({a ∈ µi : a >
pi}, {a ∈ µ1−i : a > p1−i}), since that move did not respect the labels which are
known to ≡α. So the antecedent of condition 6 holds, and by its conclusion we
find that the lemma is repeated in EFα−1({a ∈ µ0 : a > p0}, {a ∈ µ1 : a > p1}),
i.e., we can repeatedly drop quantifier rank using conditions 4∧5∧6 and preserve
the discrepancy of condition 3. �

Theorem 3.1 If player II has a winning strategy in EFα+1(µ0, µ1), then for
each finite A ⊆ α,

• IA(µi) is the same ordered set of labels assigned into µi ∪ (µi)+, and

• if player I plays the first move at the image of a label in one model, either
player II plays the image of that label in the other model or player I has a
winning strategy in the remainder of the game, and

25

• if (b, c) ∈ (IA(µi))+ and player I plays the first move in µi between sup b
and inf c, then player II plays in µi between sup b and inf c, or player I
has a winning strategy in the remainder of the game.

Proof by induction on
∑
β∈A 2β .20

Suppose that for all B < A that player II must respect IB or lose. So we
can define a cut (b, c) in ∪{IB(µi) : B < A} such that the first move (a0, a1) is
played between sup b and inf c in either model. If IA labels the least element in
≡loc
β class τ in (b, c), then by the definition of 2β , there is a cofinal set of B such

that B < A and β is not in any of these B. If some B < A is the immediate
predecessor of A, then A = B ∪ {n} \ n, for n the least natural number not in
B.21 However, it is very possible that no IB , for B in that set, have added any
labels to b. By definition 3.1, that happens just in case b ∩ IA\{β} is nonempty
(condition 1) and has no greatest element labeled “xτ” for τ an ≡loc

δ class, δ ≥ β
(condition 3) or b ∩ IA\{β} is nonempty and has a last element labeled “a . . . ”
in which elements of every ≡loc

δ class are not bounded (condition 2). In one
of those cases, we see that IA would not label the least element in ≡loc

β class
τ in (b, c). If condition 3 were violated, then that same cofinal subset of b of
quantifier rank ≥ β means that condition 3 is violated in the ≡loc

β refinement of
∪B<AIB . If condition 2 were violated in the ≡loc

δ refinement of IA\{β} for every
δ < β, it does not hold that each element of every ≡loc

β type τ is unbounded
below sup b.

We say player I has a winning condition if after the players have identified
a0 and a1 the preceding lemma has held, with conditions 4∧ 5∧ 6 so that pairs
(p0, p1) have been played on each turn, preserving the lemma, as though in the
game EFβ+1(µp00 , µ

p1
1), for some β < α, the first move had been to identify

a0 ∈ µ0 and a1 ∈ µ1. This lemma identifies a discrepancy between µ0 and µ1 in
its 3rd condition, which player I tries to exploit. When the discrepancy, an ≡loc

β

class τ , exists in µi in (b, c), player I plays in µ1−i in answer to gτ0 ∈ (b′, c′)
or in answer to aτ0 ∈ (b′, c′) or if b has no greatest element. In the latter two
cases, when player I is to play in b0, an initial segment of b, player I needs to
play above a possibly infinite number of upper bounds in b. Let βb0 be such that
≡loc
βb0

classes are defined confinally in b0. All ≡loc
γ classes for γ > β are definable

above b0. Further, ≡loc
γ classes ρ for γ ≤ β are definable above b0 if occurrences

of ρ are bounded below b0. Player I will be unable to exploit the discrepancy
just in case the following occurs: b0 is IA\{α−1} ∩ b. There is a discrepancy, an
≡loc
β class δ between sup b and ai, and no element of ≡loc

β class δ between sup b
and a1−i in µ1−i. Player I plays q1−i ∈ b0 in µ1−i, and player II answers in µi,
and the set of labels corresponding to b\b0 in IA\{α−1}(µ

>q
1−i) is now bounded by

an element of ≡loc
β class δ between sup b and a1−i in µ1−i. As we increase q in b0

and it passes over various upper bounds defining elements of b \ b0, we find that
IA\{α−1}(µ

>q
1−i) assigns various labels to the same element as in b \ b0, including

20We use that sum to define the function 2α for infinite ordinals α: 2α is the least ordinal
number greater than

∑
β∈A 2β for all A ⊂ α.

21{B : B < A,B = A \ {β} ∪B′, B′ ⊆ β is finite } are the final sets B such that B < A.

26

– all high-rank elements (as soon as we pass the last high-rank element of b0)
and an increasing number of low quantifier-rank classes. But if q > the upper
bound of some ≡loc

β class, then it’s least realization above q is the same as it’s
least realization above b0. All further labels are the same, too. So if player I
intends to play in a series of cuts b0 < b1 < . . . b, then it is enough to choose
some

To determine which of these player I’s move pi must exceed, player I looks
ahead to defining the anomaly δ. Player I finds a finite set of

So, some aspects of the induction, such as the claim that players can play
arbitrarily close to a cut and the argument for player I playing labels “d” and
“l” in π and labels “a” and “g” in µ, go through just as in the case where the
clock is finite.

We have supposed that ∪{IB : B < A} assigns the same labels into π ∪ π+

and µ ∪ µ+ and that β is the least element of A. Now suppose that the (b, c) is
a cut, (b, c) ∈ (∪{IB : B < A})+ in which the ≡loc

β refinement of ∪{IB : B < A}
will differ between π and µ. We follow the definition 3.1 to see how this could
happen. First, suppose ≡loc

β class τ exists in π between sup b and inf c, but not
between sup b and inf c in µ. Then player I plays the first move at the realization
of τ . For player II to play a realization of τ , player II must play outside the
interval (b, c). Player II therefore plays below some element of b or above some
element of c. That label and element exist in IB for some B < A. So player II
has not respected IB , and by the induction hypothesis, loses.

