
SCALING INVARIANT SOBOLEV-LORENTZ CAPACITY ON Rn

SERBAN COSTEA

Abstract. We develop a capacity theory based on the definition of Sobolev

functions on Rn with respect to the Lorentz norm. Basic properties of capac-

ity, including monotonicity, finite subadditivity and convergence results are
included. We also provide sharp estimates for the capacity of balls. Sobolev-

Lorentz capacity and Hausdorff measures are related.

1. Introduction

We recall that for 1 ≤ p < ∞ and 0 ≤ λ ≤ n, the Morrey space Lp,λ(Rn) is
defined to be the linear space of measurable functions u ∈ L1

loc(R
n) such that

||u||Lp,λ(Rn) = sup
x∈Rn

sup
r>0

(
r−λ

∫
B(x,r)

|u(y)|pdy

)1/p

<∞.

In other words, the fractional maximal function

Mn−λu(x) = sup
r>0

(
rn−λ 1

|B(x, r)|

∫
B(x,r)

|u(y)|pdy

)1/p

is bounded in Rn. In particular, Ln,0(Rn) = Ln(Rn). We refer to [Gia83, p. 65]
for more information about Morrey spaces and their use in the theory of partial
differential equations. One notices that the weak Lebesgue space Ln,∞(Rn) is
contained in Lp,n−p(Rn) for every p ∈ [1, n). Similarly we can define the Morrey
space Lp,λ(Rn;Rm) for vector-valued measurable functions. Capacities related to
Morrey spaces were studied by Adams and Xiao in [AX04].

We already noticed that the Lorentz spaces embed continuously into the Morrey
spaces; that is, Ln,q(Rn) ↪→ Ln,∞(Rn) ↪→ Lp,n−p(Rn) whenever 1 ≤ p < n < q ≤
∞. Sobolev-Lorentz spaces have recently been studied by Kauhanen, Koskela, and
Malý in [KKM99] and by Malý, Swanson, and Ziemer in [MSZ05].

Our results concerning the Sobolev-Lorentz capacity generalize some of the re-
sults concerning s-capacity on Rn for s ∈ (1, n]. See [HKM93, Chapter 2] for the
s-capacity on Rn and [KM96], [KM00] for capacity on general metric spaces.

Using [HKM93, 2.13], we provide sharp estimates for the Sobolev-Lorentz n, q-
capacity of pairs (B(0, r), B(0, 1)) for n < q ≤ ∞ and small r. The Sobolev-
Lorentz capacity and Hausdorff measures are also related; we obtain results that
are Sobolev-Lorentz analogues of those obtained by Reshetnyak in [Res69], Martio
in [Mar79], Maz’ja in [Maz85] and others.

This is part of my thesis at the University of Michigan under the guidance of
Professor Juha Heinonen.
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2. Preliminaries

Our notation in this paper is standard and generally as in [HKM93]. Here Ω
will denote a nonempty open subset of Rn, while dx = dmn(x) will denote the
Lebesgue n-measure in Rn, where n ≥ 2 is integer. For two sets A,B ⊂ Rn, we
define dist(A,B), the distance between A and B, by

dist(A,B) = inf
a∈A,b∈B

|a− b|.

For n ≥ 2 integer Ωn = |B(0, 1)| denotes the measure of the n-dimensional unit
ball, that is Ωn = |B(0, 1)|. Thus, ωn−1 = nΩn, where ωn−1 denotes the spherical
measure of the n− 1-dimensional sphere.

For a measurable u : Ω → Rn, supp u is the smallest closed set such that u
vanishes outside supp u. We also define

C0(Ω) = {ϕ ∈ C(Ω) : supp ϕ ⊂⊂ Ω}
Lip(Ω) = {ϕ : Ω → R : ϕ is Lipschitz}.

For a function ϕ ∈ Lip(Ω) ∩ C0(Ω) we write

∇ϕ = (∂1ϕ, ∂2ϕ, . . . , ∂nϕ)

for the gradient of ϕ. This notation makes sense, since from Rademacher’s theorem
([Fed69, Theorem 3.1.6]) every Lipschitz function on Rn is a.e. differentiable.

Throughout this section we will assume that m ≥ 1 is a positive integer. Let
f : Ω → Rm be a measurable function. We define λ[f ], the distribution function of
f as follows (see [BS88, Definition II.1.1] and [SW75, p. 57]):

λ[f ](t) = |{x ∈ Ω : |f(x)| > t}|, t ≥ 0.

We define f∗, the nonincreasing rearrangement of f by

f∗(t) = inf{v : λ[f ](v) ≤ t}, t ≥ 0.

(See [BS88, Definition II.1.5] and [SW75, p. 189].) We notice that f and f∗ have the
same distribution function. Moreover, for every positive α we have (|f |α)∗ = (|f |∗)α

and if |g| ≤ |f | a.e. on Ω, then g∗ ≤ f∗. (See [BS88, Proposition II.1.7].) We also
define f∗∗, the maximal function of f∗ by

f∗∗(t) = mf∗(t) =
1
t

∫ t

0

f∗(s)ds, t > 0.

(See [BS88, Definition II.3.1] and [SW75, p. 203].)
Throughout this paper, we will denote by p′ the Hölder conjugate of p ∈ [1,∞],

that is

p′ =


∞ if p = 1

p
p−1 if 1 < p <∞
1 if p = ∞.

The Lorentz space Lp,q(Ω;Rm), 1 < p <∞, 1 ≤ q ≤ ∞, is defined as follows:

Lp,q(Ω;Rm) = {f : Ω → Rm : f is measurable and ||f ||Lp,q(Ω;Rm) <∞},

where

||f ||Lp,q(Ω;Rm) = || |f | ||p,q =


(∫∞

0
(t

1
p f∗(t))q dt

t

) 1
q

1 ≤ q <∞
supt>0 tλ[f ](t)

1
p = sups>0 s

1
p f∗(s) q = ∞.
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(See [BS88, Definition IV.4.1] and [SW75, p. 191].) If 1 ≤ q ≤ p, then || · ||Lp,q(Ω;Rm)

already represents a norm, but for p < q ≤ ∞ it represents a quasinorm, equivalent
to the norm || · ||L(p,q)(Ω;Rm), where

||f ||L(p,q)(Ω;Rm) = || |f | ||(p,q) =


(∫∞

0
(t

1
p f∗∗(t))q dt

t

) 1
q

1 ≤ q <∞
supt>0 t

1
p f∗∗(t) q = ∞.

