SCALING INVARIANT SOBOLEV-LORENTZ CAPACITY ON R"

SERBAN COSTEA

ABSTRACT. We develop a capacity theory based on the definition of Sobolev
functions on R"™ with respect to the Lorentz norm. Basic properties of capac-
ity, including monotonicity, finite subadditivity and convergence results are
included. We also provide sharp estimates for the capacity of balls. Sobolev-
Lorentz capacity and Hausdorff measures are related.

1. INTRODUCTION

We recall that for 1 < p < co and 0 < A < n, the Morrey space LP*(R™) is

defined to be the linear space of measurable functions u € L}, .(R™) such that

1/p
|[ul| cor(mny = sup sup (TA/ |U(y)|pdy> < 00.
zeR™ r>0 B(z,r)

In other words, the fractional maximal function

1/p
1
My —su(z) = sup | > — / fu(y) Pdy
r>0 |B(z,7)| /B2,

is bounded in R™. In particular, £L"°(R") = L"(R"). We refer to [Gia83, p. 65
for more information about Morrey spaces and their use in the theory of partial
differential equations. Omne notices that the weak Lebesgue space L™*(R") is
contained in £P""P(R™) for every p € [1,n). Similarly we can define the Morrey
space LP*(R™; R™) for vector-valued measurable functions. Capacities related to
Morrey spaces were studied by Adams and Xiao in [AX04].

We already noticed that the Lorentz spaces embed continuously into the Morrey
spaces; that is, L™Y(R") — L™ (R") — LP""P(R") whenever 1 <p <n < ¢ <
00. Sobolev-Lorentz spaces have recently been studied by Kauhanen, Koskela, and
Maly in [KKM99] and by Maly, Swanson, and Ziemer in [MSZ05].

Our results concerning the Sobolev-Lorentz capacity generalize some of the re-
sults concerning s-capacity on R" for s € (1,n]. See [HKM93, Chapter 2| for the
s-capacity on R™ and [KM96], [KMO0O] for capacity on general metric spaces.

Using [HKM93, 2.13], we provide sharp estimates for the Sobolev-Lorentz n, ¢-
capacity of pairs (B(0,7), B(0,1)) for n < ¢ < oo and small 7. The Sobolev-
Lorentz capacity and Hausdorff measures are also related; we obtain results that
are Sobolev-Lorentz analogues of those obtained by Reshetnyak in [Res69], Martio
in [Mar79], Maz’ja in [Maz85] and others.

This is part of my thesis at the University of Michigan under the guidance of
Professor Juha Heinonen.



2. PRELIMINARIES

Our notation in this paper is standard and generally as in [HKM93]. Here Q
will denote a nonempty open subset of R™, while dz = dm,(x) will denote the
Lebesgue n-measure in R™, where n > 2 is integer. For two sets A, B C R", we
define dist(A, B), the distance between A and B, by

dist(A,B) = inf |a—1b|.
acA,beB

For n > 2 integer §2,, = |B(0,1)| denotes the measure of the n-dimensional unit
ball, that is ,, = |B(0, 1)|. Thus, w,_1 = nfl,, where w,_; denotes the spherical
measure of the n — 1-dimensional sphere.

For a measurable u : 2 — R™, supp u is the smallest closed set such that u
vanishes outside supp u. We also define

Co(2) = {peC():supp ¢ CC Q}
Lip(Q) = {¢:Q— R: pis Lipschitz}.
For a function ¢ € Lip(Q) N Cy(§2) we write
= (8190, 62(,0, PN ,an(p)

for the gradient of ¢. This notation makes sense, since from Rademacher’s theorem
([Fed69, Theorem 3.1.6]) every Lipschitz function on R™ is a.e. differentiable.

Throughout this section we will assume that m > 1 is a positive integer. Let
[ — R™ be a measurable function. We define Ay, the distribution function of
f as follows (see [BS88, Definition II.1.1] and [SW75, p. 57]):

A (t) = {z € Q| f(x)] >t} t>0.
We define f*, the nonincreasing rearrangement of f by
[r(t) =inf{v: A\py(v) <t}, t>0.

(See [BS88, Definition I1.1.5] and [SW75, p. 189].) We notice that f and f* have the
same distribution function. Moreover, for every positive a we have (| f|*)* = (| f]*)*
and if |g| < |f] a.e. on Q, then ¢* < f*. (See [BS88, Proposition I1.1.7].) We also
define f**, the mazimal function of f* by

£ = / £ £ 0.

(See [BS88, Definition I1.3.1] and [SW75, p. 203].)
Throughout this paper, we will denote by p’ the Holder conjugate of p € [1, o0],
that is

00 ifp=1
p = ]% ifl<p<oo
1 if p= .