Next, suppose that τ is bounded below sup b by m ∈ π but τ is not bounded
below sup b in µ. Player I plays the first move between m and sup b in π.
By assumption, the second player respects ∪{IB : B < A}. Now a winning
condition exists, since the type τ exists between the first move and sup b.

That labels of quantifier rank greater than that of τ are cofinal in sup b in µ
but not in π is a property of the order of labels agreed on by ∪{IB : B < A}(π)
and ∪{IB : B < A}(µ).

If there is a least element of type τ in (b, c) in π but not in µ, then player
I plays that least element, player II plays an element of type τ in (b, c) in µ by
the inductive assumption, and now a discrepancy exists – the elements of type
τ above sup b and below the second player’s first move in µ, which are absent
in the analogous interval of π.

Now to see that IA has the same ordering on labels in both models, we follow
the argument in Theorem 2.1 in Ehrenfeucht–Fräıssé Games on Linear Orders,
specifically, the itemized list on the last page of that proof. �

Lemma 2.2 of Ehrenfeucht–Fräıssé Games on Linear Orders also holds for
infinitary assignments: For any linear order π and for any finite set A of ordinals,
for every label m assigned by IA(π) to a ∈ π, for any order types α, β, and γ,
the assignment IA(π+α+ γ+β) assigns m to a ∈ π. On the other hand, every
label m in the domain of IA(π + α+ γ + β) which is fixed under varying α and
β is, in fact, assigned to π.

Theorem 3.2 For any linear order π and any element a ∈ π, for any ordinals
α > β, from

27

• ∪{IA(π) : A ⊆ α},

• Thright
β ({b ∈ π : b < a}) and Thleft

β ({b ∈ π : b > a}), i.e., Thloc
β (π, a),

we can construct ∪{IB({b ∈ π : b < a}) : B ⊆ β}.

As in the case when k is finite, we must truncate local types, i.e., we can’t
say that every label in IB({b ∈ π : b < a}) appears in IA(π) or the assignment
of labels into Thleft

β ({b ∈ π : b > a}), but that any label in IB({b ∈ π : b < a})
is the truncation of some label appearing in the latter assignments. The proof
goes through as for finite k. �

Theorem 3.3 If α+ 1 is a successor ordinal, π ≡α+1 µ holds just in case

• for all finite sets A ⊆ α, IA(π) and IA(µ) assign the same labels to ele-
ments and cuts in π and µ in the same order, and

• for each finite set A ⊆ α and for each label e, if (e, f) ∈ IA(π) and
(e,m) ∈ IB(µ) then f ∈ π just in case m ∈ µ; if both those conditions
hold, then for some ≡loc

α class τ , (π, f) ∈ τ and (µ,m) ∈ τ , and

• for each cut (b, c) ∈ (IA(π))+ and cut (b′, c′) ∈ (IA(µ))+ such that b and b′

contain the same labels, for each ≡loc
α class τ , there is some element n ∈

π(b,c) such that (π, n) ∈ τ just in case there is some element m ∈ µ(b′,c′)

such that (µ,m) ∈ τ .

If B is an unbounded set of ordinals, π ≡∪B µ holds just in case, for all
β ∈ B, π ≡∪β µ.

Proof: This is a corollary of the preceding two theorems. �

Theorem 3.4 For any finite k ≥ 1,

• ω + Z × (2k − 2) + ω∗ 6≡left
ω+k ω + Z × (2k − 1) + ω∗ and

• Z × (2k − 1) ≡ω+k Z × 2k.

Proof: The following establish the base case, k = 1:

• For any finite number k, a unique ≡loc
k class is realized in Z (or Z × λ for

any nonempty λ). Call it ζk = (φk, ψk).22

• For any finite number k, any ≡loc
k class realized in ω, Z, or ω∗ is either

(φ, ψk) for some φ such that φk ⊆ φ or (φk, ψ) for some ψ such that
ψk ⊆ ψ.

• For any finite set A ⊂ ω and for any linear order λ, I left
A (ω+Z ×λ) labels

a finite subset of ω, since the least element of type ζk above any finite
subset of ω occurs within ω.

22Translation is an automorphism of the integers.

28

• Let I be the union of I left
A (ω + Z × λ) over all finite sets A ⊂ ω, for some

linear order λ. I is independent of λ. I labels every element of ω, since
if the element a ∈ ω is the least element not labeled and if every element
below a is labeled in IA(ω + λ) and if k is the least number not in A and
if the ≡loc

k class of a is (φ, ψk), then l(φ, ψk) ∈ ({b ∈ ω : b < a}, ∅) labels
a in IA∪{k}\k(ω + λ).

• Only one ≡loc
ω type is realized in Z (or Z × λ for any nonempty λ). Call

it ζω.23

• ω+Z+ω∗ 6≡ω+1 ω+ω∗ because ζω is realized in (I, ∅) in the former model
and not in the latter.24 This inequivalence is 6≡left

ω+1 or left-invariant: for
any ≡k class γ there is some ≡k class α and a label m25 in the domain of
both assignments I left

ω (ω + Z + ω∗ + α) and I left
ω (ω + ω∗ + α) such that

ω + Z + ω∗ + α + γ + β 6≡ω+1 ω + ω∗ + α + γ + β because ζω is realized
in (I,m) in the former model and not in the latter.

• On the other hand, Z + Z ≡ω+1 Z because all labels are assigned to the
cuts at the left and right ends of the linear order, and ζω occurs in both
models.