(See [BS88, Definition IV.4.4].) Namely, from [BS88, Lemma IV.4.5] we have that

|| |f | ||Lp,q(Ω) ≤ || |f | ||L(p,q)(Ω) ≤
p

p− 1
|| |f | ||Lp,q(Ω)

for every 1 ≤ q ≤ ∞ and every measurable function f : Ω → Rm.
It is known that (Lp,q(Ω;Rm), || · ||Lp,q(Ω;Rm)) is a Banach space for 1 ≤ q ≤ p,

while (Lp,q(Ω;Rm), || · ||L(p,q)(Ω;Rm)) is a Banach space for 1 < p <∞, 1 ≤ q ≤ ∞.

These spaces are reflexive if 1 < q < ∞. (See [BS88, Theorem IV.4.7, Corollaries
I.4.3 and IV.4.8], the definition of Lp,q(Ω;Rm) and the discussion after Definition
2.1.)

Definition 2.1. (See [BS88, Definition I.3.1].) Let 1 < p <∞ and 1 ≤ q ≤ ∞. Let
X = Lp,q(Ω;Rm). A function f in X is said to have absolutely continuous norm in
X if and only if ||fχEk

||X → 0 for every sequence Ek satisfying Ek → ∅ a.e.

Let Xa be the subspace of X consisting of functions of absolutely continuous
norm and let Xb be the closure in X of the set of simple functions. It is known
that Xa = Xb. (See [BS88, Theorem I.3.13].) Moreover, we have Xa = Xb = X
whenever 1 ≤ q < ∞. (See [BS88, Theorem IV.4.7 and Corollary IV.4.8] and the
definition of Lp,q(Ω;Rm).)

We prove now that Xa 6= X for X = Lp,∞(Ω;Rm). Without loss of generality
we can assume that m = 1 and that Ω = B(0, 2) \ {0}. We define u : Ω → R,

u(x) =
{
|x|−

n
p if 0 < |x| < 1

0 if 1 ≤ |x| ≤ 2.
(1)

It is easy to see that u ∈ Lp,∞(Ω) and moreover,

||uχB(0,α)||Lp,∞(Ω) = ||u||Lp,∞(Ω) = Ω1/p
n

for every α > 0. This shows that u does not have absolutely continuous weak
Lp-norm and therefore Lp,∞(Ω) does not have absolutely continuous norm. Since
Lp,∞(Ω) can be identified with (Lp′,1(Ω))∗ (see [BS88, Corollary IV.4.8]), it follows
from [BS88, Corollaries I.4.3, I.4.4, IV.4.8 and Theorem IV.4.7] that neither Lp,1(Ω),
nor Lp,∞(Ω) are reflexive whenever 1 < p <∞.

Remark 2.2. It is also known (see [BS88, Proposition IV.4.2]) that for every p ∈
(1,∞) and 1 ≤ r < s ≤ ∞ there exists a constant C(p, r, s) such that

|| |f | ||Lp,s(Ω) ≤ C(p, r, s)|| |f || |Lp,r(Ω)(2)

for all measurable functions f ∈ Lp,r(Ω;Rm) and all integers m ≥ 1. In particular,
we have the embedding Lp,r(Ω;Rm) ↪→ Lp,s(Ω;Rm).

We have the following generalized Hölder inequality for Lorentz spaces.
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Theorem 2.3. Suppose Ω ⊂ Rn has finite measure. Let 1 < p1, p2, p3 < ∞,
1 ≤ q1, q2, q3 ≤ ∞ be such that

1
p1

=
1
p2

+
1
p3

and either

1
q1

=
1
q2

+
1
q3

whenever 1 ≤ q1, q2, q3 < ∞ or 1 ≤ q1 = q2 ≤ q3 = ∞ or 1 ≤ q1 = q3 ≤ q2 = ∞.
Then

||f ||Lp1,q1 (Ω;Rm) ≤ ||f ||Lp2,q2 (Ω;Rm) ||χΩ||Lp3,q3 (Ω).

Proof. From the definition of the Lorentz norms and quasinorms for vector-valued
functions, it follows that it is enough to assume that m = 1. Let f ∈ Lp2,q2(Ω).
Since Ω has finite measure, we have f∗(t) = 0 for every t ≥ |Ω|. We have to analyze
few distinct cases.

(i) 1 ≤ q1, q2, q3 <∞. We have

||f ||Lp1,q1 (Ω) =

(∫ |Ω|

0

(f∗(t) t
1

p1
− 1

q1 )q1 dt

) 1
q1

=

(∫ |Ω|

0

(f∗(t) t
1

p2
− 1

q2 t
1

p3
− 1

q3 )q1 dt

) 1
q1

≤

(∫ |Ω|

0

(f∗(t) t
1

p2
− 1

q2 )q2 dt

) 1
q2
(∫ |Ω|

0

(t
1

p3
− 1

q3 )q3

) 1
q3

= ||f ||Lp2,q2 (Ω) ||χΩ||Lp3,q3 (Ω).

(ii) q1 = q2 = q3 = ∞. Then

||f ||Lp1,∞(Ω) = sup
0≤t≤|Ω|

t
1

p1 f∗(t) ≤ |Ω|
1

p1
− 1

p2 sup
0≤t≤|Ω|

t
1

p2 f∗(t)

= |Ω|
1

p3 ||f ||Lp2,∞(Ω) = ||f ||Lp2,∞(Ω) ||χΩ||Lp3,∞(Ω).

