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Abstract. This paper studies Besov p-capacities as well as their relationship to
Hausdorff measures in Ahlfors regular metric spaces of dimension Q for 1 < Q <
p < ∞. Lower estimates of the Besov p-capacities are obtained in terms of the
Hausdorff content associated with gauge functions h satisfying the decay condition∫ 1

0
h(t)1/(p−1) dt

t < ∞.

1. Introduction

In this paper (X, d, µ) is a proper (that is, closed bounded subsets of X are compact)
and unbounded metric space. In addition, it is Ahlfors Q-regular for some Q > 1. That
is, there exists a constant C = cµ such that, for each x ∈ X and all r > 0,

C−1rQ ≤ µ(B(x, r)) ≤ CrQ.

For Q < p <∞ we define

Bp(X) = {u ∈ Lp(X) : ||u||Bp(X) <∞},
where

||u||Bp(X) = ||u||Lp(X) + [u]Bp(X)(1)

with

[u]Bp(X) =

(∫
X

∫
X

|u(x)− u(y)|p

d(x, y)2Q
dµ(x) dµ(y)

)1/p

.(2)

The expressions ||u||Bp(X) and [u]Bp(X) from (1) and (2) are called the Besov norm
and the Besov seminorm of u respectively. We have

[u]Bp(X) = 0 if and only if u is constant µ-a.e.(3)

Besov spaces have recently been used in the study of quasiconformal mappings in
metric spaces and in geometric group theory, see [Bou05] and [BP03].

Capacities associated with Besov spaces were studied by Netrusov in [Net92] and
[Net96], and by Adams and Hurri-Syrjänen in [AHS03]. Bourdon in [Bou05] studied
Besov Bp-capacity in the metric setting.

We develop a theory of Besov Bp-capacity on X and prove that this capacity is a
Choquet set function. We also relate Hausdorff measure and Besov capacity when X
is an Ahlfors Q-regular complete metric space with Q > 1 admitting a weak (1, p̃)-
Poincaré inequality, where 1 ≤ p̃ < Q < p < ∞. Some of the ideas used here follow
[KM96], [KM00], [BP03], and [Bou05].
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2. Preliminaries

In this section we present the standard notations to be used throughout this paper.
Here and throughout this paper B(x, r) = {y ∈ X : d(x, y) < r} is the open ball
with center x ∈ X and radius r > 0, B(x, r) = {y ∈ X : d(x, y) ≤ r} is the closed
ball with center x ∈ X and radius r > 0, while S(x, r) = {y ∈ X : d(x, y) = r}
is the closed sphere with center x ∈ X and radius r > 0. For a positive number λ,
λB(a, r) = B(a, λr) and λB(a, r) = B(a, λr).

Throughout this paper, C will denote a positive constant whose value is not nec-
essarily the same at each occurrence; it may vary even within a line. C(a, b, . . . ) is a
constant that depends only on the parameters a, b, . . . . Here Ω will denote a nonempty
open subset of X. For E ⊂ X, the boundary, the closure, and the complement of E
with respect to X will be denoted by ∂E, E, and X \ E, respectively; diam E is the
diameter of E with respect to the metric d and E ⊂⊂ F means that E is a compact
subset of F.

For two sets A,B ⊂ X, we define dist(A,B), the distance between A and B, by

dist(A,B) = inf
a∈A,b∈B

d(a, b).

For Ω ⊂ X, C(Ω) is the set of all continuous functions u : Ω → R. Moreover, for a
measurable u : Ω → R, supp u is the smallest closed set such that u vanishes on the
complement of supp u. We also use the spaces

C0(Ω) = {ϕ ∈ C(Ω) : supp ϕ ⊂⊂ Ω},
Lip(Ω) = {ϕ : Ω → R : ϕ is Lipschitz},

Liploc(Ω) = {ϕ : Ω → R : ϕ is locally Lipschitz},
Lip0(Ω) = Lip(Ω) ∩ C0(Ω).

Let f : Ω → R be integrable. For E ⊂ Ω measurable with 0 < µ(E) <∞, we define

fE =
1

µ(E)

∫
E
fdµ(x).

We say that a locally integrable function u : X → R belongs to BMO(X), the space
of functions of bounded mean oscillation, if

[u]BMO(X) = sup
a∈X

sup
r>0

1

µ(B(a, r))

∫
B(a,r)

|u− uB(a,r)|dx <∞.

3. Besov spaces

In this section we prove some basic properties of the Besov spaces Bp(X) and their
closed subspaces Bp(Ω) and B0

p(Ω), where Ω ⊂ X is an open set. We also present
standard lemmas needed for the proofs of our main results.

We know that in the Euclidean case Bp(R
n) is a reflexive Banach space and moreover,

S is dense in Bp(R
n) where S = S(Rn) is the Schwartz class. See [AH96, Theorem

4.1.3] and [Pee76, Chapter 3]. We would like to prove similar results about reflexivity
and density when (X, d, µ) is an Ahlfors Q-regular metric space with Q > 1. It is easy
to see that every Lipschitz function with compact support belongs to Bp(X) whenever
X is proper and unbounded.

We have the following lemma regarding the reflexivity of Bp(X) when (X, d, µ) is an
Ahlfors Q-regular metric space with Q > 1.

2



Lemma 3.1. Suppose 1 < Q < p < ∞ and that X is an Ahlfors Q-regular metric
space. Then Bp(X) is a reflexive space.

Proof. Let ν be a measure on the product space X ×X given by

dν(x, y) = d(x, y)−2Qdµ(x)dµ(y).

We endow the product space Lp(X,µ)×Lp(X×X, ν) with the product norm. Namely,
for (u, g) ∈ Lp(X,µ)× Lp(X ×X, ν) we let

||(u, g)||Lp(X,µ)×Lp(X×X,ν) = ||u||Lp(X,µ) + ||g||Lp(X×X,ν).

Clearly this product space is reflexive because it is a product of two reflexive spaces.
Since Bp(X) embeds isometrically into a closed subspace of this reflexive product space,
we have that Bp(X) is itself a reflexive space. This finishes the proof. �

Lemma 3.2. Suppose 1 < Q < p <∞ and that X is an Ahlfors Q-regular metric space.
There exists a constant C = C(Q, p, cµ) such that [u]BMO(X) ≤ C[u]Bp(X) whenever
u ∈ L1

loc(X).

Proof. Indeed, let u ∈ L1
loc(X) be such that [u]Bp(X) < ∞. Suppose that B = B(a,R)

is a ball in X. It is easy to see that there exists a constant C = C(Q, p, cµ) such that

1

µ(B)

∫
B
|u(x)− uB|pdµ(x) ≤ 1

µ(B)2

∫
B

∫
B
|u(x)− u(y)|pdµ(x)dµ(y)(4)

≤ C
∫

B

∫
B

|u(x)− u(y)|p

d(x, y)2Q
dµ(x)dµ(y).

Therefore,

[u]BMO(X) ≤ C(Q, p, cµ)[u]Bp(X)(5)

and the claim follows. �

For an open set Ω ⊂ X we define

Bp(Ω) = {u ∈ Bp(X) : u = 0 µ-a.e. in X \ Ω}.
For a function u ∈ Bp(Ω) we let ||u||Bp(Ω) = ||u||Bp(X).

We notice that Bp(Ω) is a closed subspace of Bp(X) with respect to the Besov norm,
hence it is itself a reflexive space.

We define B0
p(Ω) as the closure of Lip0(Ω) in Bp(X). Since Lip0(Ω) ⊂ Bp(Ω), it

follows that B0
p(Ω) ⊂ Bp(Ω), so we can say that B0

p(Ω) is the closure of Lip0(Ω) in
Bp(Ω).

Lemma 3.3. Bp(Ω) is closed under truncations. In particular, bounded functions in
Bp(Ω) are dense in Bp(Ω).

Proof. The proof is very similar to the proof of [Cos, Lemma 2.1] and omitted. �

For a measurable function u : Ω → R, we let u+ = max(u, 0) and u− = min(u, 0).

Lemma 3.4. If uj → u in Bp(Ω) and vj → v in Bp(Ω), then min(uj, vj) → min(u, v)
in Bp(Ω).

Proof. The proof is similar to the proof of [Cos, Lemma 2.2] and omitted. �

Next we show that the space B0
p(Ω) is a lattice.
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Lemma 3.5. If u, v ∈ B0
p(Ω), then min(u, v) and max(u, v) are in B0

p(Ω). Moreover,

if u ∈ B0
p(Ω) is nonnegative, then there is a sequence of nonnegative functions ϕj ∈

Lip0(Ω) converging to u in Bp(Ω).

Proof. It is enough to show, due to Lemma 3.4, that u+ is in B0
p(Ω) whenever u is in

Lip0(Ω). But this is immediate, because u+ ∈ Lip0(Ω) whenever u ∈ Lip0(Ω). This
finishes the proof. �

Lemma 3.6. Let ϕ be a Lipschitz function with compact support in X. If u ∈ Bp(X),
then uϕ ∈ Bp(X) with

||uϕ||Bp(X) ≤ C ||u||Bp(X),

where C depends on Q, p, cµ, the Lipschitz constant of ϕ, and the diameter of supp ϕ.