Now we proceed by induction: Suppose ω+Z×(2k−2)+ω∗ 6≡left
ω+k ω+Z×(2k−

1)+ω∗ has been proven for some k. Let δ be the≡ω+k class of ω+Z×(2k−1)+ω∗.
Now (Thright(δ), Thleft(δ)) is an ≡loc

ω+k class. Call it ζω+k. Now ζω+k is not
realized in ω + Z × (2k+1 − 2) + ω∗ because no element of that model has
(2k − 1)-many copies of Z to its left and to its right. On the other hand, ζω+k

is realized in ω+Z× (2k+1− 1) +ω∗ because 2k+1− 1 = (2k− 1) + 1 + (2k− 1).
If we let α = Z, then the greatest element of ω∗ is labeled “l(ge, de) ∈ (∅, ∅)” in
ω + Z × n+ ω∗ + α+ γ, where (ge, de) is an ≡loc

2 equivalence class, so that we
have proved ω + Z × (2k+1 − 2) + ω∗ 6≡left

ω+k+1 ω + Z × (2k+1 − 1) + ω∗.
Let’s define a shorthand: Write n for the ≡left

ω+k class of ω + Z × n + ω∗, if
n < 2k and write (m,n) for the ≡loc

ω+k class of pairs (λ, a) such that λ = Z × µ
for some µ and there are m-many copies of Z left of a and n-many copies of Z
right of a. Now the ≡loc

ω+k classes imply one another in the following way:

• (m,n) → (m + 1, n − 1) and (m,n) → (m − 1, n + 1) if m < 2k − 1 and
n < 2k − 1,

• (m,n)→ (m,n− 1) if m = 2k − 1 and n < 2k − 1,

• (m,n)→ (m− 1, n) if n = 2k − 1 and m < 2k − 1,

• (m,n)→ (m+ 1, n) ∨ (m+ 1, n− 1) if n = 2k − 1 and m < 2k − 1,

23≡loc
ω classes are types in the traditional sense of that word – infinite sets of formulas which

we hope to realize at a single element of some model – and they are diverse, in general.
24We are using theorem 3.3.
25If we let α = 1 + Z, then m = “l(ge, de) ∈ (I, ∅)” labels the least element of α. If we let

α = Z, then m = “l(ge, de) ∈ (I, ∅)” labels the greatest element of ω∗.

29

• (m,n)→ (m,n+ 1) ∨ (m− 1, n+ 1) if m = 2k − 1 and n < 2k − 1.

If n = 2k − 1, then Thω+k+1(Z × (2k − 2)) assigns the labels

d(0, n) < d(1, n) < d(2, n) < . . . d(2k−1 − 3, n) < d(2k−1 − 2, n) <

a(n, 2k−1 − 2) < a(n, 2k−1 − 3) < . . . a(n, 2) < a(n, 1) < a(n, 0)

and doesn’t realize ζω+k in the central gap ({d(2k−1− 2, n)}, {a(n, 2k−1− 2)}).
For m ≥ n, Thω+k+1(Z × m) assigns the same labels, and does realize ζω+k

in the central gap. By theorem 3.3, nothing but assignments of labels and the
realization of different ≡loc

ω+k classes separate ≡ω+k+1 classes. So in particular,
that Z ×m for m ≥ n label the same elements and realize the same ≡ω+k+1

classes between labels implies that Z × n ≡ω+k Z × (n+ 1). �
This proof applies theorem 3.3. We now sketch a simpler proof: During the

Ehrenfeucht–Fräıssé game of length ω + k, if the first k-many moves identify
a0 . . . ak−1 in λ and b0 . . . bk−1 in µ, then player I has a winning strategy if for
some i < k − 1, {a ∈ λ : ai < a < ai+1} is finite and {b ∈ µ : bi < b < bi+1} is
not finite, or visa versa. On the other hand, if the interval between ai and ai+1 is
not finite, then its ≡ω theory is Thω(ω+ω∗), so player II has a winning strategy
just in case for all i < k− 1, {a ∈ λ : ai < a < ai+1} and {b ∈ µ : bi < b < bi+1}
are finite and equal, or infinite. It is possible to give a proof which is simpler
than applying theorem 3.3 because it is easy to say in this case what ≡ω classes
of intervals exist in the model and how those classes limit the first k-many moves
of either player.

4 quantifier ranks ≡α on wellorders

For any linear order µ, let D(µ) be the set of elements a ∈ µ such that a is the
limit of an infinite sequence of elements tending towards a from the left. I.e.,
D(µ) = {a ∈ µ : (∃b ∈ µ(b < a)) ∧ (∀b ∈ µ(b < a)→ (∃c ∈ µ(b < c < a)))}. For
a limit ordinal δ < λ, we define the δ-th iterate of D, Dδ, to be ∩γ<δDγ(µ). For
a successor ordinal δ = γ + 1, Dδ is the compound function which computes D
of Dγ(µ).

Dδ(λ) is definable by the δ-fold iteration of the preceding definition: The
sentences φδ, defined as

φγ+1 = (∃yφ<yγ) ∧ (∀y∃z(y < z ∧ φ<z)),

φsupB = ∧β∈Bφβ
have quantifier rank 2 × δ and for any ordinal α, α |= φδ just in case for all
ordinals β > α, α ∈ Dδ(β).

For δ any ordinal, consider Th2×δ(ωδ) and Th2×δ+1(ωδ).

Theorem 4.1 Two minimal almost locally closed sets – a minimal almost lo-
cally closed set which contains 0 and a minimal almost locally closed set Aδ
which contains ωδ × 99 – realize all ≡loc

2×δ and ≡loc
2×δ+1 classes which are realized

30

in ωδ+1. Further, if we let Aγ be the minimal almost locally closed set which
contains a typical element of Dγ(ωδ+1) \ Dγ+1(ωδ+1) (an element a of Dγ is
typical if each of its minimal almost locally closed sets is ≡2×δ to a minimal
almost locally closed set of a + ωγ), then for any interval in ωδ+1 there is an
initial segment (Aγ : γ < δ0) of (Aγ : γ < δ) realizing exactly the set of ≡loc

2×δ
classes realized in the interval.