The Lorentz space LP1(Q;R™), 1 < p < 00, 1 < g < 00, is defined as follows:
LPYQ;R™) = {f : Q@ — R™: f is measurable and || f|1r.a(q;rm) < 00},

where

1
dt \ 4
7) 1<g< o0

(GERO)
sup;~q tA1f)(t)
2

q
A llzra@mmy = [ lp.q = X
P

=supogsP () g=o0



(See [BS88, Definition IV.4.1] and [SW75, p. 191].) If 1 < ¢ < p, then [|-||zr.a(o;rm)
already represents a norm, but for p < ¢ < oo it represents a quasinorm, equivalent
to the norm || - [| .0 (;rm), Where

1
oo, L Ly q
(JEas e eyed)’ 1<g<oo
1
sup;~o t7 f**(¢) q = 0.
(See [BS88, Definition IV.4.4].) Namely, from [BS88, Lemma IV.4.5] we have that

HfHL(M)(Q;R'"L) = H |f| ||(p,q) =

p
Az a@) < W leeow < 2711 zrae)

for every 1 < g < oo and every measurable function f: Q2 — R™.

It is known that (LP9(Q; R™),|| - [|Lr.a(o;rm)) is @ Banach space for 1 < ¢ < p,
while (LP4(S;R™), || - || L0 (;rm)) is @ Banach space for 1 <p < o0, 1 < g < oo.
These spaces are reflexive if 1 < ¢ < co. (See [BS88, Theorem IV.4.7, Corollaries
1.4.3 and IV.4.8], the definition of LP?(); R™) and the discussion after Definition
2.1.)

Definition 2.1. (See [BS88, Definition 1.3.1].) Let 1 < p < oo and 1 < ¢ < co. Let
X =LP9(Q;R™). A function f in X is said to have absolutely continuous norm in
X if and only if || fxE,||x — O for every sequence Ej, satisfying E, — () a.e.

Let X, be the subspace of X consisting of functions of absolutely continuous
norm and let X; be the closure in X of the set of simple functions. It is known
that X, = Xp. (See [BS88, Theorem 1.3.13].) Moreover, we have X, = X; = X
whenever 1 < ¢ < oo. (See [BS88, Theorem IV.4.7 and Corollary IV.4.8] and the
definition of LP:?(Q; R™).)

We prove now that X, # X for X = LP>°(Q; R™). Without loss of generality
we can assume that m = 1 and that Q = B(0,2) \ {0}. We define u: Q@ — R,

S JeTr ifo<zl<1
(1) “(z)_{ 0 if1<zl<2.

It is easy to see that u € LP»*°(Q) and moreover,

[ux B(0,0) || Lo () = |[ull o0 () = /P

for every a > 0. This shows that u does not have absolutely continuous weak
LP-norm and therefore L”*>° () does not have absolutely continuous norm. Since
LP>(Q) can be identified with (L¥"(2))* (see [BS88, Corollary IV.4.8)), it follows
from [BS88, Corollaries 1.4.3, 1.4.4, IV.4.8 and Theorem IV.4.7] that neither LP>1(Q),
nor LP>°(Q) are reflexive whenever 1 < p < oo.

Remark 2.2. Tt is also known (see [BS88, Proposition IV.4.2]) that for every p €
(1,00) and 1 < r < s < oo there exists a constant C(p,r, s) such that

(2) [ £ zrs ) < Clpyry ) e

for all measurable functions f € LP"(£2; R™) and all integers m > 1. In particular,
we have the embedding LP"(; R™) — LP*(Q; R™).

We have the following generalized Holder inequality for Lorentz spaces.
3



Theorem 2.3. Suppose Q2 C R™ has finite measure. Let 1 < pi,pa,p3 < 00,
1 <q1,q2,q3 < 00 be such that

1 1 1

p P2 ps
and either

1 1 1

o @

whenever 1 < q1,q2,q3 <0 or 1 <q1 =g <gz=00 or 1 <q1 =q3 < q2 = 0.
Then

I[flzr1.a1 irm) < || fllLre.a2 (irm) [IXQ|LP3.93 ()

Proof. From the definition of the Lorentz norms and quasinorms for vector-valued
functions, it follows that it is enough to assume that m = 1. Let f € LP>%(Q).
Since 2 has finite measure, we have f*(t) = 0 for every ¢ > |Q2|. We have to analyze
few distinct cases.

(i) 1 < q1, 92,93 < 0o. We have

) L a
< (fo() e )m dt)
0
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! s q2 i . %—% g3 é
(/ (1) 75 ) dt) (/ (t ))

[ f1]Lp2sa2 () | Xl Lpsas () -

(ii) ¢1 = g2 = g3 = 00. Then

1 11 1
[fllrie@) = sup ¢ f5(t) < |Q[Pr7 72 sup t7z f*(2)
0<t<(Q| 0<t<1Q|

1917 [[f]| 2w (@) = [[fl]Lr22= (@) |IxQllLrs: (0)-

(iii) 1 < ¢ = g2 < g3 = 00. Then

1

12 1 1 a1
fllmm @ = (/ (f*(t)tm“)mdt>

2] . a \®
- (/0 (f*(t)tvz_n)QItmdt>

1

s - z
< o (/ <f*<t>m‘q1>qldt>

= fllzezar (@) lIxallLes <) = [IfllLr202 () lIxallLrs = ()-
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(iv) 1 < ¢1 = g3 < g2 = 0. Then

@ L o
[fllrra) = (/O (fr(t)te “)‘hdt)
o . L m
< IO Gt dt)
1 ‘Ql 1 1 ﬁ
sup (1) 17 (/ (177D dt)
0<t<|0| 0

[f|Lr2== (@) [IX@llLrs.a1 ) = [| fllzr2oo () lIX@l|Lr3-3 (02)-
This finishes the proof. ([

IN

As an application of Theorem 2.3 we have the following result.