Proof. Let R be the diameter of supp ϕ.We choose x0 ∈ supp ϕ such that supp ϕ ⊂ B,
where B = B(x0, R). Let L > 0 be a constant such that |ϕ(x) − ϕ(y)| ≤ Ld(x, y) for
every x, y ∈ X. Note that ||ϕ||L∞(X) ≤ LR. We also notice that

||uϕ||Lp(X) ≤ ||ϕ||L∞(X) ||u||Lp(X),

hence uϕ ∈ Lp(X). Observe that∫
X

∫
X

|u(x)ϕ(x)− u(y)ϕ(y)|p

d(x, y)2Q
dµ(x) dµ(y) = I1 + 2I2,

where

I1 =
∫
2B

∫
2B

|u(x)ϕ(x)− u(y)ϕ(y)|p

d(x, y)2Q
dµ(x) dµ(y)(6)

and

I2 =
∫
2B

∫
X\2B

|u(x)ϕ(x)− u(y)ϕ(y)|p

d(x, y)2Q
dµ(x) dµ(y).(7)

For every x, y ∈ X we have

|u(x)ϕ(x)− u(y)ϕ(y)| ≤ |u(x)− u(y)| |ϕ(x)|+ |u(y)| |ϕ(x)− ϕ(y)|.

Therefore

I1 ≤ 2p(||ϕ||pL∞(X)[u]
p
Bp(X) + I11),(8)

where

I11 =
∫
2B

∫
2B

|u(y)|p |ϕ(x)− ϕ(y)|p

d(x, y)2Q
dµ(x) dµ(y).

From the definition of I11 we have, since ϕ is Lipschitz with constant L,

I11 ≤
∫
2B

∫
2B

Lp |u(y)|p

d(x, y)2Q−p
dµ(x) dµ(y)(9)

= Lp
∫
2B
|u(y)|p

(∫
2B
d(x, y)p−2Qdµ(x)

)
dµ(y).

We have ∫
2B
|x− y|p−2Qdµ(x) ≤ C(Q, p, cµ)Rp−Q(10)
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for every y ∈ 2B, where we recall that R is the radius of B. From (9) and (10) we get

I11 ≤ C(Q, p, cµ)LpRp−Q
∫
2B
|u(y)|pdµ(y)(11)

≤ C(Q, p, cµ)LpRp−Q ||u||pLp(X).

Since ϕ is supported in B, it follows from the definition of I2 that

I2 =
∫

B

∫
X\2B

|u(y)|p |ϕ(y)|p

d(x, y)2Q
dµ(x) dµ(y).

Hence

I2 ≤ ||ϕ||pL∞(X)

∫
B

∫
X\2B

|u(y)|p

d(x, y)2Q
dµ(x) dµ(y)

and since d(x, y) ≥ d(x,x0)
2

whenever x ∈ X \ 2B and y ∈ B, we get

I2 ≤ 22Q ||ϕ||pL∞(X)

∫
B
|u(y)|p dµ(y)

∫
X\2B

1

d(x, x0)2Q
dµ(x).

Hence

I2 ≤ C(Q, p, cµ) ||ϕ||pL∞(X)R
−Q

∫
B
|u(y)|pdµ(y)(12)

≤ C(Q, p, cµ) ||ϕ||pL∞(X)R
−Q ||u||pLp(X).

From (8), (11), (12), and the fact that I = I1 + 2I2, we get that uϕ ∈ Bp(X) with

||uϕ||Bp(X) ≤ C||u||Bp(X),(13)

where the constant C is as required. This finishes the proof. �

Lemma 3.7. Let ϕ be a Lipschitz function with compact support in X. Suppose uk is
a sequence in Bp(X) converging to u in Bp(X). Then ukϕ converges to uϕ in Bp(X).

Proof. From Lemma 3.6, we have that ukϕ ∈ Bp(X) for every k ≥ 1 and uϕ ∈ Bp(X).
Moreover, Lemma 3.6 implies

||ukϕ− uϕ||Bp(X) ≤ C||uk − u||Bp(X)(14)

for every k ≥ 1, and since uk → u in Bp(X), it follows that ukϕ→ uϕ in Bp(X). This
finishes the proof. �

Remark 3.8. Let Ω, Ω̃ be bounded and open subsets of X with Ω ⊂⊂ Ω̃. Suppose that
ϕ is a function in Lip0(Ω̃) with Lipschitz constant C(Q, cµ)/dist(Ω, X \ Ω̃) such that

0 ≤ ϕ ≤ 1 and ϕ = 1 in Ω.(15)

By an argument similar to the one from Lemma 3.6, one can show that uϕ ∈ Bp(Ω̃)

whenever u ∈ Bp(X) and ϕ ∈ Lip0(Ω̃) satisfies (15). Moreover, in this case

||uϕ||
Bp(Ω̃)

≤ C||u||Bp(X)

for all u ∈ Bp(X) and the constant C > 0 can be chosen to depend only on Q, p, cµ,

dist(Ω, X \ Ω̃), and the diameter of Ω̃.
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Remark 3.9. It is easy to see that uϕ ∈ Bp(X) whenever u, ϕ are bounded functions
in Bp(X). Moreover,

||uϕ||Lp(X) ≤ min(||u||L∞(X)||ϕ||Lp(X), ||ϕ||L∞(X)||u||Lp(X))

and

[uϕ]Bp(X) ≤ ||u||L∞(X)[ϕ]Bp(X) + ||ϕ||L∞(X)[u]Bp(X).

Lemma 3.10. Let B = B(x0, R) ⊂ X and η be a C(cµ)/R-Lipschitz function supported
in 2B such that 0 ≤ η ≤ 1. Then there exists a constant C = C(Q, p, cµ) such that

[η(v − vB)]Bp(X) ≤ C[v]Bp(X)

whenever v ∈ L1
loc(X) with [v]Bp(X) <∞.

Proof. Let v ∈ L1
loc(X) such that [v]Bp(X) < ∞. Then v ∈ Lp

loc(X) and this implies,
since η ∈ Lip0(2B), that η(v − vB) ∈ Lp(X). We repeat to some extent the argument

of Lemma 3.6 with ϕ = η and u = v − vB. We can choose L = C(cµ)
R

and we note that
||η||L∞(X) ≤ 1. Hence∫

X

∫
X

|u(x)η(x)− u(y)η(y)|p

d(x, y)2Q
dµ(x) dµ(y) = I1 + 2 I2,(16)

where

I1 =
∫
4B

∫
4B

|u(x)η(x)− u(y)η(y)|p

d(x, y)2Q
dµ(x) dµ(y)

and

I2 =
∫
4B

∫
X\4B

|η(x)u(x)− η(y)u(y)|p

d(x, y)2Q
dµ(x) dµ(y)

We notice that I1 ≤ 2p(I10 + I11), where

I10 =
∫
4B

∫
4B

|η(y)(u(x)− u(y))|p

d(x, y)2Q
dµ(x) dµ(y)

and

I11 =
∫
4B

∫
4B

|u(x)(η(x)− η(y))|p

d(x, y)2Q
dµ(x) dµ(y).

We have

I10 ≤
∫
4B

∫
4B

|u(x)− u(y)|p

d(x, y)2Q
dµ(x) dµ(y) ≤ [v]pBp(X)(17)

since ||η||L∞(X) ≤ 1. As in (11) we get with L = C(cµ)
R

I11 ≤ C(Q, p, cµ)R−Q
∫
4B
|v(y)− vB|pdµ(y).(18)

Because η is supported in 2B, it follows from the definition of I2 that in fact

I2 =
∫
2B

∫
X\4B

|v(y)− vB|p |η(y)|p

d(x, y)2Q
dµ(x) dµ(y).

As in Lemma 3.6 we get

I2 ≤ C(Q, p, cµ)R−Q
∫
2B
|v(y)− vB|pdµ(y).(19)
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From (16), (17), (18), (19), and the fact that I1 ≤ 2p(I10 + 2I11), we have that
η(v − vB) ∈ Bp(X) with

[η(v − vB)]pBp(X) ≤ C(Q, p, cµ)
∫
4B

∫
4B

|v(x)− v(y)|p

d(x, y)2Q
dµ(x) dµ(y)

≤ C(Q, p, cµ) [v]pBp(X).

This finishes the proof. �

We now show that every function in Bp(X) can be approximated by locally Lipschitz
functions in Bp(X).

Proposition 3.11. Liploc(X) ∩ Bp(X) is dense in Bp(X). More precisely, if u has
finite Besov seminorm, then there exists a sequence uε, ε > 0, in Liploc(X) such that:

(i) [uε − u]Bp(X) → 0 as ε→ 0,
(ii) ||uε − u||Lp(X) → 0 as ε→ 0.