Proof, by induction on δ. The ≡loc
2×δ+2 class of a ∈ ωδ+2 is determined by

Th2×δ+2(ωδ+1, a). This is determined, in turn, by the tree of labels I≤2×δ and
≡loc

2×δ+2+1 classes at labels and between labels. By induction on this theorem,
for any j ≤ 2 × δ, we can replace each ≡loc

j class by the almost locally closed
class Aγ which realizes it and has least γ, and we can replace any set U of ≡loc

j

classes by initial segments of the sequence (Aγ : γ < δ). We can’t easily list
the ≡loc

2×δ+2 classes because there is a variety of possibilities. But for any a,
copies of Aδ either: 0. don’t occur below a, or occur below a and 1. there is a
last copy of Aδ below a, or 2. are unbounded below a. In those three cases, 0.
the ≡loc

2×δ+2 class of a is realized in any minimal almost locally closed set which
contains 0, 1. the ≡loc

2×δ+2 class of a follows from its ≡loc
2×δ class, from the fact

that ωδ+2 is an ordinal, and from the fact that there is a last copy of Aδ below
a, and 2. the ≡loc

2×δ+2 class of a is realized in Aδ+1. The theory of ordinals and
the fact of whether Aδ occurs below a and then unboundedly below a or not
isn’t enough to determine the ≡loc

2×δ+2 class of a, but it is enough to determine
the ≡loc

2×δ+2- almost locally closed set around a. For in case 1, this set must
contain that last copy of Aδ below a. In case 2, this set contains the cut which
is the supremum of the copies of Aδ below a. Adding the least ordinal above
this cut gives Aδ+1. In the end, the result is an almost locally closed set from
which either 1. a cannot be eliminated, without giving up almost closure, so
that a is realized in Aδ+1, or 2. a can be given up, in which case its ≡loc

2×δ+2

class is realized in Aδ+1. Similarly, we induct quantifier rank 2 × δ + 3 from
quantifier rank 2× δ + 1. �

The following theorem can be proved directly, by showing that for any clock
β < α, for any element of one model there is an element of the other model such
that the same theorem holds in either direction with the clock β. The details
seem to be inevitably gory.

By the preceding theorem, on the first move in EF2×β+1 or EF2×β+2, player
I can distinguish locally a variety of ≡loc

2×β classes or ≡loc
2×β+1 classes, but the

minimal almost locally closed set containing that local class is≡2×β+1 or≡2×β+2

to Aγ , for some γ < β. These are the only definable sets of ordinals that player I
can use to choose a first move. Player I can 1. show that Dδ is nonempty in one
model and not in the other, or 2. show that Dδ has a greatest element in one
model and not in the other, or 3. show that the finite part of Dδ(µi) = ω×πi+ni
is different in the two models (n0 6= n1).

Theorem 4.2 For any ordinals δ and x, let

πi,δ = {y ∈ µi : y + ωδ > µi},

31

which is empty or has as its least element ωδ × xδ.
For any ordinals α, µ0, µ1, µ0 ≡α µ1 holds just in case, for each δ < α, the

following hold in both µi or fail in both µi:

1. ∃β(2× δ ≤ β < α) and (δ > 0 ∧ ωδ < µi) ∨ (δ = 0 ∧ 0 < µi),

2. ∃β0∃β1(2× δ ≤ β0 < β1 < α) and ∃x < µi(µi = ωδ+1 × x+ πi,δ) and

(πi,δ = ∅) ∨ (πi,δ \ {ωδ+1 × x}) 6≡α−2 ω
δ+1 + πi,δ, and

3. χδ(µ0) = χδ(µ1) or χδ(µ0) and χδ(µ1) are both ≥ 2α−(2×δ) − 1,

where χδ(µi) is:

• The number of x such that ωδ × x < µi and ωδ × x+ ωd+1 > µi,

• +3 if ωd+1 < µi,

• −1 if δ > 0 and µi < ωδ+1,

• −1 if πi,δ 6= ∅ and (πi,δ \ {ωδ × xδ}) 6≡2×δ ω
δ + πi,δ.

Further, if one of those final three summands applies to µi and not to µ1−i and
this difference renders ξδ(µi) small and equal, then there is another δ′ 6= δ which
witnesses µ0 6≡α µ1.

Proof: The three conditions correspond to properties of µi of quantifier-
rank α, describing three properties of the elements of Dδ(µi) which are not
individually definable in ≡α:

1. Dδ(µi) 6= ∅. The formula φ<xδ has quantifier rank 2 × δ = β < α, so the
sentence ∃x(φ<xδ) has quantifier rank α. In the game EFα(µ0, µ1), player
I plays ωδ ∈ µi, then proceeds to verify ωδ |= φδ.

2. If this condition holds, the Cantor normal form of µi has no term with
exponent δ, and πi,δ is small enough that we can express this fact with a
formula φ+

δ which is similar to φδ and says ∀x ∈ Dδ(µi)∃y ∈ Dδ(µi)y > x
and y 6∈ πi,δ.

3. The set of elements of Dδ(µi) which are not individually definable in ≡α
are pseudo-finite – i.e., we replace all of Dδ(µi) before and including the
last element of Dδ+1(µi) with 3 elements of Dδ(µi) and play EF as though
Dδ(µi) were finite sets. Hence the upper bound 2α−(2×δ) on the definably-
sized sets Dδ(µi).

We should explain the summands of χδ.

• If δ is not the largest exponent in the Cantor normal form of µ, the infinite
set of elements ofDδ(µi) less than some element ofDδ+1(µi) are equivalent
to 3 elements of Dδ(µi), since when 2× δ + 2 moves are left, this infinite
subset of Dδ(µi) can be confused with le0 < le1 < le2, the three elements
that I left

<2 (Dδ(µi)) defines.