Corollary 2.4. Let 1 <p < qg< oo ande € (0,p— 1) be fized. Suppose Q@ C R™
has finite measure. Then

(3) I[fl|zr—<rm) < C(p,q,¢) [P |[f||Lr.a(rm)

for every integer m > 1, where

— p—e ¢ 1__1
(pi(q qp+€)>p TenTiE, p<g<oo

C(p.g.€) = {
proee vE, q=00

Proof. From the definition of the Lorentz norms and quasinorms for vector-valued
functions, it follows that it is enough to assume that m = 1. A simple application
of Theorem 2.3 gives us the desired conclusion. O

We have two interesting results concerning Lorentz spaces.

Theorem 2.5. Suppose 1 < p < g < oo. Let Q C R"™ and let f1, fo € LP1(Q). We
let f3 = max(|f1],|f2]). Then f3 € LP9(Q) and

Hf3”zl),pyq(ﬂ <||f1||qu )+Hf2”qu(Q

Proof. Without loss of generality we can assume that both f; and fy are nonnega-
tive. We have to consider two cases, depending on whether p < ¢ < oo or ¢ = 00
Suppose p < g < co. We have ([KKM99, Proposition 2.1])

o0 q q
lley = (2[5 N o1Fas)

where Ay, is the distribution function of f; for i = 1,2, 3. From the definition of f3
we obviously have Ajz,)(s) < Ajy,)(8) + Ay, (s) for every s > 0, which implies that

<p /O°° s A () + /\[f2}(8))3ds)

o0 q q o0 q
(p/o sq_l)\[fl](s)f’ds> —l—(p/o sq_l)\[fg](s)lﬂds>

||f1||z£p,q(Q) + ||f2||qu
5
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Suppose now g = oo. From the definition of f3 we obviously have as before
Alf51(8) < App(8) + Ay, (s) for every s > 0. Therefore

P gy (8) < 8P A1 (8) + 87 Apg) (5)

for every s > 0 which implies

(4) " Aga)(8) < M1ll7me ) + 1270
for every s > 0. By taking the supremum over all s > 0 in (4), we get the desired
conclusion. 0

Theorem 2.6. Suppose 1 < p < g < o0 and € € (0,1). Let Q@ C R™ and let
f1, fo € LP9(Q). We denote f3 = f1 + fa. Then f3 € LP4(Q) and

||f3||qu(Q) (1_5) p||f1||LPf1(Q +€_p|‘f2”qu

Proof. Without loss of generality we can assume that both f; and f; are nonnega-
tive. We have to consider two cases, depending on whether p < ¢ < oo or ¢ = 0o
Suppose p < ¢ < co. We have ([KKM99, Proposition 2.1])

1l = (o [ 5 pgo)Fas) "

where Ajy,) is the distribution function of f; for i = 1,2,3. From the definition of
f3 we obviously have Ajz,1(s) < Af,1((1 = €)s) + App,)(es) for every s > 0, which
implies that

QI

A

1fslltra) < <P/O s (1= 2)s) +)‘[fz](53))zd3>

< <p/ sT7 Iy (1 —a)s)ids> "4 (p/ Sql)\[fz](ss)gds> ’
0 0
= (1_5)_p||f1||1£p,q(9) +5_p||f2||ip,q(g)-

Suppose now ¢ = oo. From the definition of f3 we obviously have as before
Aifs1(8) < App((1 = €)5) + App,1(es) for every s > 0. Therefore

PN £51(8) < 8P App (1 = €)s) + 8P Agyp(e8)

for every s > 0 which implies

(5) M7 (8) € (L= ) Pl gy + £ 2l B
for every s > 0. By taking the supremum over all s > 0 in (5), we get the desired
conclusion. (]

Theorem 2.6 has an interesting corollary.

Corollary 2.7. Let Q C R™ be open. Suppose 1 < p < oo and 1 < q < oo. Let
fx be a sequence of functions in LP1(Q; R™) converging to [ with respect to the
D, g-quasinorm and pointwise a.e. in 2. Then

Jm [ fullLra@rm) = [|f|[Lra@mm)-

6



Proof. We can assume without loss of generality that m = 1. Since for 1 < ¢ <p
|| -||Lp.a(q) is already a norm, the claim is trivial in this case. Hence we can assume
without loss of generality that p < ¢ < oo. The proof for the case ¢ = co was
presented to me by Jan Maly.