Proof. For every ε > 0 we construct a family of balls B(xi, ε) that cover X, have
bounded overlap, and form a c1/ε-Lipschitz partition of unity associated with that
cover as in [KL02]. Here c1 = c1(cµ). More precisely, we choose a family of balls
B(xi, ε), i = 1, 2, . . . , such that

X ⊂
∞⋃
i=1

B(xi, ε)

and
∞∑
i=1

χ6B(xi,ε) < c0 = c0(Q, cµ).(20)

Now we choose a sequence of c1/ε-Lipschitz functions ϕi, i = 1, 2, . . . , such that 0 ≤
ϕi ≤ 1, ϕi = 0 on X \ 6B(xi, ε), ϕi ≥ 1/c0 on 3B(xi, ε), where c0 is the constant from
(20) and such that

∞∑
i=1

ϕi = 1

on X. We define the approximation by setting

uε(x) =
∞∑
i=1

ϕi(x)u3B(xi,ε)

for every x ∈ X. Then uε is a locally Lipschitz function.
(i) We note that

uε(x)− u(x) =
∞∑
i=1

ϕi(x)(u3B(xi,ε) − u(x))

for every x ∈ X. From this and (20) we obtain

[uε − u]pBp(X) ≤ (2c0)
p
∞∑
i=1

[ϕi(u3B(xi,ε) − u)]pBp(X),(21)

where c0 is the bounded overlap constant appearing in (20). However, from Lemma
3.10 there exists a constant C = C(Q, p, cµ) such that

[ϕi(u3B(xi,ε) − u)]pBp(X) ≤ C
∫
12B(xi,ε)

∫
12B(xi,ε)

|u(x)− u(y)|p

d(x, y)2Q
dµ(x) dµ(y)
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for every i = 1, 2, . . . , From this and (21) we obtain

[uε − u]pBp(X) ≤ C
∞∑
i=1

∫
12B(xi,ε)

∫
12B(xi,ε)

|u(x)− u(y)|p

d(x, y)2Q
dµ(x) dµ(y),(22)

where C = C(Q, p, cµ). If we denote

Aε = {(x, y) ∈ X ×X : d(x, y) < 24ε},
we have from (20) and (22) that

[uε − u]pBp(X) ≤ C(Q, p, cµ)
∫

X

∫
X

|u(x)− u(y)|p

d(x, y)2Q
χAε(x, y)dµ(x) dµ(y).

An application of Lebesgue Dominated Convergence Theorem yields [uε− u]Bp(X) → 0
as ε→ 0. Moreover, we also notice that [uε]Bp(X) ≤ C(Q, p, cµ)[u]Bp(X) for every ε > 0.

(ii) By using (20) and the fact that ϕi forms a partition of unity we obtain, via an
argument similar to the one from Lemma 3.2

||uε − u||pLp(X) ≤ (c0)
p
∞∑
i=1

||ϕi(u3B(xi,ε) − u)||pLp(X)(23)

≤ (c0)
p
∞∑
i=1

∫
6B(xi,ε)

|u(x)− u3B(xi,ε)|pdµ(x)

≤ C(Q, p, cµ) εQ
∫

X

∫
X

|u(x)− u(y)|p

d(x, y)2Q
dµ(x)dµ(y),

where c0 is the constant from (20). This implies immediately that ||uε − u||Lp(X) → 0
as ε→ 0. This finishes the proof.

�

Proposition 3.12. Lip0(X) is dense in Bp(X).

Proof. Let u ∈ Bp(X). Without loss of generality we can assume that u is locally
Lipschitz and in particular bounded. We fix x0 ∈ X. For every integer k ≥ 2, we define
ϕk : X → R by

ϕk(x) =


1 if 0 ≤ d(x, x0) ≤ k,

ln k2

d(x,x0)

ln k
if k < d(x, x0) ≤ k2,

0 if d(x, x0) > k2.

Then ϕk ∈ Bp(X) and moreover, [ϕk]
p
Bp(X) ≤ C(ln k)1−p. (See (24).)

Let uk = uϕk. Then uk ∈ Lip0(X) and

||u− uk||Lp(X) ≤ ||uχX\B(x0,k)||Lp(X) → 0 as k →∞.

We also have

[u− uk]Bp(X) ≤
(∫

X

∫
X

(1− ϕk(y))
p|u(x)− u(y)|p

d(x, y)2Q
dµ(x) dµ(y)

)1/p

+ ||u||L∞(X)[ϕk]Bp(X) → 0

as k →∞. This finishes the proof. �

Lemma 3.13. Let v ∈ Bp(Ω).
(i) If supp v ⊂⊂ Ω, then v ∈ B0

p(Ω).

(ii) If u ∈ B0
p(Ω) and 0 ≤ v ≤ u in X, then v ∈ B0

p(Ω).
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Proof. The proof is similar to the proof of [Cos, Lemma 2.10] and omitted. �

Lemma 3.14. Suppose that Ω ⊂⊂ X. Let u ∈ Bp(Ω) such that u = 0 on X \ Ω and
limΩ3x→y u(x) = 0 for all y ∈ ∂Ω. Then u ∈ B0

p(Ω).

Proof. The proof is similar to the proof of [Cos, Lemma 2.11] and omitted. �

4. Relative Besov capacity

In this section, we establish a general theory of relative Besov capacity and study
how this capacity is related to Hausdorff measures.

For E ⊂ Ω we define

BA(E,Ω) = {u ∈ B0
p(Ω) : u ≥ 1 on a neighborhood of E}.

We call BA(E,Ω) the set of admissible functions for the condenser (E,Ω). The relative
Besov p-capacity of the pair (E,Ω) is denoted by

capBp
(E,Ω) = inf{[u]pBp(Ω) : u ∈ BA(E,Ω)}.

If BA(E,Ω) = ∅, we set capBp
(E,Ω) = ∞.

Since B0
p(Ω) is closed under truncations and the truncation does not increase the

Bp-seminorm, we may restrict ourselves to those admissible functions u for which 0 ≤
u ≤ 1.

Remark 4.1. If K is a compact subset of the bounded and open set Ω ⊂ X, we get the
same Besov Bp-capacity for (K,Ω) if we restrict ourselves to a smaller set of admissible
functions, namely

BW (K,Ω) = {u ∈ Lip0(Ω) : u = 1 in a neighborhood of K}.
Indeed, let u ∈ BA(K,Ω); we may clearly assume that u = 1 in a neighborhood U ⊂⊂
Ω of K. Then we choose a cut-off Lipschitz function η, 0 ≤ η ≤ 1 such that η = 1 in
X\U and η = 0 in a neighborhood Ũ of K, Ũ ⊂⊂ U. Now, if ϕj ∈ Lip0(Ω) is a sequence
converging to u in B0

p(Ω), then ψj = 1−η(1−ϕj) is a sequence belonging to BW (K,Ω)

which converges to 1 − η(1 − u) in B0
p(Ω). (See Lemma 3.7.) But 1 − η(1 − u) = u.

This establishes the assertion, since BW (K,Ω) ⊂ BA(K,Ω). In fact, it is easy to see
that if K ⊂ Ω is compact we get the same Besov Bp-capacity if we consider

BW̃ (K,Ω) = {u ∈ Lip0(Ω) : u = 1 on K}.
It is also useful to observe that if ψ ∈ B0

p(Ω) is such that ϕ− ψ ∈ B0
p(Ω \K) for some

ϕ ∈ BW̃ (K,Ω), then
capBp

(K,Ω) ≤ [ψ]pBp(Ω).

4.1. Basic properties of the relative Besov capacity. A capacity is a monotone,
subadditive set function. The following theorem expresses, among other things, that
this is true for the relative Besov p-capacity.

Theorem 4.2. Suppose (X, d, µ) is a proper and unbounded Ahlfors Q-regular metric
space with 1 < Q < p < ∞. Let Ω ⊂ X be a bounded open set. The set function
E 7→ capBp

(E,Ω), E ⊂ Ω, enjoys the following properties:
(i) If E1 ⊂ E2, then capBp

(E1,Ω) ≤ capBp
(E2,Ω).

(ii) If Ω1 ⊂ Ω2 are open, bounded, and E ⊂ Ω1, then

capBp
(E,Ω2) ≤ capBp

(E,Ω1).
9



(iii) capBp
(E,Ω) = inf{capBp

(U,Ω) : E ⊂ U ⊂ Ω, U open}.
(iv) If Ki is a decreasing sequence of compact subsets of Ω with K =

⋂∞
i=1Ki, then

capBp
(K,Ω) = lim

i→∞
capBp

(Ki,Ω).

(v) If E1 ⊂ E2 ⊂ . . . ⊂ E =
⋃∞

i=1Ei ⊂ Ω, then

capBp
(E,Ω) = lim

i→∞
capBp

(Ei,Ω).

(vi) If E =
⋃∞

i=1Ei ⊂ Ω, then

capBp
(E,Ω) ≤

∞∑
i=1

capBp
(Ei,Ω).

Proof. The proof is very similar to the proof of [Cos, Theorem 3.1] and is therefore
omitted. �

A set function that satisfies properties (i), (iv), (v) and (vi) is called a Choquet
capacity (relative to Ω). We may thus invoke an important capacitability theorem of
Choquet and state the following result. See [Doo84, Appendix II].

Theorem 4.3. Suppose (X, d, µ) is a metric measure space as in Theorem 4.2. Suppose
that Ω is a bounded open set in X. The set function E 7→ capBp

(E,Ω), E ⊂ Ω, is a
Choquet capacity. In particular, all Borel subsets (in fact, all analytic) subsets E of Ω
are capacitable, i.e.,

capBp
(E,Ω) = sup{capBp

(K,Ω) : K ⊂ E compact}
whenever E ⊂ Ω is analytic.