32

• The least multiple of ωδ with no multiple of ωδ+1 beyond it is, in fact,
the last multiple of ωδ+1, if that exists. This point is available to be
played, unless there are absolutely no multiples of ωδ+1 in µi at all, i.e., δ
is maximal. On the other hand, if δ = 0, then the element 0 is playable.
Just in case δ > 0, the least multiple ωδ × 0 of ωδ is not playable as an
element of Dδ(µi).

• If this condition holds, then the last element of Dδ(µi) is individually
definable because it is close to the right end.

If these three conditions fail, then for the same δ (2 × δ < α), Dδ(µi) is
nonempty (condition 1); for the same δ (2 × δ < β0 < α) Dδ(µi) has a final
element; and the elements of Dδ(µi) which are not individually definable in
Th2×δ(µi) as 0 or as the final element of Dδ(µi) which is definably close to
the right are either equinumerous or numerous enough that ≡α−(2×δ) cannot
count them. By the preceding theorem, player I’s first move will be locally
trivial, in the sense that µi ∈ ωµi , and interpreting player I’s move in ωµi ,
it will be equivalent to something in the minimal almost locally closed set of
0 or of the minimal almost locally closed set containing a typical element of
Dδ(ωµi)\Dδ+1(ωµi). Player I in fact has a variety of first moves just in case the
ordinal µi has a complicated Cantor normal form, so that different extensible
local types occur close to the right end of µi. The deficiencies of those local
types are revealed by adding ωδ to the ≡loc

β class of the first move of player
I, for various δ, and checking whether a smaller ≡loc

β class results. Thus, the
only difference that player I can find between µ0 and µ1 is a different number
of elements in Dδ after the last limit element of that set (if it is infinite). In
summary: the final three summands of χδ should be intuitive: 1. the infinite
initial part of Dδ(µ) will be encountered when there are ≡2×δ+2 moves left, at
which time it plays the same as three undefinable elements of Dδ(µ). 2. If δ > 0
is maximal in the Cantor Normal form of µ, then the first copy of ωδ contributes
to Dδ(µ) the element 0, which is ≡1-definable, and hence useless when counting
Dδ(µ). 3. A final element of Dδ(µ) – the initial element of πi,δ is useless when
counting Dδ(µ) if the set of elements of πi,δ greater than it is ≡2×δ-definable.
�

A corollary of the preceding theorem is an enumeration of ≡k classes, for
finite k: For any ordinal µ, let D(µ)\{the least element of D(µ), if D(µ) contains
any element} \ {a definable greatest element, if there is one} = D+(µ).

Theorem 4.3 For any ordinal α, the ≡2+α classes of ordinals can be enumer-
ated by enumerating the Thα(D+(µ)) and the following:

• If Thα(D+(µ)) = 0 then µ ∈ {0 . . . 22+α − 2} or µ ≡2+α 22+α − 1 is finite
or µ ∈ {ω, ω + 1, ω + 2, ω + 3}.

• If ∃π(Thα(D+(µ)) = π+ 1) then µ = ω× π+ n for n ∈ 4 . . . 22+α − 5} or
µ ≡2+α ω × π + 22+α − 4 or µ = ω × π + ω + n for n ∈ {0, 1, 2, 3}.

• If Thα(D+(µ)) is a limit ordinal π, then µ = ω×π+n for n ∈ {0, 1, 2, 3}.

33

Furthermore, each ≡α class has one extension into an ≡2+α class which de-
scribes a limit ordinal, and these exhaust the ≡2+α classes which describes a
limit ordinal.

Proof: Apply the previous theorem with δ = 1 throughout. When we add
n ∈ {0, 1, 2, 3}, then either n = 0, in which case πi,1 = ∅, or n > 0, in which
case πi,1 is definable. In these four cases, πi,1 adds no ≡2-undefinable final
element to D(µ). When we add n ∈ {4 . . . 2α − 2}, then we do add a final
≡2-undefinable final element to D(µ), and this is taken into account in the
enumeration. �

So, writing e(k,WO) for the number of ≡k classes of wellorders,

e(k,WO) = e(k − 2,WO)× (2k − 3)− e(k − 4,WO)× (2k − 7) + 7.

For instance, there are two ≡1 classes (let α = 1). We enumerate the ≡3

classes of ordinals as:

• {0 . . . 7, ω, ω + 1, ω + 2, ω + 3} extending Thα(D+(µ)) = 0 and

• ω + 4 and ω + ω + n for n ∈ {0, 1, 2, 3} extending Thα(D+(µ)) = 1.

Similarly, there is a single ≡0 class of linear orders and there are five ≡2

classes of ordinals, so the formula indicates 5 × 13 − 2 = 63 ≡4 classes of
ordinals. 20 of them have D+(µ) = 0, 13 of them have D+(µ) = 1, 13 of them
have D+(µ) = 2, 13 of them have D+(µ) = 3, and 4 of them have D+(µ) = ω.
The ≡4 classes of ordinals are {ω × α+ n : α ∈ A,n ∈ N} as (A,N) range over
the following set:

• A = {0}, N = {n}, for n = 0..14;

• A = {0}, N = {n : n ≥ 15};

• A = {1}, N = {n}, for n = 0..11;

• A = {1}, N = {n : n ≥ 12};

• A = {2}, N = {n}, for n = 0..11;

• A = {2}, N = {n : n ≥ 12};

• A = {3}, N = {n}, for n = 0..3;

• A = {α : α ≥ 3}, N = {n}, for n = 4..11;

• A = {α : α ≥ 3}, N = {n : n ≥ 12};

• A = {α : ∃β : α = 3 + β + 1}, N = {n}, for n = 0..3;

• A = { limit ordinals }, N = {n}, for n = 0..3;

34

The ≡3 class containing most random Cantor normal form polynomials has
as its smallest member ω+ 4. So we could say that ω+ 4 is ≡3-typical. A more
precise definition is that ω + 4 is the smallest Cantor normal form polynomial
such that increasing any coefficient (even adding a term which is not there)
leaves it ≡3. The typical ≡4 ordinal is ω×3+12, and the typical ≡5 polynomial
is ω2 + ω × 4 + 28.