Since f* <liminf f} (see [BS88, Proposition I1.1.7]), it follows easily that

hkrgicgfufk”LP&(Q) > || fllzra)-
We would be done if we show that
(6) lillcnsup [ fellLrac@) < N1flleao)

In order to do that we fix ¢ € (0,1). From Theorem 2.6 we have

kaHLP a(Q) = (1 - 6) p||f||ip-,q(Q) + sip”fk - f||z£p,q(Q)

for every kK = 1,2,... Taking limsup on both sides and using the fact that fy
converges to f with respect to the LP'9-quasinorm, we get

(7) h]l;nsuprk”qu(Q (1_5) p||f||LDq

Letting € — 0 in (7) yields (6). This finishes the proof.

‘We use the notation
u" = max(u,0) and v~ = min(u,0).

If u € Cy(2) N Lip(Q), then obviously u™ € Cy(Q) N Lip(2) and from [HKM93,
Lemmas 1.11 and 1.19] we have

Vu ifu>0
+ _
(8) Vu _{ 0 ifu<o.

3. SOBOLEV-LORENTZ n,q RELATIVE CAPACITY

Suppose 1 < ¢ < co. Let 2 C R™ be an open set. Let K C 2 be compact. The
Sobolev-Lorentz n, g-capacity of the pair (K, Q) is denoted

cap, o(K, Q) = inf {|[Val [} uqmey : u € WK, Q)},

where
W(K,Q)={ueC§°(Q):u>1 in a neighborhood of K}.
We call W (K, Q) the set of admissible functions for the condenser (K, Q).

Lemma 3.1. If K C Q is compact, then we can get the same capacity if we restrict
ourselves to a bigger set, namely

Wo(K,Q) ={ueCo(Q)NLip(Q):u>1on K}.

Proof. Let u € Wy(K, Q). We can assume without loss of generality that v > 1 in
a neighborhood U CcC Q of K and that € is bounded. Let n € C§°(B(0,1)) be a
mollifier. For every integer j > 1 let n;(z) = j"n(jz) and let u; = n; * u be the
convolution defined by

wi() = (ny ) (x) = / 0y (@ — y)uly)dy.

n

7



For the basic properties of a molliﬁeE see [Zie89, Theorems 1.6.1 and 2.1.3]. Let U
be a neighborhood of K such that U CC U and let jy be a positive integer such
that

1/jo < min{dist(supp u, 9Q), dist(U, dU)}.

It is easy to see that uj,j > jo is a sequence in W (K, Q) and since u € Co(2) N
Lip(©), we have from [HKM93, Lemma 1.11] that

Jim (lluy —ullznea@) + IV = Vullns@mm) = 0.
This together with (2) and Theorem 2.3 yields
(9) Jim (lluj = ullzna@ + IV = Vullpna@ren) = 0.

An appeal to Corollary 2.7 applied for p = n establishes the assertion, since
W(K,Q) Cc Wo(K, Q). O

Since truncation decreases the n, g-quasinorm whenever 1 < g < oo, it follows
from Lemma 3.1 that we can choose only functions v € Wy(K,Q) that satisfy
0 < u <1 when computing the n, q relative capacity.

3.1. Basic properties of the n,q relative capacity. Usually, a capacity is a
monotone and subadditive set function. The following theorem will show, among
other things, that this is true in the case of the n,q relative capacity. We follow
[HKM93].

Theorem 3.2. Suppose 1 < q < oo. Let @ C R™ be open. The set function
K capn,q(K, Q), K C Q, K compact, enjoys the following properties:

(i) If Ky C Ky, then cap,, ,(K1,9Q) < cap,, ,(K2,).

(i) If Q1 C Q2 are open and K is a compact subset of 0y, then

cap,, ,(K, Q) < cap,, ,(K, Q).

(iil) If K; is a decreasing sequence of compact subsets of Q with K = (.2, K;,
then
cap,, ,(K,Q) = lim cap,, ,(K;, Q).

(iv) Suppose n < g < oo. If K = Ule K; C Q then
k
cap,, ,(K, Q) < anpn,q(Ki, Q),
i=1
where k > 1 is a positive integer.
(v) If K =Y, K; C Q then

k
capi{g(K,Q) < anpi{g(Ki,Q),
i=1
where k > 1 s a positive integer.

Proof. Properties (i) and (ii) are immediate consequences of the definition.

(iii) Let b =: lim; o cap,, ,(K;, 2). We fix a small ¢ > 0 and we pick a function
u € W(K, Q) such that

IVl

TLL/"’(I(Q;R") < Capn,q(K7 Q) +e€.
8



When i is large, the sets K; lie in the compact set {u > 1 — e}. Therefore

1
WHVM
Letting ¢ — 0 yields b < cap,, ,(K,2), whence (iii) follows because obviously
b > capmq(K, Q).

It is enough to prove (iv) and (v) for k = 2 because then the general finite case
follows by induction.

lim cap,, ,(K;,Q) < cap,, ,({u>1-¢},Q) < Lra(Q;R")-

(iv) When ¢ = n we are in the case of the n-capacity and then the claim holds.
(See for example [HKM93, Theorem 2.2 (iii)].) So we can assume without loss of
generality that n < ¢ < 0.