4.2. Upper estimates for the relative Besov capacity. Next we derive some upper
estimates for the relative Besov capacity. Similar estimates have been obtained earlier
by Bourdon in [Bou05]. We follow his methods.

Theorem 4.4. Let (X, d, µ) be a metric measure space as in Theorem 4.2. There exists
a constant C = C(Q, p, cµ) > 0 depending only on Q, p and cµ such that

capBp
(B(x0, r), B(x0, R)) ≤ C

(
ln
R

r

)1−p

(24)

for every 0 < r < R
2

and every x0 ∈ X.

Proof. We use the function u : X → R,

u(x) =


1 if 0 ≤ d(x, x0) ≤ r,

ln
d(x,x0)

R

ln r
R

if r < d(x, x0) < R,

0 if d(x, x0) ≥ R.

Then u ∈ Bp(X) because it is Lipschitz with compact support. Since u is continuous
on X and 0 outside B(x0, R), we have in fact from Lemma 3.14 that u ∈ B0

p(B(x0, R)).

In fact u ∈ BA(B(x0, r), B(x0, R)) since u = 1 on B(x0, r). Let v(x) = ln R
r
u(x). We

will get an upper bound for [v]Bp(B(x0,R)). Let k ≥ 3 be the smallest integer such that

2k−1r ≥ R. For i = 1, . . . , k we define Bi = B(x0, 2
ir) \ B(x0, 2

i−1r). We also define
B0 = B(x0, r) and Bk+1 = X \B(x0, 2

kr). We have

[v]pBp(B(x0,R)) =
∑

0≤i,j≤k+1

Ii,j =
∑

0≤i,j≤k+1

∫
Bi

∫
Bj

|v(x)− v(y)|p

d(x, y)2Q
dµ(x) dµ(y).

10



Obviously we have Ii,j = Ij,i. We majorize Ii,j by distinguishing a few cases. For j ≤ k
and 0 ≤ i ≤ j − 2 we have from the definition of v that |v(x) − v(y)| ≤ j − i + 1
whenever x ∈ Bi and y ∈ Bj, hence

Ii,j ≤ C0(j − i+ 1)p (2jr)−2Q (2ir)Q (2jr)Q,

that is Ii,j ≤ C1(j − i)p2(i−j)Q. For 0 ≤ i ≤ j ≤ k we notice, since v is 1
2i−1r

-Lipschitz
on

⋃
j≥iBj that

Ii,j ≤ (2i−1r)−p
∫

Bi

∫
Bj

1

d(x, y)2Q−p
dµ(x) dµ(y).

Moreover, we have ∫
Bj

1

d(x, y)2Q−p
dµ(x) ≤ C2(diam Bj)

p−Q

for every y ∈ B(x0, 2
ir), where C2 depends only on p, Q and cµ. Hence for 0 ≤ i ≤ j ≤ k

we have

Ii,j ≤ C3(2
i−1r)−p(2ir)Q(2jr)p−Q ≤ C42

(j−i)(p−Q).

In particular, for j − 1 ≤ i ≤ j ≤ k, the integral Ii,j is bounded by a constant that
depends only on p, Q and cµ. Now we have to bound Ii,j when j = k + 1. Since v is
constant on Bk ∪Bk+1, we have Ii,k+1 = 0 for i ∈ {k, k+ 1}. For 0 ≤ i ≤ k− 1 we have

Ii,k+1 ≤ (k − i+ 1)p
∫

Bi

∫
Bk+1

1

d(x, y)2Q
dµ(x) dµ(y).

But there exists C5 > 0 such that∫
Bk+1

1

d(x, y)2Q
dµ(x) ≤ C5(2

k+1r)−Q

for every y ∈ X with d(y, x0) ≤ 2k−1r. Hence Ii,k+1 ≤ C6(k − i + 1)p2(i−k−1)Q. Finally
we have

[v]pBp(B(x0,R)) ≤ C7k + C8

∑
0≤i≤j≤k+1

(j − i)p2(i−j)Q.

The last sum is equal to
k+1∑
l=1

(k + 1− l)lp2−lQ.

But k+ 1− l ≤ k+ 1 and there exists a > 1 such that lp2−lQ ≤ C9a
−l for l ≥ 1. Hence

[v]pBp(B(x0,R)) ≤ C10 ln
R

r

and

[u]pBp(B(x0,R)) ≤ C10

(
ln
R

r

)1−p

.

The claim follows with C = C10. �

For a fixed r > 0 we construct the dyadic partition of X as in [Chr90, Theorem11].
That is, a family of open sets Dr = {Kα

m,r : m ∈ Z, α ∈ Im} such that
(i) µ(X \ ⋃αK

α
m,r) = 0,∀m.

(ii) If l ≥ m then either Kβ
l,r ⊂ Kα

m,r or Kβ
l,r ∩Kα

m,r = ∅.
(iii) For each (m,α) and each l < m there is a unique β such that Kα

m,r ⊂ Kβ
l,r.

11



(iv) For every (m,α) there exists a ball Bα
m,r = B(xα

m,r, 10−mr) such that

1

10
Bα

m,r ⊂ Kα
m,r ⊂ 3Bα

m,r.

We call these open sets ”dyadic cubes”.
Two distinct dyadic cubes K,K ′ in Dr are adjacent if there exists an integer k such

that either
(i) K,K ′ are in generation k and K ∩K ′ 6= ∅, or
(ii) one of the cubes K,K ′ is in generation k, the other one is in generation k + 1

the one in generation k contains the other one.
Similarly, ifK0 ⊂ X is a dyadic cube inDr, we denote byDr(K0) the dyadic subcubes

of K0.
For two adjacent cubes K,K ′ ∈ Dr we have

|fK − fK′|p =

∣∣∣∣∣ 1

µ(K)

∫
K
f(x) dµ(x)− 1

µ(K ′)

∫
K′
f(y) dµ(y)

∣∣∣∣∣
p

=

∣∣∣∣∣ 1

µ(K)

1

µ(K ′)

∫
K

∫
K′

(f(x)− f(y)) dµ(x) dµ(y)

∣∣∣∣∣
p

≤ 1

µ(K)

1

µ(K ′)

∫
K

∫
K′
|f(x)− f(y)|p dµ(x) dµ(y)

≤ C
∫

K

∫
K′

|f(x)− f(y)|p

d(x, y)2Q
dµ(x) dµ(y),

where C is a constant that depends only on the Ahlfors regularity of X.
For the following lemma see [BP03, Lemma 3.5].

Lemma 4.5. There exists a constant C depending only on the Ahlfors regularity of X
such that

C−1|η − ζ|−2Q ≤
∑

K,K′∈Dr adjacent

χK(η)χK′(ζ)

µ(K)µ(K ′)
≤ C|η − ζ|−2Q

for µ-a.e. η, ζ ∈ X.
We also have (see [BP03, Theorem 3.4]):

Lemma 4.6. There exists a constant C depending only on p and on the Ahlfors regu-
larity of X such that

C−1[f ]pBp(X) ≤
∑

K,K′∈Dr adjacent

1

µ(K)

1

µ(K ′)

∫
K

∫
K′
|f(x)− f(y)|p dµ(x) dµ(y)

≤ C[f ]pBp(X)

for every f ∈ Bp(X).

This implies (see [BP03, Lemma 3.5]):

Lemma 4.7. There exists a constant C depending only on p and on the Ahlfors regu-
larity of X such that ∑

K,K′∈Dr adjacent
|fK − fK′|p ≤ C[f ]pBp(X)(25)

for every f ∈ Bp(X).
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4.3. Hausdorff measure and relative Besov capacity. Now we examine the rela-
tionship between Hausdorff measures and the Bp-capacity. Let h be a real-valued and
increasing function on [0,∞) such that limt→0 h(t) = h(0) = 0 and limt→∞ h(t) = ∞.
Such a function h is called a measure function. Let 0 < δ ≤ ∞. Suppose Ω ⊂ X is
open. For E ⊂ Ω we define

Λδ
h,Ω

(E) = inf
∑

i

h(ri),

where the infimum is taken over all coverings of E by open sets Gi in Ω with diameter
ri not exceeding δ. The set function Λ∞

h,Ω
is called the h-Hausdorff content relative to

Ω. Clearly Λδ
h,Ω

is an outer measure for every δ ∈ (0,∞] and every open set Ω ⊂ X.

We write Λδ
h(E) for Λδ

h,X(E).

Moreover, for every E ⊂ Ω, there exists a Borel set Ẽ such that E ⊂ Ẽ ⊂ Ω and
Λδ

h,Ω
(E) = Λδ

h,Ω
(Ẽ). Clearly Λδ

h,Ω
(E) is a decreasing function of δ. It is easy to see that

Λδ
h,Ω2

(E) ≤ Λδ
h,Ω1

(E) for every δ ∈ (0,∞] whenever Ω1 and Ω2 are open sets in X such

that E ⊂ Ω1 ⊂ Ω2. This allows us to define the h-Hausdorff measure relative to Ω of
E ⊂ Ω by

Λh,Ω(E) = sup
δ>0

Λδ
h,Ω

(E) = lim
δ→0

Λδ
h,Ω

(E).