(iii) 1 ≤ q1 = q2 < q3 = ∞. Then

||f ||Lp1,q1 (Ω) =

(∫ |Ω|

0

(f∗(t) t
1

p1
− 1

q1 )q1 dt

) 1
q1

=

(∫ |Ω|

0

(f∗(t) t
1

p2
− 1

q1 )q1 t
q1
p3 dt

) 1
q1

≤ |Ω|
1

p3

(∫ |Ω|

0

(f∗(t) t
1

p2
− 1

q1 )q1 dt

) 1
q1

= ||f ||Lp2,q1 (Ω) ||χΩ||Lp3,∞(Ω) = ||f ||Lp2,q2 (Ω) ||χΩ||Lp3,∞(Ω).
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(iv) 1 ≤ q1 = q3 < q2 = ∞. Then

||f ||Lp1,q1 (Ω) =

(∫ |Ω|

0

(f∗(t) t
1

p1
− 1

q1 )q1 dt

) 1
q1

=

(∫ |Ω|

0

(f∗(t) t
1

p2 )q1 (t
1

p3
− 1

q1 )q1 dt

) 1
q1

≤ sup
0≤t≤|Ω|

f∗(t) t
1

p2

(∫ |Ω|

0

(t
1

p3
− 1

q1 )q1 dt

) 1
q1

= ||f ||Lp2,∞(Ω) ||χΩ||Lp3,q1 (Ω) = ||f ||Lp2,∞(Ω) ||χΩ||Lp3,q3 (Ω).

This finishes the proof. �

As an application of Theorem 2.3 we have the following result.

Corollary 2.4. Let 1 < p < q ≤ ∞ and ε ∈ (0, p − 1) be fixed. Suppose Ω ⊂ Rn

has finite measure. Then

||f ||Lp−ε(Ω;Rm) ≤ C(p, q, ε) |Ω|
ε

p(p−ε) ||f ||Lp,q(Ω;Rm)(3)

for every integer m ≥ 1, where

C(p, q, ε) =


(

p(q−p+ε)
q

) 1
p−ε−

1
q

ε
1
q−

1
p−ε , p < q <∞

p
1

p−ε ε−
1

p−ε , q = ∞.

Proof. From the definition of the Lorentz norms and quasinorms for vector-valued
functions, it follows that it is enough to assume that m = 1. A simple application
of Theorem 2.3 gives us the desired conclusion. �

We have two interesting results concerning Lorentz spaces.

Theorem 2.5. Suppose 1 < p < q ≤ ∞. Let Ω ⊂ Rn and let f1, f2 ∈ Lp,q(Ω). We
let f3 = max(|f1|, |f2|). Then f3 ∈ Lp,q(Ω) and

||f3||pLp,q(Ω) ≤ ||f1||pLp,q(Ω) + ||f2||pLp,q(Ω).

Proof. Without loss of generality we can assume that both f1 and f2 are nonnega-
tive. We have to consider two cases, depending on whether p < q <∞ or q = ∞.

Suppose p < q <∞. We have ([KKM99, Proposition 2.1])

||fi||pLp,q(Ω) =
(
p

∫ ∞

0

sq−1λ[fi](s)
q
p ds

) p
q

,

where λ[fi] is the distribution function of fi for i = 1, 2, 3. From the definition of f3
we obviously have λ[f3](s) ≤ λ[f1](s) + λ[f2](s) for every s ≥ 0, which implies that

||f3||pLp,q(Ω) ≤
(
p

∫ ∞

0

sq−1(λ[f1](s) + λ[f2](s))
q
p ds

) p
q

≤
(
p

∫ ∞

0

sq−1λ[f1](s)
q
p ds

) p
q

+
(
p

∫ ∞

0

sq−1λ[f2](s)
q
p ds

) p
q

= ||f1||pLp,q(Ω) + ||f2||pLp,q(Ω).
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Suppose now q = ∞. From the definition of f3 we obviously have as before
λ[f3](s) ≤ λ[f1](s) + λ[f2](s) for every s ≥ 0. Therefore

sp λ[f3](s) ≤ sp λ[f1](s) + sp λ[f3](s)

for every s ≥ 0 which implies

sp λ[f3](s) ≤ ||f1||pLp,∞(Ω) + ||f2||pLp,∞(Ω)(4)

for every s ≥ 0. By taking the supremum over all s ≥ 0 in (4), we get the desired
conclusion. �

Theorem 2.6. Suppose 1 < p < q ≤ ∞ and ε ∈ (0, 1). Let Ω ⊂ Rn and let
f1, f2 ∈ Lp,q(Ω). We denote f3 = f1 + f2. Then f3 ∈ Lp,q(Ω) and

||f3||pLp,q(Ω) ≤ (1− ε)−p||f1||pLp,q(Ω) + ε−p||f2||pLp,q(Ω).

Proof. Without loss of generality we can assume that both f1 and f2 are nonnega-
tive. We have to consider two cases, depending on whether p < q <∞ or q = ∞.

Suppose p < q <∞. We have ([KKM99, Proposition 2.1])

||fi||pLp,q(Ω) =
(
p

∫ ∞

0

sq−1λ[fi](s)
q
p ds

) p
q

,

where λ[fi] is the distribution function of fi for i = 1, 2, 3. From the definition of
f3 we obviously have λ[f3](s) ≤ λ[f1]((1 − ε)s) + λ[f2](εs) for every s ≥ 0, which
implies that

||f3||pLp,q(Ω) ≤
(
p

∫ ∞

0

sq−1(λ[f1]((1− ε)s) + λ[f2](εs))
q
p ds

) p
q

≤
(
p

∫ ∞

0

sq−1λ[f1]((1− ε)s)
q
p ds

) p
q

+
(
p

∫ ∞

0

sq−1λ[f2](εs)
q
p ds

) p
q

= (1− ε)−p||f1||pLp,q(Ω) + ε−p||f2||pLp,q(Ω).

Suppose now q = ∞. From the definition of f3 we obviously have as before
λ[f3](s) ≤ λ[f1]((1− ε)s) + λ[f2](εs) for every s ≥ 0. Therefore

sp λ[f3](s) ≤ sp λ[f1]((1− ε)s) + sp λ[f3](εs)

for every s ≥ 0 which implies

sp λ[f3](s) ≤ (1− ε)−p||f1||pLp,∞(Ω) + ε−p||f2||pLp,∞(Ω)(5)

for every s ≥ 0. By taking the supremum over all s ≥ 0 in (5), we get the desired
conclusion. �

Theorem 2.6 has an interesting corollary.