Let u; € Wo(K;,Q), i = 1,2, such that

Hvui”znvq(Q;R") < Capn,q(Ki7Q) +e.

We define v = max(u1,us). Since u = (uj —ug)t +ug, it follows from the discussion
after Corollary 2.7 and (8) that u € Wy(K1UK>, ) with |[Vu| < max(|Vui|, | Vuz|).
This and Theorem 2.5 imply

Capn,q(Kl U K27 Q) < ||Vu||z"vq(Q;R") < Hvuluznvq(Q;R") + ||vu2||2"vq(Q;R")
< cap, ,(K1,Q) +cap, ,(K2,Q) + 2.

Letting € — 0 we complete the proof in the case of two sets, and hence the general
finite case.

(v) We notice that (iv) implies (v) when n < ¢ < c0. So we can assume without
loss of generality that 1 < ¢ < n.
Let u; € Wo(K;, ), i = 1,2, such that

0 <wuy <1 and ||[Vu||pra@mn) < capi{;L(K%Q) +e.
Then v = uy +ug € Wo(Ky U K»2,Q) and since || - ||zn.a(rn) 1 @ norm when
1 < g < n, we have

cap}l{g(Kl U KQ, Q) S Hvu”Ln,q(Q;Rn) § ||V’UJ1||Ln,q(Q;Rn) —+ HVUQHLn,q(Q;Rn)

cap/™ (K1, Q) + capl/™(Ky, Q) + 2¢.

n, n,q

IN

Letting ¢ — 0 we complete the proof in the case of two sets, and hence the general
finite case. The theorem is proved. ([

Remark 3.3. The definition of the n, g-capacity easily implies
Ca'pn,q(Kv Q) - Capn,q(aKa Q)
whenever K is a compact set in 2.

3.2. Estimates for the n, ¢ relative capacity. Suppose 1 < g < co. Obviously,
cap, ,(E,Q) = cap,, ,(E + z,Q2 + ) for every x € R". Indeed, the n, g-quasinorm
is invariant under translations.

Lemma 3.4. Suppose 1 < q < co. Let ) be bounded and K C  be compact. Then
(10) Capn,q(Ka Q) = Ca‘pn,q(aKv CMQ),
where a > 0 and aA = {aa : a € A}.



Proof. We have to analyze two cases, depending on whether 1 < g < oo or ¢ = 0.

We assume first that 1 < g < oo. Let u € C§°(Q2). We define u(,) : a2 — R by
Ue)(r) = u(Z). Then u € W(E,Q) if and only if u,) € W(ak,as2). We notice
that Vu(a)(z) = 2 Vu(Z). We have

z
«

o € aQ: [Vu(@)] > 1)] = Iz €a: 1[vu(D)] > 1)

)| = at}].

ol8QlR

— HzeaQ: |Vu(d)|>at} = a”|{§ €Q: |V
S0 A[|Vua, 1 (t) = a"Avup(at) for every ¢ > 0. Therefore
|VU(Q)|*<t) = inf{’U >0: )‘[\Vum)l](U) < t} = inf{v >0: Oén/\Hqu(OéU> < t}
t
).
1

an
Hence we just proved that |Vu[*(t) = =|Vu|*(Z) for every t > 0. Therefore

T«

® 4 ; dt > 4 (1 Lot \dt
||vu(a)||%"’q(aQ;R") :/ tz (|vu(a)| (t))q e :/ ti *|VU| ( ) e
0 t 0 « t

an

1. t 1 "
= 3 inf{av >0: )\Hqu(Oé’U) < J} = a|Vu| (

By making the substitution ﬁ = s, we have

> 4 (1 Lot \7dt A .. \7ds ‘
[Tt (Grrcn) F= [ et (9de) 5 = IVl

Thus we get ||Vu(q)|lzma@orn) = [|VUu||pna@mrn). This proves the claim when
1<qg<oo.

Now assume that ¢ = oo. We let u € C§°(2) and we define u(,) as before.
Then as before, we have u € W(K,Q) if and only if u,) € W(ak,aR2) and
[V |*(t) = L|Vul* (L) for every ¢ > 0. This implies

t

)"

n * n t *
(1) IVu)llfne@ay = supt (Vi@ (t)" =sup — ([Vul*(
t>0 t>0 &

= sup s (V" (5))" = |V~ o

This finishes the proof.

Corollary 2.4 yields the following Holder inequality for capacities:

Theorem 3.5. Let Q@ C R™ be bounded, let n < ¢ < oo, and let € € (0,n — 1) be
fized. Then for every K C Q compact we have

(12) cap:/f(g*g)(K, Q) < C(n,q,e) Q|79 cap}l{;(K, o).