Theorem 4.4 For k ≥ 6, e(k,WO) = 2q(k)−εk , where q(k) = (k+1)×(k+1)/4
if k is even, q(k) = (k + 2)× k/4 if k is odd, and εk ∈ (0.20, 0.37).

Proof: This follows from iterating the formula above – e(3,WO) = 2×5−0+7
(if we set e(−1) = 0), and e(4,WO) = 5× 13− 1× 9 + 7 = 63, and e(5,WO) =
17× 29− 2× 25 + 7 = 450; e(6,WO) = 63× 61− 5× 57 + 7 = 3565; e(7,WO) =
450× 125− 17× 121 + 7 = 54200. For k = 0, 1, 2, 3, 4, 5, 6, 7, log2(e(k,WO)) =
0, 1, 2.3, 4.1, 6.0, 8.8, 11.800, 15.726. Thereafter, log2 e(k,WO) ≤ k + log2 e(k −
2,W =), and log2 e(k,WO) ≥ log2 e(k− 2,WO) + k− e(k− 4)/e(k− 2,WO)×
loge / log2. The sums of all numbers below k and of the same parity is q(k).
Finally, ε <

∑
k<∞,k even e(k − 4,WO)/e(k − 2,WO) is bounded by a geo-

metric series
∑

(2−1/4)k = 0.841k (so every time k increases by 4, another
bit of ε is determined), which is bounded by 6.3 times its first term, and
6.3 × e(4,WO)/e(6,WO) < 0.1604; 6.3 × e(5,WO)/e(7,WO) < 0.077 give the
bound. �

We compute the limiting εeven and εodd by numerically iterating the compu-
tation of e(k,WO) and inverting the formula in the preceding theorem:

2εeven = 1.19411673235052; 2εodd = 1.23201682615002.

Computing e(k,WO) for k ≤ 52 gives these two values of 2ε to 14 digits of
accuracy. i.e., we get one more bit in one of the εi with each increase in k.

5 undecidable linear orders

In [1] we find a linear order λ for which Th(λ) is undecidable, though the set
of all Σn-formulas is computable over λ, for all finite n. These formulas have
nested sequences of quantifiers which alternate at most n times between ∃ to
∀. Counting the number of alternations is different than counting the quantifier
rank of a formula – Σn corresponds to a game in which player I plays a finite
sequence of elements in one model – rather than a single element. The authors
of that paper ask whether a simple construction for such a λ exists. Their
construction, using iterated dense shuffles, is intuitive. Ordinals are another
way to hide some information from Σn, and we make a construction on that
basis:

Definition 5.1 Let (Ui : i ∈ ω) be a nested sequence of sets of natural numbers:
U0 ⊇ U1 ⊇ U2 For any β < ωω, choose δ maximal such that ∃xβ = ωδ × x.

35

Now for some ordinal y and some finite number n, x = ω×y+n. That n is the
last Cantor normal form coefficient of β. Let f(β) be the nth element of Uδ.

Let λ =
∑
β<ωω

ω + ((η + Z)× f(β)).

Now η and Z both have finite axiomatizations in ≡3, since they realized only
one ≡loc

k−1 class, for each k ≥ 3. The ≡loc
2 class in η is ∀∃, and the ≡loc

2 class in
Z is ∃∀. We will capture this unfortunate difference in 5, a constant error term:

The following is a Σ5+δ formula: A copy of ((η+Z)×m) occurs immediately
above the β-th copy of ω for some β ∈ Dδ(ωω) just in case m ∈ Uδ. On the
other hand, if we rendered the sequence (Ui : i < ω) eventually constant, this
would not affect Σn(λ) for low n, for Σn cannot define Dn+1(ωω), since that
set is definable only with n + 1-many quantifier alternations. If the sequence
Ui is eventually constant and each set Ui is periodic, then Σn(λ) is finitely
axiomatizable – For “whenever β is divisible by ωδ but not ωδ+1 and there exist
n such β′ below β and above the last element divisible by ωδ+1 then there are
f(β)-many copies of η + Z before the next copy of ω” is a different sentence
of Σn for each f(β), unless f(β) is simply f(β − 1) + k for some constant k,
in which case we can express the periodic part of Ui with a single formula. If
some Ui is not periodic, then any Σn which defines {0 ∈ ωβ : β ∈ Di(λ)} is not
finitely axiomatizable.

If we choose Ui to be undecidable, then that Σn which defines {0 ∈ ωβ : β ∈
Di(λ)} is undecidable. On the other hand, if we choose each Ui to be decidable
but the sequence (Ui : i < ω) to be undecidable (e.g., by diagonalizing that
sequence against all programs), then all Σn are decidable, but Th(λ) is not.

6 ≡λ for λ not wellordered

The sequence of elements A = (ai : i ∈ I) of λ which will be chosen during the
game EFλ will decrease in λ as the game progresses; the reversed ordering A∗

will be a wellorder. Suppose λ0 is an initial segment of λ. The same player wins
EFλ(µ, π) as wins EFλ0(µ, π), for all linear orders µ and π, if player II wins the
clock-comparison game between λ and λ0. Player I plays a ∈ λ and player II
responds with b ∈ λ0. After player I has played ai : i ∈ I in λ and player II has
played bi : i ∈ I in λ0, player I plays an element a ∈ λ such that ∀i ∈ I(a < ai),
and player II plays an element b ∈ λ0 such that ∀i ∈ I(b < bi). The first
player who cannot play loses. Now λ0 may replace λ as a clock if player II have
a winning strategy in the clock-comparison game, for then we can translate
clock moves in λ into clock moves in λ0 until λ is exhausted. Informally, player
II can survive just as long using λ0 for a clock as player II can survive using
λ for a clock. On initial segments of λ we form equivalence classes: For all
b < a ∈ λ, we say b ≡clock a just in case player II has a winning strategy in the
clock-comparison game between {c ∈ λ : c < a} and {c ∈ λ : c < b}.