Corollary 2.7. Let Ω ⊂ Rn be open. Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. Let
fk be a sequence of functions in Lp,q(Ω;Rm) converging to f with respect to the
p, q-quasinorm and pointwise a.e. in Ω. Then

lim
k→∞

||fk||Lp,q(Ω;Rm) = ||f ||Lp,q(Ω;Rm).
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Proof. We can assume without loss of generality that m = 1. Since for 1 ≤ q ≤ p
|| · ||Lp,q(Ω) is already a norm, the claim is trivial in this case. Hence we can assume
without loss of generality that p < q ≤ ∞. The proof for the case q = ∞ was
presented to me by Jan Malý.

Since f∗ ≤ lim inf f∗k (see [BS88, Proposition II.1.7]), it follows easily that

lim inf
k→∞

||fk||Lp,q(Ω) ≥ ||f ||Lp,q(Ω).

We would be done if we show that

lim sup
k→∞

||fk||Lp,q(Ω) ≤ ||f ||Lp,q(Ω).(6)

In order to do that we fix ε ∈ (0, 1). From Theorem 2.6 we have

||fk||pLp,q(Ω) ≤ (1− ε)−p||f ||pLp,q(Ω) + ε−p||fk − f ||pLp,q(Ω)

for every k = 1, 2, . . . Taking lim sup on both sides and using the fact that fk

converges to f with respect to the Lp,q-quasinorm, we get

lim sup
k→∞

||fk||pLp,q(Ω) ≤ (1− ε)−p||f ||pLp,q(Ω).(7)

Letting ε→ 0 in (7) yields (6). This finishes the proof.
�

We use the notation

u+ = max(u, 0) and u− = min(u, 0).

If u ∈ C0(Ω) ∩ Lip(Ω), then obviously u+ ∈ C0(Ω) ∩ Lip(Ω) and from [HKM93,
Lemmas 1.11 and 1.19] we have

∇u+ =
{
∇u if u > 0
0 if u ≤ 0.(8)

3. Sobolev-Lorentz n, q relative capacity

Suppose 1 < q ≤ ∞. Let Ω ⊂ Rn be an open set. Let K ⊂ Ω be compact. The
Sobolev-Lorentz n, q-capacity of the pair (K,Ω) is denoted

capn,q(K,Ω) = inf {||∇u||nLn,q(Ω;Rn) : u ∈W (K,Ω)},

where

W (K,Ω) = {u ∈ C∞0 (Ω) : u ≥ 1 in a neighborhood of K}.

We call W (K,Ω) the set of admissible functions for the condenser (K,Ω).

Lemma 3.1. If K ⊂ Ω is compact, then we can get the same capacity if we restrict
ourselves to a bigger set, namely

W0(K,Ω) = {u ∈ C0(Ω) ∩ Lip(Ω) : u ≥ 1 on K}.

Proof. Let u ∈ W0(K,Ω). We can assume without loss of generality that u ≥ 1 in
a neighborhood U ⊂⊂ Ω of K and that Ω is bounded. Let η ∈ C∞0 (B(0, 1)) be a
mollifier. For every integer j ≥ 1 let ηj(x) = jnη(jx) and let uj = ηj ∗ u be the
convolution defined by

uj(x) = (ηj ∗ u)(x) =
∫
Rn

ηj(x− y)u(y)dy.
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For the basic properties of a mollifier see [Zie89, Theorems 1.6.1 and 2.1.3]. Let Ũ
be a neighborhood of K such that Ũ ⊂⊂ U and let j0 be a positive integer such
that

1/j0 < min{dist(supp u, ∂Ω),dist(Ũ , ∂U)}.

It is easy to see that uj , j ≥ j0 is a sequence in W (K,Ω) and since u ∈ C0(Ω) ∩
Lip(Ω), we have from [HKM93, Lemma 1.11] that

lim
j→∞

(||uj − u||Ln+1(Ω) + ||∇uj −∇u||Ln+1(Ω;Rn)) = 0.

This together with (2) and Theorem 2.3 yields

lim
j→∞

(||uj − u||Ln,q(Ω) + ||∇uj −∇u||Ln,q(Ω;Rn)) = 0.(9)

An appeal to Corollary 2.7 applied for p = n establishes the assertion, since
W (K,Ω) ⊂W0(K,Ω). �

Since truncation decreases the n, q-quasinorm whenever 1 < q ≤ ∞, it follows
from Lemma 3.1 that we can choose only functions u ∈ W0(K,Ω) that satisfy
0 ≤ u ≤ 1 when computing the n, q relative capacity.

3.1. Basic properties of the n, q relative capacity. Usually, a capacity is a
monotone and subadditive set function. The following theorem will show, among
other things, that this is true in the case of the n, q relative capacity. We follow
[HKM93].

Theorem 3.2. Suppose 1 < q ≤ ∞. Let Ω ⊂ Rn be open. The set function
K 7→ capn,q(K,Ω), K ⊂ Ω, K compact, enjoys the following properties:

(i) If K1 ⊂ K2, then capn,q(K1,Ω) ≤ capn,q(K2,Ω).
(ii) If Ω1 ⊂ Ω2 are open and K is a compact subset of Ω1, then

capn,q(K,Ω2) ≤ capn,q(K,Ω1).

(iii) If Ki is a decreasing sequence of compact subsets of Ω with K =
⋂∞

i=1Ki,
then

capn,q(K,Ω) = lim
i→∞

capn,q(Ki,Ω).

(iv) Suppose n ≤ q ≤ ∞. If K =
⋃k

i=1Ki ⊂ Ω then

capn,q(K,Ω) ≤
k∑

i=1

capn,q(Ki,Ω),

where k ≥ 1 is a positive integer.
(v) If K =

⋃k
i=1Ki ⊂ Ω then

cap1/n
n,q (K,Ω) ≤

k∑
i=1

cap1/n
n,q (Ki,Ω),

where k ≥ 1 is a positive integer.

Proof. Properties (i) and (ii) are immediate consequences of the definition.

(iii) Let b =: limi→∞ capn,q(Ki,Ω). We fix a small ε > 0 and we pick a function
u ∈W (K,Ω) such that

||∇u||nLn,q(Ω;Rn) < capn,q(K,Ω) + ε.
8



When i is large, the sets Ki lie in the compact set {u ≥ 1− ε}. Therefore

lim
i→∞

capn,q(Ki,Ω) ≤ capn,q({u ≥ 1− ε},Ω) ≤ 1
(1− ε)2n

||∇u||nLn,q(Ω;Rn).