The measure Λh,Ω is Borel regular; that is, it is an additive measure on Borel sets of Ω

and for each E ⊂ Ω there is a Borel setG such that E ⊂ G ⊂ Ω and Λh,Ω(E) = Λh,Ω(G).
(See [Fed69, p. 170] and [Mat95, Chapter 4].) If h(t) = ts, we write Λs for Λts,X . It is
immediate from the definition that Λs(E) < ∞ implies Λu(E) = 0 for all u > s. The
smallest s ≥ 0 that satisfies Λu(E) = 0 for all u > s is called the Hausdorff dimension
of E.

For Ω ⊂ X open and δ > 0 the set function Λδ
h,Ω

has the following property:

(i) If Ki is a decreasing sequence of compact sets in Ω, then

Λδ
h,Ω

(
∞⋂
i=1

Ki) = lim
i→∞

Λδ
h,Ω

(Ki).

Moreover, if Ω ⊂⊂ X and h is a continuous measure function, then Λδ
h,Ω

satisfies the

following additional properties:
(ii) If Ei is an increasing sequence of arbitrary sets in Ω, then

Λδ
h,Ω

(
∞⋃
i=1

Ei) = lim
i→∞

Λδ
h,Ω

(Ei).

(iii) Λδ
h,Ω

(E) = sup{Λδ
h,Ω

(K) : K ⊂ E compact} whenever E ⊂ Ω is a Borel set.

(See [Rog70, Chapter 2:6].)
We have the following proposition:

Proposition 4.8. Suppose (X, d, µ) is an Ahlfors Q-regular metric space with Q > 1.
Let h : [0,∞) → [0,∞) be a measure function.

(a) If lim inft→0 h(t)t
−Q = 0, then Λδ

h(X) = 0.
(b) If lim inft→0 h(t)t

−Q > 0, then there is an increasing function h∗ : [0,∞) → [0,∞)
such that h∗(0) = 0, h∗ is continuous, t 7→ h(t) t−Q, 0 < t <∞ is decreasing and there

13



exists a constant C = C(Q, cµ) such that for all E ⊂ X and all δ > 0

C−1Λδ
h(E) ≤ Λδ

h∗(E) ≤ CΛδ
h(E).

Proof. The proof is similar to the proof of [AH96, Proposition 5.1.8] and omitted. �

If h : [0,∞) → [0,∞) is a continuous increasing measure function such that t 7→
h(t) t−Q, 0 < t <∞ is decreasing, we know that Λh(E) = 0 if and only if Λ∞h (E) = 0.
(See [AH96, Proposition 5.1.5].) If h(t) = ts, 0 < s <∞, we write Λ∞s for Λ∞ts,X .

Theorem 4.9. Suppose 1 ≤ p̃ < Q < p < ∞. Let (X, d, µ) be a complete and un-
bounded Ahlfors Q-regular metric space that supports a weak (1, p̃)-Poincaré inequality.
Suppose h : [0,∞) → [0,∞) is a continuous increasing measure function such that
t 7→ h(t)t−Q, 0 < t < ∞ is decreasing. Let K0,r ∈ Dr be a dyadic cube of generation
0 and let x0 ∈ X be such that B(x0, r/10) ⊂ K0,r. There exists a positive constant
C ′1 = C ′1(Q, p, cµ) such that

Λ∞h (E ∩Kk,r)(∫ 10−kr
0 h(t)p′−1 dt

t

)p−1 ≤ C ′1k
p−1capBp

(E ∩Kk,r, B(x0, r/10))(26)

for every E ⊂ X, every k > 1, r > 0, and for every Kk,r ∈ Dr(K0,r) cube of generation
k such that B(x0, 10−kr) ∩Kk,r 6= ∅.

Proof. We fix r > 0 and k > 1. Suppose Kk,r ∈ Dr(K0,r) is a dyadic subcube of K0,r of
generation k such that Kk,r ∩B(x0, 10−kr) 6= ∅.

Let E ⊂ X. From the fact that there exists a Borel set Ẽ such that E ⊂ Ẽ ⊂ X and
capBp

(E ∩ Kk,r, B(x0, r/10)) = capBp
(Ẽ ∩ Kk,r, B(x0, r/10)), we can assume that E

is a Borel set. Moreover, from the discussion before Proposition 4.8 and the fact that
capBp

(·, B(x0, r/10)) is a Choquet capacity, we can assume without loss of generality
that E is compact.

There is nothing to prove if either Λ∞h (E ∩ Kk,r) = 0 or if
∫ 10−kr
0 h(t)p′−1 dt

t
= ∞.

So we can assume without loss of generality that α = Λ∞h (E ∩ Kk,r) > 0 and that∫ 10−kr
0 hp′−1(t)dt

t
<∞.

For every ζ ∈ S(x0, r/10) there exists a decreasing sequence (Ks,ζ)s≤0 of dyadic
subcubes of K0,r such that Ks,ζ is a cube of generation s for every integer s ≤ 0 and⋂

s≤0

Ks,ζ = {ζ}.

We denote by s0
ζ the sequence (Ks,ζ)s≤0.

Similarly, for every η ∈ Kk,r there exists a decreasing sequence (Ks+k,η)s≥0 of dyadic
subcubes of Kk,r such that Ks+k,η is of generation s+ k for every s ≥ 0 and⋂

s≥0

Ks+k,η = {η}.

We denote by s1
η the sequence (Ks+k,η)s≥0. Let I = {K0,r, . . . , Kk,r} be a shortest

sequence of pairwise adjacent cubes connecting K0,r and Kk,r.
For (ζ, η) ∈ S(x0, r/10)×Kk,r we define γζ,η = (Ks,ζ,η)s∈Z, where

Ks,ζ,η =


Ks,ζ if s ≤ 0
Ks,r if 0 ≤ s ≤ k
Ks,η if s ≥ k.
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For K,K ′ ∈ Dr we define

C(K,K ′) = {(ζ, η) ∈ S(x0,
r

10
)×Kk,r : K = Ks,ζ,η, K

′ = Ks+1,ζ,η for some s ∈ Z}.

We notice that C(K,K ′) = ∅ if K,K ′ are not adjacent or if they are adjacent but of
the same generation.

Since X is an Ahlfors Q-regular complete metric space that satisfies a weak (1, p̃)-
Poincaré inequality with 1 ≤ p̃ < Q, there exists (see [Kor07, Theorem 4.2]) a constant
C depending only on p̃ and on the data of X such that

C−1tQ−p̃ ≤ Λ∞Q−p̃(S(x, t)) ≤ CtQ−p̃

for all closed spheres S(x, t) of radius t in X. We also have α = Λ∞h (E ∩ Kk,r) > 0.
Therefore, by applying Frostman’s lemma (see [Mat95, Theorem 8.8]), there exists a
constant C > 0 and probability measures ν0 on S(x0, r/10) and ν1 on E ∩ Kk,r such
that for every ball B(x, t) of radius t in X we have

ν0(B(x, t)) ≤ C
(
t

r

)Q−p̃

and ν1(B(x, t)) ≤ C
h(t)

α
.(27)

For K,K ′ ∈ Dr we define

m(K,K ′) = ν0 × ν1(C(K,K ′)).

We notice that m(K,K ′)m(K ′, K) = 0 for every pair of cubes K,K ′ ∈ Dr. Moreover, if
m(K,K ′) 6= 0, then this implies thatK andK ′ are adjacent but of different generations.

Let f be in BW (E,B(x0, r/10)). Then, since f is continuous, we have that

fKv
→ f(y)

for every y ∈ X for every nested sequence Kv of r-dyadic cubes containing y and
converging to y. It follows that

1 ≤ f(η)− f(ζ) ≤
∑
s∈Z

(fKs+1,ζ,η
− fKs,ζ,η

)

whenever η ∈ E ∩Kk,r and ζ ∈ S(x0, r/10).
We obtain with the definition of m(K,K ′) and by Hölder’s inequality, that

1 ≤
∫

S(x0,r/10)

∫
E∩Kk,r

∑
s∈Z

(fKs+1,ζ,η
− fKs,ζ,η

)dν0(ζ) dν1(η)

≤
∫

S(x0,r/10)

∫
Kk,r

∑
s∈Z

|fKs+1,ζ,η
− fKs,ζ,η

|dν0(ζ) dν1(η)

=
∑

K,K′∈Dr adjacent
|fK − fK′|m(K,K ′)

≤

 ∑
K,K′∈Dr adjacent

|fK − fK′|p


1/p ∑
K,K′∈Dr adjacent

m(K,K ′)p′


1/p′

≤ C[f ]Bp(X)

 ∑
K,K′∈Dr adjacent

m(K,K ′)p′


1/p′

,
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where we used (25) for the last inequality. Here the constant C depends only on p and
on the Ahlfors regularity of X. For a nonnegative integer s we let

E0,s = {(K,K ′) ∈ Dr ×Dr : K = K−s−1,ζ , K
′ = K−s,ζ for some ζ ∈ S(x0, r/10)}

and similarly

E1,s = {(K,K ′) ∈ Dr ×Dr : K = Ks+k,η, K
′ = Ks+k+1,η for some η ∈ Kk,r}.