Proof. Let K be compact in . Let u € W(K, Q). Then from Corollary 2.4 applied
for p = n and the definition of the || - |[Ln-c(rn)-norm and || - [|L¢.0 @mn)-
quasinorm we have

IV| pre(urny < C(n, q,€) |Q70 ||V

Lma(Q;RM)-

Taking the infimum on both sides over such functions u, we get the claim for K C 2
compact. This finishes the proof. |

10



Theorem 3.6. Let n < g < 0o be fized. There exists a constant C(n,q) > 0 such
that

n

Cova <1n 71") E cap,, o(B(0,7), B(0,1)) < C(n, q) <1n 71»> '

q

Q

for every 0 < r < e_ﬁ7 where q' is the Holder conjugate of q.

Proof. We get some lower estimates for cap,, ,(B(0,7), B(0,1)), where r > 0 is
small. We have to consider two cases, depending on whether n < ¢ < co or ¢ = co.

First we consider the case n < ¢ < co. From (12) applied for p=mn and n < ¢ <
o0, there exists a constant

1 1
C(n,e,q) = O et (n(q— n+s)> e
' q

such that
cap, 1" (B(0,7), B(0.1)) < C(n.e,q) capy/g (B(0.r), B(0,1))
for every € € (0,n — 1) and every r € (0,1). From [HKM93, 2.13] we have
n—e—1
_ € - -
cap,,_.(B(0,7), B(0,1)) = wy—1 (m) (rmm=eT 1)t

Therefore,

1 £

(13) capl/(B(0,7), B(0,1)) > Ci(n,e,q) &' "7 ra—s

for every 0 < e <n — 1, where

1 1

i Q;n(n—s) (n(q_n+8)>qns

Cl(na’qu) =w

=0

n—e—1

(n—e—1) n-=

" q
We define
Ci(n,q) = _inf  Ci(ne,q).

We notice that Cy(n,q) > 0. This together with (13) implies

(14) cap)/(B(0,7), B(0,1)) > C1(n, q) el=a pate,
For r € (076_ﬁ)a we let € = 1n1;- Then 0 < ¢ <n — 1 and from (14) it follows
that "
— C , n 1 %777,
(15) cap, (B0, 7). B0, 7)) > D0 (m T)

for every r € (0,e~ T ). This yields the desired lower bound for the relative capacity

whenever n < ¢ < oo and r € (O,e_ﬁ).
Now we assume g = oo. From (12) we have

cap/"7(B(0,7), B(0,1)) < Q" I e~ wenaz capl/™ (B(0,7), B(0, 1))

n—e n,oo
for every € € (0,n — 1). This together with [HKM93, 2.13] gives
(16) cap,/5(B(0,7), B(0,1)) > Ci(n,e) erne
for every 0 < e <n — 1, where

1 1=

n—e—1 1

Ci(nye) =w! 50, " (n—e—1)"ne n e,
11




We define
Ci(n) = inf Ci(n,e).

0<e<n—1

We notice that Cy(n) > 0. This together with (16) implies

(17) capy/™ (B(0,7), B(0,1)) > Cy(n)er-e.
For r € (O,efﬁ) we let € = 1n1l' Then 0 < e <n—1 and from (17) it follows
that "
J— C n 1 —-n
(1) cap, oo (B(0.7), B(0, 1) > D0 <1n T)

for every r € (O,efﬁ). We let Ci(n,q) = Ci(n) when ¢ = oco. This yields the
desired lower bound for the relative capacity when ¢ = co and r € (0, eiﬁ).

We shall get an upper estimate for cap,, ,(B(0,r), B(0,1)) whenever r € (0, e~
and 1 < ¢ < oo. We use the function u : B(0,1) — R defined by

(2) = 1 ifo<|z|<r
e el < 2| < 1.

Inr

Then

Ll ifr <z < 1.

Ini |z

3

{ 0 ifo<|zl<r

We notice that u ¢ Wy (B(0,7), B(0,1)). However,
(19) Capn,q (§(07 T)a B(Oa 1)) < ||VU||Zn=q(B(0,1);Rn)
because

||vu||Ln,q(B(071);Rn) = ;1_{% |‘Vu(ij‘|Ln,q(B(O71);Rn),

where us, 0 < § < =7 is a sequence in Wy (B(0,r), B(0,1)) defined by

T

1 fo<|z|<r
In (146 .
ugs(z) = 71n(r(1+)(‘5§| if r < |z| < ﬁ
0 if 45 <zl <1

We want to get an upper estimate for ||Vu||zn.q(p(0,1);r») Whenever 1 < g < oco.
We define v : B(0,1) — R by v(z) = —Inr|Vu(x)|. We compute Ap,;. We recall
that ,, = |B(0,1)|. We have

N@@:ﬂwel%QU\BmmyAL>tH:erBmJj\Bmmypﬂ<%H

|z
Hence
0 ift>1
M) =< Q (F—r") if1<t<?
Qn(l—’l"n) 1f0§t§1
‘We notice that
1
v*(t) = (ﬁ@%ﬁ) if0<t<Q,(1-7r")
0 ift>Q,(1—1r).