Letting ε → 0 yields b ≤ capn,q(K,Ω), whence (iii) follows because obviously
b ≥ capn,q(K,Ω).

It is enough to prove (iv) and (v) for k = 2 because then the general finite case
follows by induction.

(iv) When q = n we are in the case of the n-capacity and then the claim holds.
(See for example [HKM93, Theorem 2.2 (iii)].) So we can assume without loss of
generality that n < q ≤ ∞.

Let ui ∈W0(Ki,Ω), i = 1, 2, such that

||∇ui||nLn,q(Ω;Rn) < capn,q(Ki,Ω) + ε.

We define u = max(u1, u2). Since u = (u1−u2)++u2, it follows from the discussion
after Corollary 2.7 and (8) that u ∈W0(K1∪K2,Ω) with |∇u| ≤ max(|∇u1|, |∇u2|).
This and Theorem 2.5 imply

capn,q(K1 ∪K2,Ω) ≤ ||∇u||nLn,q(Ω;Rn) ≤ ||∇u1||nLn,q(Ω;Rn) + ||∇u2||nLn,q(Ω;Rn)

≤ capn,q(K1,Ω) + capn,q(K2,Ω) + 2ε.

Letting ε→ 0 we complete the proof in the case of two sets, and hence the general
finite case.

(v) We notice that (iv) implies (v) when n ≤ q ≤ ∞. So we can assume without
loss of generality that 1 < q < n.

Let ui ∈W0(Ki,Ω), i = 1, 2, such that

0 ≤ u1 ≤ 1 and ||∇ui||Ln,q(Ω;Rn) < cap1/n
n,q (Ki,Ω) + ε.

Then u = u1 + u2 ∈ W0(K1 ∪ K2,Ω) and since || · ||Ln,q(Ω;Rn) is a norm when
1 < q < n, we have

cap1/n
n,q (K1 ∪K2,Ω) ≤ ||∇u||Ln,q(Ω;Rn) ≤ ||∇u1||Ln,q(Ω;Rn) + ||∇u2||Ln,q(Ω;Rn)

≤ cap1/n
n,q (K1,Ω) + cap1/n

n,q (K2,Ω) + 2ε.

Letting ε→ 0 we complete the proof in the case of two sets, and hence the general
finite case. The theorem is proved. �

Remark 3.3. The definition of the n, q-capacity easily implies

capn,q(K,Ω) = capn,q(∂K,Ω)

whenever K is a compact set in Ω.

3.2. Estimates for the n, q relative capacity. Suppose 1 < q ≤ ∞. Obviously,
capn,q(E,Ω) = capn,q(E + x,Ω + x) for every x ∈ Rn. Indeed, the n, q-quasinorm
is invariant under translations.

Lemma 3.4. Suppose 1 < q ≤ ∞. Let Ω be bounded and K ⊂ Ω be compact. Then

capn,q(K,Ω) = capn,q(αK,αΩ),(10)

where α > 0 and αA = {αa : a ∈ A}.
9



Proof. We have to analyze two cases, depending on whether 1 < q <∞ or q = ∞.
We assume first that 1 < q < ∞. Let u ∈ C∞0 (Ω). We define u(α) : αΩ → R by

u(α)(x) = u( x
α ). Then u ∈ W (E,Ω) if and only if u(α) ∈ W (αE,αΩ). We notice

that ∇u(α)(x) = 1
α∇u(

x
α ). We have

|{x ∈ αΩ : |∇u(α)(x)| ≥ t}| = |{x ∈ αΩ :
1
α
|∇u(x

α
)| ≥ t}|

= |{x ∈ αΩ : |∇u( x
α )| ≥ αt}| = αn|{x

α
∈ Ω : |∇u(x

α
)| ≥ αt}|.

So λ[|∇u(α)|](t) = αnλ[|∇u|](αt) for every t ≥ 0. Therefore

|∇u(α)|∗(t) = inf{v ≥ 0 : λ[|∇u(α)|](v) ≤ t} = inf{v ≥ 0 : αnλ[|∇u|](αv) ≤ t}

=
1
α

inf{αv ≥ 0 : λ[|∇u|](αv) ≤
t

αn
} =

1
α
|∇u|∗( t

αn
).

Hence we just proved that |∇u(α)|∗(t) = 1
α |∇u|

∗( t
αn ) for every t ≥ 0. Therefore

||∇u(α)||qLn,q(αΩ;Rn) =
∫ ∞

0

t
q
n

(
|∇u(α)|∗(t)

)q dt
t

=
∫ ∞

0

t
q
n

(
1
α
|∇u|∗( t

αn
)
)q

dt

t
.

By making the substitution t
αn = s, we have

∫ ∞

0

t
q
n

(
1
α
|∇u|∗( t

αn
)
)q

dt

t
=
∫ ∞

0

(sαn)
q
n

(
1
α
|∇u|∗(s)

)q
ds

s
= ||∇u||qLn,q(Ω;Rn).

Thus we get ||∇u(α)||Ln,q(αΩ;Rn) = ||∇u||Ln,q(Ω;Rn). This proves the claim when
1 < q <∞.

Now assume that q = ∞. We let u ∈ C∞0 (Ω) and we define u(α) as before.
Then as before, we have u ∈ W (K,Ω) if and only if u(α) ∈ W (αK,αΩ) and
|∇u(α)|∗(t) = 1

α |∇u|
∗( t

αn ) for every t ≥ 0. This implies

||∇u(α)||nLn,∞(αΩ) = sup
t≥0

t (|∇u(α)|∗(t))n = sup
t≥0

t

αn
(|∇u|∗( t

αn
))n(11)

= sup
s≥0

s (|∇u|∗(s))n = ||∇u||nLn,∞(Ω).

This finishes the proof.
�

Corollary 2.4 yields the following Hölder inequality for capacities:

Theorem 3.5. Let Ω ⊂ Rn be bounded, let n < q ≤ ∞, and let ε ∈ (0, n − 1) be
fixed. Then for every K ⊂ Ω compact we have

cap1/(n−ε)
n−ε (K,Ω) ≤ C(n, q, ε) |Ω|

ε
n(n−ε) cap1/n

n,q (K,Ω).(12)

Proof. Let K be compact in Ω. Let u ∈W (K,Ω). Then from Corollary 2.4 applied
for p = n and the definition of the || · ||Ln−ε(Ω;Rn)-norm and || · ||L(n,q)(Ω;Rn)-
quasinorm we have

||∇u||Ln−ε(Ω;Rn) ≤ C(n, q, ε) |Ω|
ε

n(n−ε) ||∇u||Ln,q(Ω;Rn).