We notice that we can break
∑

=
∑

K,K′∈Dr
m(K,K ′)p′ into 3 parts, namely∑

=
∞∑

s=0

∑
(K,K′)∈E0,s

m(K,K ′)p′ +
∑

K,K′∈I

m(K,K ′)p′ +
∞∑

s=0

∑
(K,K′)∈E1,s

m(K,K ′)p′ .

We recall that I = {K0,r, . . . , Kk,r} is a shortest sequence of pairwise adjacent cubes in
Dr connecting K0,r and Kk,r. Thus, the sum in the middle is exactly k. We get upper
bounds for the first and the third term in the sum. We notice that for every s ≥ 0 we
have ∑

(K,K′)∈E0,s

m(K,K ′) = 1

since ν0 × ν1 is a probability measure. On the other hand, there exists a constant C ′

depending only on p and on the Hausdorff dimension of X such that

m(K,K ′) ≤ C ′
h(10−s−kr)

α
for every (K,K ′) ∈ E1,s

for every integer s ≥ 0 and

m(K,K ′) ≤ C ′10(p̃−Q)s for every (K,K ′) ∈ E0,s

for every integer s ≥ 0.
Therefore
∞∑

s=0

∑
(K,K′)∈E1,s

m(K,K ′)p′ =
∞∑

s=0

∑
(K,K′)∈E1,s

m(K,K ′)p′−1m(K,K ′)

≤ Cα1−p′
∑
s≥0

h(10−s−kr)p′−1

 ∑
(K,K′)∈E1,s

m(K,K ′)

 .
But there exists a constant C0 = C0(Q, p) > 1 such that

1

C0

∫ 10−kr

0
h(t)p′−1dt

t
≤
∑
s≥0

h(10−k−sr)p′−1 ≤ C0

∫ 10−kr

0
h(t)p′−1dt

t

for every r > 0, every integer k > 1 and every continuous increasing measure function
h : [0,∞) → [0,∞) such that t 7→ h(t)t−Q, 0 < t <∞, is decreasing. Hence

∞∑
s=0

∑
(K,K′)∈E1,s

m(K,K ′)p′ ≤ C α1−p′
∫ 10−kr

0
h(t)p′−1dt

t
.

From a similar computation we get
∞∑

s=0

∑
(K,K′)∈E0,s

m(K,K ′)p′ =
∞∑

s=0

∑
(K,K′)∈E0,s

m(K,K ′)p′−1m(K,K ′)

≤ C
∑
s≥0

10−(p′−1)(Q−p̃)s

 ∑
(K,K′)∈E0,s

m(K,K ′)

 = C.
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So we get ∑
≤ C

(
α1−p′

∫ 10−kr

0
h(t)p′−1dt

t
+ k + 1

)
.

It is easy to see that there exists a constant C depending only on p and on the Hausdorff
dimension of X such that

Λ∞h (Kk,r)(∫ 10−kr
0 h(t)p′−1 dt

t

)p−1 ≤ C.

for every r > 0, every integer k > 1 and every continuous increasing measure function
h : [0,∞) → [0,∞) such that t 7→ h(t)t−Q, 0 < t <∞, is decreasing. Hence∑

≤ Ck α1−p′
∫ 10−kr

0
h(t)p′−1dt

t
.

Therefore we obtain

1 ≤ C[f ]Bp(B(x0,r/10))

(
k α1−p′

∫ 10−kr

0
h(t)p′−1dt

t

)1/p′

for every integer k > 1 and for every f ∈ BW (E∩Kk,r, B(x0, r/10)). This implies that
there exists a constant C ′1 depending only on p and on the Hausdorff dimension of X
such that

Λ∞h (E ∩Kk,r)(∫ 10−kr
0 h(t)p′−1 dt

t

)p−1k
1−p ≤ C ′1capBp

(E ∩Kk,r, B(x0, r/10)).

This finishes the proof. �

As a consequence of Theorem 4.9, we obtain the following theorem.

Theorem 4.10. Suppose 1 ≤ p̃ < Q < p < ∞. Let (X, d, µ) be a complete and
unbounded Ahlfors Q-regular metric space as in Theorem 4.9. Suppose h : [0,∞) →
[0,∞) is a continuous increasing measure function such that t 7→ h(t)t−Q, 0 < t < ∞
is decreasing. There exists a positive constant C1 = C1(Q, p, cµ) such that

Λ∞h (E ∩B(x, r))(∫ r
0 h(t)

p′−1 dt
t

)p−1 ≤ C1

(
ln
R

r

)p−1

capBp
(E ∩B(x, r), B(x,R))

for every E ⊂ X, every x ∈ X, and every pair of positive numbers r, R such that r < R
2
.

Proof. Fix x ∈ X and r, R such that 0 < r < R
2
. Without loss of generality we can

assume that B(x, 100R) ⊂ K0,1000R. We choose k ≥ 3 integer such that 102−kR ≤
r < 103−kR. From the construction of the dyadic cubes and the fact that X is a Q-
Ahlfors regular space with Q > 1, it follows that there exists a constant C = C(Q, cµ)
independent of k such that every ball of radius 102−kR intersects with at most C dyadic
subcubes of K0,1000R from the kth generation. We leave the rest of the details to the
reader. �

It follows easily that if X is a complete and unbounded Ahlfors Q-regular metric
space as in Theorem 4.10, then there exists a constant C = C(Q, p, p̃, cµ) such that

Λ∞1 (E ∩B(a,R))

R
≤ CcapBp

(E ∩B(a,R), B(a, 2R))(28)
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whenever E ⊂ X, R > 0, and a ∈ X.
As a corollary we have the following.

Corollary 4.11. Suppose X is a complete and unbounded Ahlfors Q-regular metric
space as in Theorem 4.10. There exists a positive constant C2 = C2(Q, p, p̃, cµ) such
that

C2

(
ln
R

r

)1−p

≤ capBp
(B(x, r), B(x,R))(29)

for every x ∈ X and every pair of positive numbers r, R such that r < R
2
.

Proof. We apply Theorem 4.10 for h(t) = tQ−p̃. We notice (see [Kor07, Theorem 4.2])
that there exists a constant C ′2 = C ′2(Q, p, p̃, cµ) such that

1

C ′2
≤

Λ∞
Q−p̃

(B(x, r))(∫ r
0 t

(p′−1)(Q−p̃) dt
t

)p−1 ≤ C ′2(30)

for every x ∈ X and every r > 0. The rest is routine.
�

Theorem 4.4 and Corollary 4.11 easily yield the following theorem, (cf. [Bou05]).

Theorem 4.12. Suppose X is a complete and unbounded Ahlfors Q-regular metric
space as in Theorem 4.10. There exists C0 = C0(Q, p, cµ) > 0 such that

1

C0

(
ln
R

r

)1−p

≤ capBp
(B(x, r), B(x,R)) ≤ C0

(
ln
R

r

)1−p

(31)

for every x ∈ X and every pair of positive numbers r, R such that r < R
2
.

A set E ⊂ X is said to be of Besov Bp-capacity zero if capBp
(E ∩ Ω,Ω) = 0 for all

open and bounded Ω ⊂ X. In this case we write capBp
(E) = 0. The following lemma

is obvious.

Lemma 4.13. A countable union of sets of Besov Bp-capacity zero has Besov Bp-
capacity zero.

The next lemma shows that, if E is bounded, one needs to test only a single bounded
open set Ω containing E in showing that E has zero Besov Bp-capacity.

Lemma 4.14. Suppose that E is bounded and that there is a bounded neighborhood Ω
of E with capBp

(E,Ω) = 0. Then capBp
(E) = 0.

Proof. The proof is similar to the proof of [Cos, Lemma 3.13] and omitted. �

Corollary 4.15. Suppose X is a complete and unbounded Ahlfors Q-regular metric
space as in Theorem 4.10. Let E ⊂ X be such that capBp

(E) = 0. Then Λh(E) = 0 for
every measure function h : [0,∞) → [0,∞) such that∫ 1

0
h(t)p′−1dt

t
<∞.(32)

In particular, the Hausdorff dimension of E is zero and X \ E is connected.

Note that for every ε > 0 we can take h = hε : [0,∞) → [0,∞) in Corollary 4.15,
where hε(t) = (ln t)1−p−ε for every t ∈ (0, 1/2).
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Proof. It is enough to assume, without loss of generality, that h : [0,∞) → [0,∞) is
a continuous measure function such that t 7→ h(t)t−Q, 0 < t < ∞ is decreasing. (See

Proposition 4.8.) If capBp
(E) = 0, then there exists a Borel set Ẽ such that E ⊂ Ẽ

and capBp
(Ẽ) = 0, hence we can assume without loss of generality that E is itself

Borel. Since Λh is a Borel regular measure and Λh(E) = 0 if and only if Λ∞h (E) = 0,
it is enough to assume that E is in fact compact. For E compact the claim follows
obviously from Theorem 4.10.

The second claim is a consequence of the first claim because for every s ∈ (0, Q), the
function hs : [0,∞) → [0,∞) defined by hs(t) = ts has the property (32). The third
claim is an easy consequence of the second claim. �

We also get upper bounds of the relative Besov p-capacity in terms of a certain
Hausdorff measure.