Lemma 6.1 The ≡clock classes of λ are wellordered.

36

Proof: We expand the notion of ≡clock to a quasi-ordering on linear orders:
µ <clock π holds just in case the first player wins the clock-comparison game
in which the first player plays in π and the second player plays in µ. Now
µ ≡clock π if neither µ <clock π nor π <clock µ – i.e., the second player wins
the clock-comparison games of µ versus π and π versus µ. That λ0 is an initial
segment of λ shows λ 6<clock µ.

Suppose ei : i ∈ ω is a descending sequence of ≡clock classes of λ. If for some
i ∈ ω, |ei| < |ei+1|, then for any a ∈ ei and b ∈ ei+1, player II can win the clock-
comparison game between {c ∈ λ : c < a} and {c ∈ λ : c < b} with the following
strategy: Play slowly in ei+1, until player I has exhausted ei. Then play again
in ei+1. Player I will now play in ej , for j > i, a move ≡clock or ,clock to the move
player II has just played. That equivalence shows how to play the remaining
moves in the game. This contradicts the idea that ei and ei+1 are equivalence
classes. So for all i ∈ ω, |ei+1| 6> |ei|. Suppose that there is some i ∈ ω such
that for all j ≥ i |ej | = |ej+1|. Then for any a ∈ ei and b ∈ ei+1, player II can
win the clock-comparison game between {c ∈ λ : c < a} and {c ∈ λ : c < b}
with the following strategy: play in ej+1 while player I is playing in ej . The
players will reach inf ∪i∈ω ei together. Then it will be player I’s turn to play,
and player II can copy and remaining moves. This contradicts the idea that ei
and ei+1 are separate equivalence classes. So for infinitely many i ∈ ω it holds
that |ei−1| > |ei|. Now playing the clock-comparison game in which the smaller
clock is an ≡clock class is simpler than the general clock-comparison game since
on any move after {ai : i ∈ I} has been played, if player II has not yet lost, then
{c ∈ ei : ∀i ∈ Ic < ai} ≡clock {c ∈ ei : c < a} for any single element a ∈ ei. If
player I can win this game, the winning strategy cannot depend finely on what
element player II plays in ei, since all of those elements are ≡clock. That is,
player I never finds that b ∈ ei−1 is a winning response to a ∈ ei, but b ∈ ei−1

would lose as a response to a′ ∈ ei, since a and a′ are ≡clock. A winning strategy
which is, in this sense, “blind” to the choices of player II, can only exist if there
is an ordinal α such that α∗ injects into ei−1 and not into ei. The set Ui of
ordinals which inject into ei is closed under embedding, i.e, if α embeds into
β and β embeds into ei, then α embeds into ei. So Ui is in fact the set of all
ordinals less than αi, for αi = supUi. Now if Ui is a decreasing function of i,
then (αi : i < ω) is a sequence of ordinals which decreases infinitely often. �

Now we turn our attention to the expressive power of play within an ≡clock

class. For instance, if a ∈ λ and b ∈ λ and a > b and (λ, a) ∼= (λ, b) and f is
the isomorphism mapping (λ, a) onto (λ, b), then b = f(a) and (λ, b) ∼= (λ, f(b))
and likewise (λ, fn(a)) ∼= (λ, fn+1(a)) for all finite numbers n. So the game
EF{b∈λ:b<a} presents player I with, at least, a string of ω-many initial moves,
each of which has the same descriptive power. Indeed, if a ∈ λ and b ∈ λ
and c ∈ λ and a > b > c and ≡{d∈λ:d<a} is the same as ≡{d∈λ:d<c}, then
the following hold: First, by monotonicity, ≡{d∈λ:d<b} is equal to those two
equivalence classes. Second, ≡{d∈λ:d<a} describes the first and last elements of
each equivalence class in ≡{d∈λ:d<c}, which is ≡{d∈λ:d<a} again.

37

Rather than define ≡loc
α∗ sets, we directly define which A ⊆ λ∪λ+ are locally

closed; we call Thα∗(λ, x)x∈A of such a set its ≡loc−closed
α∗ class. We then call an

≡loc
α∗ class the pair (A, a) where A is an ≡loc−closed

α∗ class and a ∈ A is a chosen
element. We don’t insist on A being minimal, lest this reduce A to the empty
set. The locally closed sets of λ is the smallest set LC of subsets of λ∪ λ+ such
that each element of λ is in one, and such that for each element A ∈ LC, each
β < α, each set A0 = (ai : i ∈ β) ⊆ A, each cut (b, c) ∈ (A0)+ and each ≡loc

(α\β)∗

class τ 1. if Thloc
α∗ ((λ, ai)i∈β) implies the existence of an element of type τ in

(b, c) then there is an element of type τ in A, 2. if Thloc
α∗ ((λ, ai)i∈β) implies there

is a least element of type τ in A between b and c then that element is in A, and
3. if Thloc

α∗ ((λ, ai)i∈β) implies there are elements of type τ descending towards
b without bound then A contains both 2a. the cut describing the limit of those
least elements of type τ in (b, c), and 2b. a descending sequence of elements of
≡loc

(α\β)∗ class τ in (b, c), indexed by (α− β).
The minimal set A0 = ∅ requires an ≡loc

α∗ -closed set A to contain, for
(∅, ∅) ∈ ∅+, an element of each type τ which is implied by ≡loc