Taking the infimum on both sides over such functions u, we get the claim for K ⊂ Ω
compact. This finishes the proof. �
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Theorem 3.6. Let n < q ≤ ∞ be fixed. There exists a constant C(n, q) > 0 such
that

C(n, q)−1

(
ln

1
r

)− n
q′

≤ capn,q(B(0, r), B(0, 1)) ≤ C(n, q)
(

ln
1
r

)− n
q′

for every 0 < r < e−
1

n−1 , where q′ is the Hölder conjugate of q.

Proof. We get some lower estimates for capn,q(B(0, r), B(0, 1)), where r > 0 is
small. We have to consider two cases, depending on whether n < q <∞ or q = ∞.

First we consider the case n < q <∞. From (12) applied for p = n and n < q <
∞, there exists a constant

C(n, ε, q) = Ω
ε

n(n−ε)
n ε−

1
n−ε + 1

q

(
n(q − n+ ε)

q

) 1
n−ε−

1
q

such that

cap1/(n−ε)
n−ε (B(0, r), B(0, 1)) ≤ C(n, ε, q) cap1/n

n,q (B(0, r), B(0, 1))

for every ε ∈ (0, n− 1) and every r ∈ (0, 1). From [HKM93, 2.13] we have

capn−ε(B(0, r), B(0, 1)) = ωn−1

(
ε

n− ε− 1

)n−ε−1

(r−
ε

n−ε−1 − 1)1−n+ε.

Therefore,

cap1/n
n,q (B(0, r), B(0, 1)) ≥ C1(n, ε, q) ε1−

1
q r

ε
n−ε(13)

for every 0 < ε < n− 1, where

C1(n, ε, q) = ω
1

n−ε

n−1

Ω
− ε

n(n−ε)
n

(n− ε− 1)
n−ε−1

n−ε

(
n(q − n+ ε)

q

) 1
q−

1
n−ε

.

We define
C1(n, q) = inf

0<ε<n−1
C1(n, ε, q).

We notice that C1(n, q) > 0. This together with (13) implies

cap1/n
n,q (B(0, r), B(0, 1)) ≥ C1(n, q) ε1−

1
q r

ε
n−ε .(14)

For r ∈ (0, e−
1

n−1 ), we let ε = 1
ln 1

r

. Then 0 < ε < n− 1 and from (14) it follows
that

capn,q(B(0, r), B(0, r)) ≥ C1(n, q)n

en

(
ln

1
r

)n
q −n

(15)

for every r ∈ (0, e−
1

n−1 ). This yields the desired lower bound for the relative capacity
whenever n < q <∞ and r ∈ (0, e−

1
n−1 ).

Now we assume q = ∞. From (12) we have

cap1/(n−ε)
n−ε (B(0, r), B(0, 1)) ≤ Ω

ε
n(n−ε)
n ε−

1
n−εn

1
n−ε cap1/n

n,∞(B(0, r), B(0, 1))

for every ε ∈ (0, n− 1). This together with [HKM93, 2.13] gives

cap1/n
n,∞(B(0, r), B(0, 1)) ≥ C1(n, ε) ε r

ε
n−ε(16)

for every 0 < ε < n− 1, where

C1(n, ε) = ω
1

n−ε

n−1Ω
− ε

n(n−ε)
n (n− ε− 1)−

n−ε−1
n−ε n−

1
n−ε .
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We define

C1(n) = inf
0<ε<n−1

C1(n, ε).

We notice that C1(n) > 0. This together with (16) implies

cap1/n
n,∞(B(0, r), B(0, 1)) ≥ C1(n) ε r

ε
n−ε .(17)

For r ∈ (0, e−
1

n−1 ) we let ε = 1
ln 1

r

. Then 0 < ε < n− 1 and from (17) it follows
that

capn,∞(B(0, r), B(0, 1)) ≥ C1(n)n

en

(
ln

1
r

)−n

(18)

for every r ∈ (0, e−
1

n−1 ). We let C1(n, q) = C1(n) when q = ∞. This yields the
desired lower bound for the relative capacity when q = ∞ and r ∈ (0, e−

1
n−1 ).

We shall get an upper estimate for capn,q(B(0, r), B(0, 1)) whenever r ∈ (0, e−
1

n−1 )
and 1 < q ≤ ∞. We use the function u : B(0, 1) → R defined by

u(x) =
{

1 if 0 ≤ |x| ≤ r
ln |x|
ln r if r < |x| < 1.

Then

|∇u(x)| =

{
0 if 0 ≤ |x| < r

1
ln 1

r

1
|x| if r < |x| < 1.

We notice that u 6∈W0(B(0, r), B(0, 1)). However,

capn,q(B(0, r), B(0, 1)) ≤ ||∇u||nLn,q(B(0,1);Rn)(19)

because
||∇u||Ln,q(B(0,1);Rn) = lim

δ→0
||∇uδ||Ln,q(B(0,1);Rn),

where uδ, 0 < δ < 1−r
r is a sequence in W0(B(0, r), B(0, 1)) defined by

uδ(x) =


1 if 0 ≤ |x| ≤ r

ln (1+δ)|x|
ln r(1+δ) if r < |x| < 1

1+δ

0 if 1
1+δ ≤ |x| ≤ 1.

We want to get an upper estimate for ||∇u||Ln,q(B(0,1);Rn) whenever 1 < q ≤ ∞.
We define v : B(0, 1) → R by v(x) = − ln r |∇u(x)|. We compute λ[v]. We recall
that Ωn = |B(0, 1)|. We have

λ[v](t) = |{x ∈ B(0, 1) \B(0, r) :
1
|x|

> t}| = |{x ∈ B(0, 1) \B(0, r) : |x| < 1
t
}|.

Hence

λ[v](t) =

 0 if t > 1
r

Ωn

(
1
tn − rn

)
if 1 ≤ t ≤ 1

r
Ωn (1− rn) if 0 ≤ t ≤ 1.