Proposition 4.16. Let h : [0,∞) → [0,∞) be an increasing homeomorphism such that
h(t) = (ln 1

t
)1−p for all t ∈ (0, 1

2
). Suppose (X, d, µ) is a proper and unbounded Ahlfors

Q-regular metric space. Let E be a compact subset of X. There exists a constant
C depending only on p and on the Ahlfors regularity of X such that capBp

(E,Ω) ≤
CΛh(E) for every bounded and open set Ω containing E.

Proof. The proof is similar to the proof of [Cos, Proposition 3.17] and omitted. �

Proposition 4.16 gives another sufficient condition to obtain sets of Besov p-capacity
zero.

Theorem 4.17. Let h : [0,∞) → [0,∞) be an increasing homeomorphism such that
h(t) = (ln 1

t
)1−p for all t ∈ (0, 1

2
). Then Λh(E) < ∞ implies capBp

(E) = 0 for every
E ⊂ X.

Proof. The proof is similar to the proof of [Cos, Theorem 3.16] and omitted. �

5. Besov capacity and quasicontinuous functions

In this section we study a global Besov capacity and quasicontinuous functions in
Besov spaces.

5.1. Besov Capacity.

Definition 5.1. For a set E ⊂ X define

CapBp
(E) = inf{||u||pLp(X) + [u]pBp(X) : u ∈ S(E)},

where u runs through the set

S(E) = {u ∈ Bp(X) : u = 1 in a neighborhood of E}.

Since Bp(X) is closed under truncations and the norms do not increase, we may
restrict ourselves to those functions u ∈ S(E) for which 0 ≤ u ≤ 1. We get the same
capacity if we consider the apparently larger set of admissible functions, namely

S̃(E) = {u ∈ Bp(X) : u ≥ 1 µ-a.e. in a neighborhood of E}.

Moreover, we have the following lemma:
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Lemma 5.2. If K is compact, then

CapBp
(K) = inf{||u||pLp(X) + [u]pBp(X) : u ∈ S0(K)}

where S0(K) = S(K) ∩ Lip0(X).

Proof. Let u ∈ S(K). Since Bp(X) = B0
p(X), we may choose a sequence of functions

ϕj ∈ Lip0(X) converging to u in Bp(X). Let U be a bounded and open neighborhood
of K such that u = 1 in U. Let ψ ∈ Lip(X), 0 ≤ ψ ≤ 1 be such that ψ = 1 in X \ U
and ψ = 0 in Ũ ⊂⊂ U, an open neighborhood of K. From Lemma 3.7 we see that the
functions ψj = 1− (1− ϕj)ψ converge to 1− (1− u)ψ in Bp(X). This establishes the
assertion since 1− (1− u)ψ = u.

�

We have a result similar to Theorem 4.2, namely:

Theorem 5.3. The set function E 7→ CapBp
(E), E ⊂ X is a Choquet capacity. In

particular
(i) If E1 ⊂ E2, then CapBp

(E1) ≤ CapBp
(E2).

(ii) If E =
⋃

iEi, then

CapBp
(E) ≤

∑
i

CapBp
(Ei).

We have introduced two different capacities, and it is next shown that they have the
same zero sets.

Let Ω, Ω̃ be bounded and open subsets of X such that Ω ⊂⊂ Ω̃. Let η ∈ Lip0(Ω̃)
be a cut-off function as in Remark 3.8. Suppose K is a compact subset of Ω. Then, if
u ∈ S0(K), we have that uη is admissible for the condenser (K, Ω̃). Therefore

capBp
(K, Ω̃) ≤ [uη]p

Bp(Ω̃)
≤ ||uη||p

Bp(Ω̃)
≤ C ||u||pBp(X)(33)

where C depends only on Q, p, cµ, diam Ω̃ and dist(Ω, X \ Ω̃). (See Remark 3.8.) Since
||u||Bp(X) = ||u||Lp(X) + [u]Bp(X), we have

||u||pBp(X) ≤ 2p(||u||pLp(X) + [u]pBp(X)).(34)

From (33) and (34) we get, by taking the infimum over all u ∈ S0(K), that

capBp
(K, Ω̃) ≤ 2pC CapBp

(K),(35)

where C is the constant from (33).

Since both capBp
(·, Ω̃) and CapBp

(·) are Choquet capacities, we obtain:

Theorem 5.4. There exists C > 0 depending only on Q, p, cµ, dist(Ω, X \ Ω̃) and

diam Ω̃ such that

capBp
(E, Ω̃) ≤ C CapBp

(E)(36)

for every E ⊂ Ω.

Corollary 5.5. If CapBp
(E) = 0, then capBp

(E) = 0.

We also have a converse result, namely:

Theorem 5.6. If capBp
(E) = 0, then CapBp

(E) = 0.

Proof. The proof is similar to the proof of [Cos, Theorem 4.6] and omitted. �
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Remark 5.7. For E ⊂ X compact we see from the proof of Lemma 4.14 and Theorem
5.6 that it is enough to have capBp

(E,Ω) = 0 for one bounded open set Ω ⊂ X with
E ⊂ Ω in order to have CapBp

(E) = 0.

It is desirable to know when a set is negligible for a Besov space. If there is an
isometric isomorphism between two normed spaces X and Y we write X = Y. In
particular, if E is relatively closed subset of Ω, then by

B0
p(Ω \ E) = B0

p(Ω)

we mean that each function u ∈ B0
p(Ω) can be approximated in Bp-norm by functions

from Lip0(Ω \ E).

Theorem 5.8. Suppose that E is a relatively closed subset of Ω. Then

B0
p(Ω \ E) = B0

p(Ω)

if and only CapBp
(E) = 0.

Proof. Suppose that capBp
(E) = 0. Let ϕ ∈ Lip0(Ω) and choose a sequence uj of

functions in Bp(X) such that 0 ≤ uj ≤ 1, uj = 1 in a neighborhood of E and uj → 0
in Bp(X). For every j ≥ 1 we define wj = (1 − uj)ϕ. Then from Remark 3.9 and
the properties of the functions ϕ and uj, it follows that wj is a bounded sequence of
functions in Bp(X), compactly supported in Ω \ E. Lemma 3.13 implies that wj is a
sequence in B0

p(Ω \ E). Moreover, Lemma 3.7 implies, since ϕ − wj = ujϕ for every
j ≥ 1 and since ||uj||Bp(X) → 0, that wj converges to ϕ in Bp(X). Since wj is a sequence
in B0

p(Ω \ E), it follows that ϕ ∈ B0
p(Ω \ E). Hence

B0
p(Ω) ⊂ B0

p(Ω \ E)

and since the reverse inclusion is trivial, the sufficiency is established.
For the only if part, let K ⊂ E be compact. It suffices to show that CapBp

(K) = 0.

Choose ϕ ∈ Lip0(Ω) with ϕ = 1 in a neighborhood of K. Since B0
p(Ω \ E) = B0

p(Ω),
we may choose a sequence of functions ϕj ∈ Lip0(Ω \K) such that ϕj → ϕ in Bp(Ω).
Consequently

CapBp
(K) ≤

(
lim
j→∞

||ϕj − ϕ||pLp(X) + [ϕj − ϕ]pBp(X)

)
= 0,

and the theorem follows. �

5.2. Quasicontinuous functions. We show that for each u ∈ Bp(X) there is a func-
tion v such that u = v µ-a.e. and that v is Bp-quasicontinuous, i.e. v is continuous when
restricted to a set whose complement has arbitrarily small Besov Bp-capacity. More-
over, this quasicontinuous representative is unique up to a set of Besov Bp-capacity
zero.

Definition 5.9. A function u : X → R is Bp-quasicontinuous if for every ε > 0 there
is an open set G ⊂ X such that CapBp

(G) < ε and the restriction of u to X \ G is
continuous.

A sequence of functions ψj : X → R converges Bp-quasiuniformly in X to a function
ψ if for every ε > 0 there is an open set G such that CapBp

(G) < ε and ψj → ψ
uniformly in X \G.

We say that a property holds Bp-quasieverywhere, or simply q.e., if it holds except
on a set of Besov Bp-capacity zero.
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Theorem 5.10. Let ϕj ∈ C(X) ∩Bp(X) be a Cauchy sequence in Bp(X). Then there
is a subsequence ϕk which converges Bp-quasiuniformly in X to a function u ∈ Bp(X).
In particular, u is Bp-quasicontinuous and ϕk → u Bp-quasieverywhere in X.

Proof. The proof is similar to the proof of [HKM93, Theorem 4.3] and omitted. �

Theorem 5.10 implies the following corollary.

Corollary 5.11. Suppose that u ∈ Bp(X). Then there exists a Bp-quasicontinuous
Borel function v ∈ Bp(X) such that u = v µ-a.e.

Proof. Since u ∈ Bp(X), from Theorem 3.12 there exists a sequence of functions ϕj

in Lip0(X) converging to u in Bp(X). Passing to subsequences if necessary, we can
assume that ϕj → u pointwise µ-a.e. in X and that

2jp
(
||ϕj+1 − ϕj||pLp(X) + [ϕj+1 − ϕj]

p
Bp(X)

)
< 2−j

for every j = 1, 2, . . . Defining Ej = {x ∈ X : |ϕj+1 − ϕj| > 2−j} and letting E =
∩∞k=1 ∪j=k Ej, the proof of Theorem 5.10 yields the existence of a function v ∈ Bp(X),
such that ϕj → v in Bp(X) and pointwise in X \ E. Since E is a Borel set of Besov
Bp-capacity zero and the functions ϕj are continuous, this finishes the proof. �

Theorem 5.12. Let u ∈ Bp(X). Then u ∈ B0
p(Ω) if and only if there exists a Bp-

quasicontinuous function v in X such that u = v µ-a.e. in Ω and v = 0 q.e. in X \Ω.