(α\β)∗ . But as
that equivalence class is trivial, it implies nothing. So A0 = ∅ requires nothing
of a local closure. Indeed, the empty set is locally closed. Let A0 be a singleton,
containing a ∈ λ of ≡loc

α∗ class τ0. If α ≤ 1, then nothing is required of A so that
A0 is locally closed – indeed, A0 is its own ≡loc

1 -closure. If α > 1, then assign
0 ∈ 1 = β to a ∈ A0 and consider any ≡(α\1)∗ class τ such that Thloc

α∗ ((λ, a))
implies the existence of an element of type τ near a. For instance, if α = 2
and we analyze the linear order η + ω + 3 + Z + Z and consider a = 1 ∈ 3,
then the ≡loc

2 class of a determines that a has an immediate successor and an
immediate predecessor. So a locally closed set containing a must contain all of
3. Thloc

2 (0 ∈ 3) determines that 0 ∈ 3 is a limit of elements from below, so
a locally closed set contains (η + ω, 3 + Z + Z) and contains an element of ω.
Closing under immediate predecessors and successors brings us to 0 ∈ ω, so an
element of η is in the locally closed set. That element of η has limits from above
and below.

So the minimal locally closed set containing 1 ∈ 3 contains, for φ some
homomorphism of Z into η, φ∪{(η, ω+ 3 +Z+Z)}∪ω∪{(η+ω, 3 +Z+Z)}∪
3 ∪ {(η + ω + 3, Z + Z)}∪ the first copy of Z. This might seem unnecessarily
large, especially to a reader who, like me, enjoys the notion of almost locally
closed sets – sets that are cut off when they become repetitive. A locally closed
set, on the other hand, must continue propagating until it is closed under its
own local Skolem functions. We define an almost-locally closed set in the same
way, except that we do not add to A the closure of each A0 = (ai : i < β) ⊆ A,
but only close A under one example of each Th(α\β)∗(λ, ai)i<β class.

If λ is a single ≡clock class, then µ ≡λ π holds just in case the same ≡loc
α∗ -

closed sets exist in both µ and π, for each ordinal α such that α∗ injects into
λ.

More generally, we construct Iλ(µ), a tree of labeled elements of µ, by in-
duction on the ≡clock classes (ei : i < γ) of λ. For each class ei in turn except
the last one, with a ∈ ei, we create the tree at rank ei: above each branch

38

B of the tree passing through ranks (ej : j < i), for each ≡{b∈λ:b<a}-class of
≡loc
{b∈λ:b<a}-closed sets in µ with a single starting element b ∈ µ (for a much

narrower tree, use almost-locally closed classes), we label the least realization
of τ above B – either the least copy of τ in µ (ordered by where they realize the
element equivalent to b ∈ µ, or the gap below which no copy of τ in µ realizes
an element equivalent to b ∈ µ above B, and above which every element exceeds
the element equivalent to b ∈ µ in a copy of τ in µ.

Theorem 6.1 For any linear orders λ, µ, π, µ ≡λ π holds just in case Iλ injects
the same tree of labels into µ and π, and if for all a ∈ λ, the same ≡loc−closed

{b∈λ:b<a}
classes are realized in µ and π at each label of Iλ and in each gap between labels
of Iλ.

Proof: With the notion of ≡loc
λ as the ≡λ type of a ≡λ locally closed set

with a chosen element given just before this theorem, we can define for which
≡loc
λ classes τ the least occurrence(s) of τ can be defined in an interval (b, c) in

the set of labels already defined, using the conditions that definition 3.1 gives.
Likewise, the tree of labels for a nonwellordered λ can be defined as in definition
3.2, of the tree of labels for a wellordered clock λ, since the ≡clock classes in λ are
wellordered. With those definitions, theorem 3.1 holds even if the clock λ is not
wellordered, since for every finite (descending sequence) A = (ai : i < n) ⊆ λ
the labels which are definable in I{a∈λ:a<ai} can in fact be played by player I in
a descending sequence, leading eventually to the ≡clock class of an−1, at which
we wish to define IA. If there is a discrepancy in the models at this level, player
I can play down the sequence of elements of A, and play a sequence of nested
intervals, eventually exploiting the discrepancy as in lemma 3.1. Theorem 3.2
can be carried out as in the case of finite k – we can reverse the indices of trees
and labels, so that they depend on the leftmost label and describe the rightmost,
or so that they depend on the rightmost and describe the leftmost. �

If λ < κ are infinite cardinals, is ≡κ∗ a strict refinement of ≡λ∗? Of course,
≡κ∗ can express the sentence φκ = “there exists a decreasing sequence of κ-many
elements.” In [3] we find a construction of large, ≡λ linear orders, one of which
satisfies φκ and one of which does not, for λ any linear order which does not
satisfy φκ. These can be constructed by iterated application of a rule like that
creating the “surreal” numbers, or by the exponentiation of linear orders. Our
criterion can guide the construction of linear orders which are ≡λ, even though
they are not highly homogeneous, and of linear orders close to the “watershed”
between linear orders which are ≡λ and those which are not.

References

[1] J. Chisholm and M. Moses, An Undecidable Linear Order That Is n-
Decidable for All n, Notre Dame J. Formal Logic Volume 39, Number 4,
519-526, 1998.

39

[2] T. Green, Properties of Chain Products and EhrenfeuchtFräıssé Games on
Chains, MSci Thesis University of Saskatchewan, 2002.

[3] J. Oikkonen, Undefinability of κ-wellorderings in L∞κ Journal of Symbolic
Logic 62:3 999-1020, 1997.

[4] the author, EhrenfeuchtFräıssé Games on Linear Orders, in Logic, Lan-
guage, Information and Computation, Lecture Notes in Computer Science,
4576, 72-82, 2007.

40