We notice that

v∗(t) =


(

1
t/Ωn+rn

) 1
n

if 0 ≤ t < Ωn (1− rn)
0 if t ≥ Ωn (1− rn).

12



We compute ||v||Ln,q(B(0,1)). We have to consider two cases, depending on whether
1 < q <∞ or q = ∞.

We assume first that 1 < q <∞. Let

J =: ||v||qLn,q(B(0,1)) =
∫ Ωn(1−rn)

0

t
q
n (v∗(t))q dt

t
.

By making the substitution t = sΩnr
n, we get

J =
∫ Ωn(1−rn)

0

t
q
n

(
1

t/Ωn + rn

) q
n dt

t
= Ω

q
n
n

∫ 1−rn

rn

0

s
q
n

(
1

s+ 1

) q
n ds

s

= Ω
q
n
n

(∫ 1

0

s
q
n−1

(
1

s+ 1

) q
n

ds+
∫ 1−rn

rn

1

(
s

s+ 1

) q
n ds

s

)

≤ Ω
q
n
n

(
n

q
+ ln

1− rn

rn

)
≤ Ω

q
n
n

(
n

q
+ n ln

1
r

)
≤ C2(n, q) ln

1
r

if 0 < r < e−
1

n−1 . Therefore, from (19) and the fact that v = − ln r |∇u| we get

capn,q(B(0, r), B(0, 1)) ≤ C2(n, q)
n
q

(
ln

1
r

)n
q −n

(20)

for every r ∈ (0, e−
1

n−1 ) whenever 1 < q <∞.
From (15) and (20) it follows that there exists a constant

C(n, q) =: max
(
C2(n, q)

n
q ,

en

C1(n, q)n

)
such that

C(n, q)−1

(
ln

1
r

)n
q −n

≤ capn,q(B(0, r), B(0, 1)) ≤ C(n, q)
(

ln
1
r

)n
q −n

for every 0 < r < e−
1

n−1 whenever n < q <∞.
Now assume q = ∞. We have

||v||nLn,∞(B(0,1)) = sup
t≥0

t (v∗(t))n = sup
0≤t≤Ωn (1−rn)

t

t/Ωn + rn
= Ωn (1− rn).

Therefore

||∇u||nLn,∞(B(0,1);Rn) =
(

ln
1
r

)−n

||v||nLn,∞(B(0,1)) = Ωn (1− rn)
(

ln
1
r

)−n

and from (19) we get

capn,∞(B(0, r), B(0, 1)) ≤ Ωn (1− rn)
(

ln
1
r

)−n

(21)

for every r ∈ (0, 1).

From (18) and (21) it follows that there exists a constant

C(n, q) =: max
(

Ωn,
en

C1(n, q)n

)
13



such that

C(n, q)−1

(
ln

1
r

)− n
q′

≤ capn,q(B(0, r), B(0, 1)) ≤ C(n, q)
(

ln
1
r

)− n
q′

for every 0 < r < e−
1

n−1 when q = ∞. This finishes the proof of the theorem.
�

Remark 3.7. We actually showed that the upper estimate (20) holds in fact for
every q ∈ (1,∞) as long as r ∈ (0, e−

1
n−1 ). When q = n we are in the case of the n-

capacity and then (20) is known. (See for example [HKM93, 2.13].) Consequently,
for every 1 < q ≤ ∞ there exists a constant C(n, q) > 0 such that

capn,q(B(0, r), B(0, 1)) ≤ C(n, q)
(

ln
1
r

)− n
q′

for every r ∈ (0, e−
1

n−1 ). We do not know whether a similar lower bound exists
when 1 < q < n.

4. Hausdorff measure and the Sobolev-Lorentz n, q-capacity

In this section we examine the relationship between Hausdorff measures and the
Sobolev-Lorentz n, q-capacity.

Definition 4.1. Let 1 < q <∞. Let K be a compact set in Rn. We say that K is
of n, q-capacity zero if

capn,q(K,Ω) = 0

whenever Ω is an open neighborhood of K. In this case we write capn,q(K) = 0.

Before proceeding, we recall the following version of the Poincaré inequality.

Theorem 4.2. Poincaré inequality for Sobolev-Lorentz spaces. Let Ω ⊂ Rn

be bounded. Let 1 ≤ q ≤ ∞ be fixed. Then there exists a constant C(n, q) such that

||u||Ln,q(Ω) ≤ C(n, q) |Ω| 1n ||∇u||Ln,q(Ω;Rn)(22)

for every u ∈ C∞0 (Ω).

Proof. For every u ∈ C∞0 (Ω) we have (see [GT83, Lemma 7.14]):

|u(x)| ≤ 1
ωn−1

(I1|∇u|)(x)(23)

for every x ∈ Rn. We recall that for every measurable function f in Rn, I1f is its
Riesz potential of order 1. (See [BS88, Definition IV.4.17] and [Hei01, p. 20].) An
application of Hardy-Littlewood-Sobolev theorem of fractional integration ([BS88,
Theorem IV.4.18]) together with Theorem 2.3, [BS88, Proposition II.1.7] and (23)
yields the desired conclusion. �

Theorem 4.3. Suppose 1 < q <∞. Let E be a compact set in Rn. If there exists
a constant M > 0 such that

capn,q(E,Ω) ≤M <∞

for all open sets Ω containing E, then capn,q(E) = 0.

14



Proof. When q = n we are in the case of the n-capacity and then the claim holds.
(See for example [HKM93, Lemma 2.34]). So we can assume without loss of gen-
erality that q 66= n. We let Ω be a fixed open neighborhood of E. We can assume
without loss of generality that Ω is bounded. We choose a descending sequence of
open sets

Ω = Ω1 ⊃⊃ Ω2 ⊃⊃ · · · ⊃⊃ ∩iΩi = E

and we choose ϕi ∈W (E,Ωi), 0 ≤ ϕi ≤ 1 with ϕi = 1 on E and

||∇ϕi||nLn,q(Ωi;Rn) < M + 1.