12



We compute |[v|[zn.a(B(0,1))- We have to consider two cases, depending on whether
l<g<ooorqg=o0

We assume first that 1 < ¢ < co. Let

Q,(1—r") .
J=: ||U||an,q(B(o71)) :/0 t;(U*(t))q?-

By making the substitution t = sQ,r", we get

n(l=r") 1 dt
tn —
/0 (t/Qn + rn )
1 1 i o d
3 / snt [ —— der/ 5 5
0 s+1 1 s+1 s

1—r" a 1 1
(n—l—ln " )<Q{{ <n+nln><C’2(n,q)ln
q rh q r r

if 0 < r < e 1. Therefore, from (19) and the fact that v = —Inr |Vu| we get

J

=)

|
3

33

< Q

(20) cap,, ,(B(0,7), B(0,1)) < Ca(n,q) % <1n i) o

for every r € (0, efﬁ) whenever 1 < ¢ < 0.
From (15) and (20) it follows that there exists a constant

n e”
C(n,q) = max ( C3(n,q)s, =—————
such that

Z_—n

n
Z—n
q

Cn,q) " (m i) " <cap,,(B(0,r), B(0,1)) < C(n, q) (ln i)

1
for every 0 < r < e~ »—T whenever n < ¢ < 0.
Now assume g = co. We have

n * n t n
[l (B(0,1)) = i’glgt(v )" = sup =Q, (1-7").

0<t<Q,, (1—rn) t/Qn + 17
Therefore
HVUHL"vW(B(O,l);R") = ln; ||U||Lﬂ=°°(B(O,1)) =Q, (1-1r") 111;

and from (19) we get

_ 1\N"
(21) o (B0.1), 50, 1)) £ 2, (1= %) (1n )
’ T
for every r € (0,1).
From (18) and (21) it follows that there exists a constant

e7l
C ) = Q’IH ~ [ \n
(n,q) =: max ( Ciln, q)”)

13



such that

n

cova <1n 71") E cap,, o(B(0,r), B(0,1)) < C(n, q) <1n 71»> '

q

Q

for every 0 < r < ¢~ 71 when q = oo. This finishes the proof of the theorem.
O

Remark 3.7. We actually showed that the upper estimate (20) holds in fact for
every g € (1,00) as long as r € (0, eiﬁ). When ¢ = n we are in the case of the n-
capacity and then (20) is known. (See for example [HKM93, 2.13].) Consequently,
for every 1 < g < oo there exists a constant C(n, q) > 0 such that

n
q’

cap,, ,(B(0,7), B(0,1)) < C(n, q) (m 7{)

1 . . .
for every r € (0,e”»-1). We do not know whether a similar lower bound exists
when 1 < ¢ < n.

4. HAUSDORFF MEASURE AND THE SOBOLEV-LORENTZ n, g-CAPACITY

In this section we examine the relationship between Hausdorff measures and the
Sobolev-Lorentz n, g-capacity.

Definition 4.1. Let 1 < g < co. Let K be a compact set in R™. We say that K is
of n, g-capacity zero if

cap, ,(K,Q) =0
whenever () is an open neighborhood of K. In this case we write cap,, ,(K) = 0.

Before proceeding, we recall the following version of the Poincaré inequality.

Theorem 4.2. Poincaré inequality for Sobolev-Lorentz spaces. Let 2 C R"
be bounded. Let 1 < q < oo be fized. Then there exists a constant C(n,q) such that

(22) lullLra(e) < C(n, @) Q" [[Vul|Lra@rm)
for every u € C§°(9).

Proof. For every u € C§°(€2) we have (see [GT83, Lemma 7.14]):
1

(23) ()| <

(L1 Vul)(x)

n—1
for every z € R™. We recall that for every measurable function f in R"™, I1 f is its
Riesz potential of order 1. (See [BS88, Definition IV.4.17] and [HeiO1, p. 20].) An
application of Hardy-Littlewood-Sobolev theorem of fractional integration ([BS88,
Theorem IV.4.18]) together with Theorem 2.3, [BS88, Proposition I1.1.7] and (23)
yields the desired conclusion. O

Theorem 4.3. Suppose 1 < q < oo. Let E be a compact set in R™. If there exists
a constant M > 0 such that

cap,, ,(E,Q) < M < oo
for all open sets Q containing E, then cap,, ,(E) = 0.

14



Proof. When ¢ = n we are in the case of the n-capacity and then the claim holds.
(See for example [HKM93, Lemma 2.34]). So we can assume without loss of gen-
erality that ¢ # n. We let Q be a fixed open neighborhood of E. We can assume
without loss of generality that €2 is bounded. We choose a descending sequence of
open sets

Q=020 >D---D>ON;; =F
and we choose ¢; € W(E,Q;), 0 < ¢; <1 with ¢; =1 on E and

Hv901||zﬂq(QHRn) < M + 1.