Proof. Fix u ∈ B0
p(Ω) and let ϕj ∈ Lip0(Ω) be a sequence converging to u in Bp(Ω).

By Theorem 5.10 there is a subsequence of ϕj which converges Bp-quasieverywhere in
X to a Bp-quasicontinuous function v in X such that u = v µ-a.e. in Ω and v = 0 q.e.
in X \ Ω. Hence v is the desired function.

To prove the converse, we assume first that Ω is bounded. Because the truncations of
v converge to v in Bp(Ω), we can assume that v is bounded. Without loss of generality,
since v is Bp-quasicontinuous and v = 0 q.e. outside Ω we can assume that in fact v = 0
everywhere in X \ Ω. Choose open sets Gj such that v is continuous on X \ Gj and
CapBp

(Gj) → 0. By passing to a subsequence, we may pick a sequence ϕj in Bp(X)
such that 0 ≤ ϕj ≤ 1, ϕj = 1 everywhere in Gj, ϕj → 0 µ-a.e. in X, and

||ϕj||pLp(X) + [ϕj]
p
Bp(X) → 0.

Then from Remark 3.9 we have that wj = (1− ϕj)v is a bounded sequence in Bp(Ω).
Moreover, for every j ≥ 1, we have limx→y,x∈Ωwj(x) = 0 for all y ∈ ∂Ω. Thus, from
Lemma 3.14, we have that wj is a sequence in B0

p(Ω). Clearly wj → v in Lp(X) and
pointwise µ-a.e. in X. This, together with the boundedness of the sequence wj in
B0

p(Ω), implies via Mazur’s lemma that v ∈ B0
p(Ω). The proof is complete in case Ω is

bounded.
Assume that Ω is unbounded. We can assume again, without loss of generality,

that v is bounded and that v = 0 everywhere in X \ Ω. We fix x0 ∈ X. For every
k ≥ 2 let ϕk ∈ Lip0(B(x0, k

2)) be such that 0 ≤ ϕk ≤ 1, ϕk = 1 on B(x0, k) and
[ϕk]Bp(X) ≤ C(ln k)1−p. (See (24).) Then vk = vϕk ∈ B0

p(Ω ∩ B(x0, k
2)) ⊂ B0

p(Ω) for
every k ≥ 2 and like in Theorem 3.12, we get

||v − vk||Bp(X) → 0,

which implies that v ∈ B0
p(Ω). This finishes the proof. �
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We denote by

QBp = QBp(X)

the set of all functions u ∈ Bp(X) such that there exists a sequence ϕj ∈ C(X)∩Bp(X)
converging to u both in Bp(X) and Bp-quasiuniformly. It follows immediately from
Theorem 5.10 that the functions in QBp are Bp-quasicontinuous and for each v ∈ Bp(X)
there is u ∈ QBp such that u = v µ-a.e. We soon show that, conversely, each Bp-
quasicontinuous function v of Bp(X) belongs to QBp .

Theorem 5.13. Let u ∈ QBp . If u ≥ 1 Bp-quasieverywhere on E, then

CapBp
(E) ≤ ||u||pLp(X) + [u]pBp(X).

Proof. The proof is similar to the proof of [HKM93, Lemma 4.7] and omitted. �

This result has the following corollary.

Corollary 5.14. Suppose that Ω is open and bounded and let E ⊂⊂ Ω. Let u ∈ QBp .
Suppose that u ≥ 1 quasieverywhere on E and that u has compact support in Ω. Then

capBp
(E,Ω) ≤ [u]pBp(Ω).

We know that CapBp
is an outer capacity. It satisfies the following compatibility

condition (see [Kil98]):

Theorem 5.15. Suppose that G is open and µ(E) = 0. Then

CapBp
(G) = CapBp

(G \ E).(37)

Proof. The proof is very similar to the proof of [Cos, Theorem 4.15] and omitted. �

We state now the uniqueness of a Bp-quasicontinuous representative.

Theorem 5.16. Let f and g be Bp-quasicontinuous functions on X such that

µ({x : f(x) 6= g(x)}) = 0.

Then f = g Bp-quasieverywhere on X.

Proof. The proof is verbatim the proof from [Kil98, p. 262]. �

Combining Theorem 5.13 and Theorem 5.16 we obtain the following corollary.

Corollary 5.17. Suppose that E ⊂ X. Then

CapBp
(E) = inf{||u||pLp(X) + [u]pBp(X)},

where the infimum is taken over all Bp-quasicontinuous u ∈ Bp(X) such that u = 1
Bp-quasieverywhere on E.

Corollary 5.11 and Theorem 5.16 imply that each u ∈ Bp(X) has a ”unique” quasi-
continuous version.

Corollary 5.18. Suppose that u ∈ Bp(X). Then there exists a Bp-quasicontinuous
function v such that u = v µ-a.e. Moreover, if ṽ is another Bp-quasicontinuous function
such that u = ṽ µ-a.e., then v = ṽ Bp-quasieverywhere.

We have a result similar to Corollary 5.18 for locally integrable functions with finite
Bp-seminorm.
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Corollary 5.19. Suppose that u ∈ L1
loc(X) such that [u]Bp(X) < ∞. Then there ex-

ists a Bp-quasicontinuous Borel function v such that u = v µ-a.e. Moreover, if ṽ is
another Bp-quasicontinuous Borel function such that u = ṽ µ-a.e., then v = ṽ Bp-
quasieverywhere.

Proof. We prove the ”uniqueness” first. Suppose v, ṽ are two Bp-quasicontinuous Borel
functions such that v = u µ-a.e. and ṽ = u µ-a.e. Let w = v − ṽ. We notice that w
is Bp-quasicontinuous and belongs to Bp(X) because w = 0 µ-a.e. in X. Hence from
Corollary 5.18 we have that w = 0 Bp-quasieverywhere. The ”uniqueness” is proved.

We prove now the existence. Fix x0 ∈ X. For every integer k ≥ 1 we choose a
21−k-Lipschitz function ηk supported in B(x0, 2

k+1) such that ηk = 1 on B(x0, 2
k). We

have

ηk+1ηk = ηk(38)

for every integer k ≥ 1. For a fixed integer k ≥ 1, we define uk = ηku. Then uk ∈ Lp(X)
because u ∈ Lp

loc(X) and ηk ∈ Lip0(B(x0, 2
k+1)).Moreover, from Lemma 3.10, it follows

that [ηku− ηkuB(x0,2k)]Bp(X) <∞. From this and the fact that ηk ∈ Bp(X), imply that
uk ∈ Bp(X). Therefore, from Corollary 5.11 it follows that there exists ũk ∈ Bp(X) a
Bp-quasicontinuous Borel function such that ũk = uk µ-a.e. in X. In particular, since
ηk = 1 in B(x0, 2

k), this implies that ũk = u µ-a.e. in B(x0, 2
k). So, for every integer

k ≥ 1 we have that ũk+1 is a Bp-quasicontinous Borel representative of ηk+1u, hence
ηkũk+1 is a Bp-quasicontinuous Borel representative of ηkηk+1u = uk, where the equality
follows from the definition of uk and (38). This implies that both ηkũk+1 and ũk are two
Bp-quasicontinuous Borel representatives of uk ∈ Bp(X), hence from Corollary 5.18 we
can assume that ũk = ηkũk+1 in B(x0, 2

k). Since ηk = 1 on B(x0, 2
k), this means in

particular that we can assume that ũk(x) = ũk+1(x) for every x in B(x0, 2
k).

So, we constructed a sequence of Bp-quasicontinuous Borel functions ũk in Bp(X)
satisfying the following properties:

ũk(x) = u(x) for µ-a.e. x in B(x0, 2
k)

ũl(x) = ũk(x) for every x in B(x0, 2
k) and l ≥ k ≥ 1.

We define ũ : X → R by
ũ(x) = lim

k→∞
ũk(x).

Thus, ũ is a Bp-quasicontinuous Borel function and u = ũ µ-a.e. This proves the
existence of a Bp-quasicontinuous Borel representative of u. The claim follows.

�
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[Kil98] T. Kilpeläinen. A remark on the uniqueness of quasi continuous functions. Ann. Acad. Sci.

Fenn., 23:261–262, 1998.
[KL02] J. Kinnunen and V. Latvala. Lebesgue points for Sobolev functions on metric spaces. Rev.

Mat. Iberoamericana, 18(3):685–700, 2002.
[KM96] J. Kinnunen and O. Martio. The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn,

21:367–382, 1996.
[KM00] J. Kinnunen and O. Martio. Choquet property for the Sobolev capacity in metric spaces. In

Proceedings of the conference on Analysis and Geometry held in Novosibirsk, pages 285–290,
2000.

[Kor07] R. Korte. Geometric implications of the Poincaré inequality. Result. Math., 50(1-2):93–107,
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