From the Poincaré inequality for Sobolev-Lorentz spaces (22) we have that (ϕi,∇ϕi)
is bounded in the space Ln,q(Ω)×Ln,q(Ω;Rn). We notice that ϕi converges point-
wise to a function ψ which is 1 on E and 0 on Rn \E. Hence, from Mazur’s lemma
([Yos80, p. 120]), [BS88, Lemma IV.4.5], and the reflexivity of Ln,q(Ω)×Ln,q(Ω;Rn)
it follows that there exists a subsequence denoted again by ϕi such that (ϕi,∇ϕi)
converges weakly to (ψ, 0) in Ln,q(Ω) × Ln,q(Ω;Rn) and a sequence ϕ̃i of convex
combinations of ϕi,

ϕ̃i =
ji∑

j=i

λi,jϕj , λi,j ≥ 0,
ji∑

j=i

λi,j = 1,

such that (ϕ̃i,∇ϕ̃i) converges to (ψ, 0) in Ln,q(Ω)×Ln,q(Ω;Rn). The closedness of
W (E,Ωi) under finite convex combinations implies that ϕ̃i ∈ W (E,Ωi) for every
integer i ≥ 1. Therefore

0 ≤ capn,q(E,Ω) ≤ lim sup
i→∞

||∇ϕ̃i||nLn,q(Ωi;Rn) = 0.

�

Theorem 4.4. Suppose that 1 < q ≤ ∞ and that E is a compact set in Rn. For
1 < q ≤ ∞ we let hn,q : [0,∞) → R be defined by

hn,q(t) =


0 if t = 0(

ln 1
t

)− n
q′ if 0 < t < 1

2

2 (ln 2)−
n
q′ t if t ≥ 1

2 .

(i) If 1 < q < n, then Λ
h
1/n
n,q

(E) <∞ implies capn,q(E) = 0.
(ii) If n ≤ q <∞, then Λhn,q (E) <∞ implies capn,q(E) = 0.
(iii) If q = ∞, then Λhn,q

(E) = 0 implies capn,∞(E,Ω) = 0 whenever Ω is an
open neighborhood of E.

Proof. We have to analyze three cases, depending on whether 1 < q < n or n ≤ q <
∞ or q = ∞. It is enough to prove that capn,q(E,Ω) = 0 whenever Ω is a bounded
open neighborhood of E. So let Ω be a bounded open set containing E. We denote
by δ the distance from E to the complement of Ω. Without loss of generality we
can assume that 0 < δ < e−

1
2(n−1) . Fix 0 < ε < 1 such that ε < 1

4 δ
2; then r < ε

implies ln( δ
2r ) ≥ 1

2 ln( 1
r ). We cover E by open balls B(xi, ri) such that ri < 1

2ε.

Since we may assume that the balls B(xi, ri) intersect E, we have B(xi,
δ
2 ) ⊂ Ω. In

fact, since E is compact, E is covered by finitely many of the balls B(xi, ri).
15



We assume first that 1 < q < n. Using Theorem 3.2 (ii) and (v) we obtain

cap1/n
n,q (E,Ω) ≤

∑
i

cap1/n
n,q (B(xi, ri),Ω)

≤
∑

i

cap1/n
n,q (B(xi, ri), B(xi,

δ

2
))

≤ C(n, q)
∑

i

(
ln

1
ri

) 1
q−1

,

where in the last step we also used Remark 3.7 together with our choice of ε. Taking
the infimum over all such coverings and letting ε→ 0, we conclude

cap1/n
n,q (E,Ω) ≤ C(n, q)Λ

h
1/n
n,q

(E) <∞.

Since Ω was an arbitrary bounded open set containing E, the desired conclusion
follows from Theorems 3.2 (ii) and 4.3 when 1 < q < n.

We assume now that n ≤ q <∞. When q = n we are in the case of the n-capacity
and then the claim holds. (See for example [HKM93, Theorem 2.27].) So we can
assume without loss of generality that n < q < ∞. Using the finite subadditivity
and the monotonicity property of the n, q-capacity we obtain

capn,q(E,Ω) ≤
∑

i

capn,q(B(xi, ri),Ω) ≤
∑

i

capn,q(B(xi, ri), B(xi,
δ

2
))

=
∑

i

capn,q(B(0, ri), B(0,
δ

2
)) ≤ C(n, q)

∑
i

(
ln

1
ri

)n
q −n

,

where in the last step we also used Remark 3.7 for the n, q-capacity of spherical
condensers together with our choice of ε. Taking the infimum over all such coverings,
we conclude

capn,q(E,Ω) ≤ C(n, q)Λhn,q
(E) <∞.

Since Ω was an arbitrary bounded open set containing E, the desired conclusion
follows from Theorems 3.2 (ii) and 4.3 when n < q <∞.

We assume now that q = ∞. Using the finite subadditivity and the monotonicity
property of the n,∞-capacity we obtain

capn,∞(E,Ω) ≤
∑

i

capn,∞(B(xi, ri),Ω) ≤
∑

i

capn,∞(B(xi, ri), B(xi,
δ

2
))

=
∑

i

capn,∞(B(0, ri), B(0,
δ

2
)) ≤ C(n)

∑
i

(
ln

1
ri

)−n

,

where in the last step we also used formula (21) for the n,∞-capacity of spherical
condensers together with our choice of ε. Taking the infimum over all such coverings,
we conclude

capn,∞(E,Ω) ≤ C(n)Λhn,∞(E) = 0.

�
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Remark 4.5. It is known that if capn(E) = 0, then Λh(E) = 0 whenever E is a
compact set in Rn and h is an increasing function on [0,∞) such that h(0) = 0,
and ∫ 1

0

h(r)1/(n−1) dr

r
<∞.

(See [AH96, p. 20 and Theorem 5.1.13] and [HKM93, Corollary 2.40].) This corre-
sponds to the case q = n. It is not known if we have similar results for q 66= n. A
possible result would be the following:

Conjecture 4.6. Let E be a compact set in Rn and let 1 < q ≤ ∞ be such
that q 66= n. Then, if there exists a bounded open neighborhood Ω of E such that
capn,q(E,Ω) = 0, we have Λh(E) = 0 whenever h is an increasing function on
[0,∞) such that h(0) = 0, and ∫ 1

0

h(r)
q′
n
dr

r
<∞.
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[HKM93] J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear Potential Theory of Degenerate

Elliptic Equations. Oxford University Press, 1993.
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