From the Poincaré inequality for Sobolev-Lorentz spaces (22) we have that (¢;, Vi)
is bounded in the space L™%(Q2) x L™9(Q; R™). We notice that ¢; converges point-
wise to a function ¥ which is 1 on E and 0 on R™\ E. Hence, from Mazur’s lemma
([Yos80, p. 120]), [BS88, Lemma IV.4.5], and the reflexivity of L™?(Q)x L™9(; R™)
it follows that there exists a subsequence denoted again by ¢; such that (p;, Vi;)
converges weakly to (1,0) in L™9(2) x L™2(Q; R™) and a sequence @; of convex
combinations of ¢;,

Ji Ji
Bi=> Aiges Aip>0, Y Aij=1,
Jj=t Jj=t

such that (@;, V@;) converges to (¢,0) in L™9(Q) x L™(Q; R™). The closedness of
W(E, ;) under finite convex combinations implies that @; € W(E, ;) for every
integer ¢ > 1. Therefore

0< Ca'pn,q(Ea Q) < hm sup HVS’EJ

71— 00

n —
L™a(QiRM) — 0.

O

Theorem 4.4. Suppose that 1 < q < oo and that E is a compact set in R™. For
1 < g <oowelethy,:[0,00) = R be defined by

0 ift=20
hn,q(t): ( %)? if0<t<%
2(In2)" 't ift> 1.

(i) If 1 < g <m, then A l/n( ) < oo implies cap,, ,(E)

(i) If n < g < o0, then Ah L (E) < oo implies cap,, ,(E

(iii) If ¢ = oo, then Ap, ( ) 0 implies cap,, (£,
open neighborhood of E.

) 0.
) = 0 whenever § is an

Proof. We have to analyze three cases, depending on whether 1 < ¢ <norn < g <
o0 or ¢ = oc. It is enough to prove that cap,, ,(F, Q) = 0 whenever €2 is a bounded
open neighborhood of F. So let €2 be a bounded open set containing E. We denote
by 0 the distance from E to the complement of 2. Without loss of generality we
can assume that 0 < § < e 20-7. Fix 0 < € < 1 such that & < %52; then r < e
implies 1n(2%) > LIn(L). We cover E by open balls B(z;,r;) such that r; < ie.
Since we may assume that the balls B(z;,r;) intersect E, we have B(z;, ) C Q. In
fact, since E is compact, E is covered by finitely many of the balls B(x;, ;).
15



We assume first that 1 < ¢ < n. Using Theorem 3.2 (ii) and (v) we obtain
capi{;”(E, Q) < anp}l{g (B(xi,1),Q)
i

)

)

IN

> capl/p(B(wi,ri), B(xs,

ey (w)

i

IN

where in the last step we also used Remark 3.7 together with our choice of €. Taking
the infimum over all such coverings and letting ¢ — 0, we conclude

cap}l{;(E,Q) < C(n,q)A, 1/ (E) < oo.

Since ) was an arbitrary bounded open set containing F, the desired conclusion
follows from Theorems 3.2 (ii) and 4.3 when 1 < ¢ < n.

We assume now that n < g < co. When ¢ = n we are in the case of the n-capacity
and then the claim holds. (See for example [HKM93, Theorem 2.27].) So we can
assume without loss of generality that n < ¢ < co. Using the finite subadditivity
and the monotonicity property of the n, g-capacity we obtain

]

5))

capnyq(E,Q) < anpnyq(B(xi,ri),Q) < anpn)q(B(:ci,ri),B(xi, 5

S can,  (BO,7), BO. 3)) < Clna) Y (lnl.) i

T

K3

where in the last step we also used Remark 3.7 for the n, g-capacity of spherical
condensers together with our choice of €. Taking the infimum over all such coverings,
we conclude

capn)q(E,Q) < C(n,q)An,  (F) < 0.

-
Since ) was an arbitrary bounded open set containing F, the desired conclusion
follows from Theorems 3.2 (ii) and 4.3 when n < ¢ < oc.

We assume now that ¢ = co. Using the finite subadditivity and the monotonicity
property of the n, co-capacity we obtain

Capn,oo(E’Q) < anpnyoo(B(xi,m),Q)Sanpn,m(B(lL‘i,T’i),B(Iiag))
— S can e (BO.0).B0,5) < C0 3 ()

where in the last step we also used formula (21) for the n, co-capacity of spherical
condensers together with our choice of . Taking the infimum over all such coverings,
we conclude

capnwoo(E, Q) <C(n)Ayp, . (E) =0.
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Remark 4.5. Tt is known that if cap, (F) = 0, then Ap(F) = 0 whenever E is a
compact set in R™ and & is an increasing function on [0, 00) such that h(0) = 0,

and .
/ B/ 9 o
0 T

(See [AH96, p. 20 and Theorem 5.1.13] and [HKM93, Corollary 2.40].) This corre-
sponds to the case ¢ = n. It is not known if we have similar results for ¢ # n. A
possible result would be the following:

Conjecture 4.6. Let E be a compact set in R™ and let 1 < q¢ < oo be such
that q # n. Then, if there exists a bounded open neighborhood Q0 of E such that
cap,, ,(E,Q) = 0, we have Ap(E) = 0 whenever h is an increasing function on

[0,00) such that h(0) =0, and
1 ’
/ h(r)%% < 00.
0 r
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