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Abstract. We show that L2-bounded singular integrals in met-
ric spaces with respect to general measures and kernels converge
weakly. This implies a kind of average convergence almost ev-
erywhere. For measures with zero density we prove the almost
everywhere existence of principal values.

1. Introduction

Singular integrals with respect to general measures in Rn, and also in
metric spaces, have been studied widely, see, e.g., [C], [CW], [D1], [DS],
[M], [P], [Ve] and [V]. In this paper our setting is a separable metric
space (X, d) with a finite Borel measure µ and a Borel measurable
antisymmetric kernel K : X×X \{(x, y) : x = y} → R. Antisymmetry
means that

K(x, y) = −K(y, x) for x, y ∈ X, x 6= y.

Moreover, we shall assume that K is bounded in {(x, y) ∈ X × X :
d(x, y) > δ} for every δ > 0. We shall also always assume that Vitali’s
covering theorem is valid for µ and the family of closed balls. Although
this is not automatically true even when X is compact, it is true for
example if X = Rn or µ is doubling, see, e.g., [F, Section 2.8].

The singular integral operator T associated with µ and K is formally
given by

T (f)(x) =

∫
K(x, y)f(y) dµy.

The problem which appears already in all classical cases such as the
Hilbert transform on R, i.e., K(x, y) = 1/(y − x), is that usually this
integral does not exist when x ∈ spt µ, the support of µ. When µ is the
Lebesgue measure Ln on Rn and K is a standard Calderón-Zygmund
kernel, this can be overcome by defining

(1.1) T (f)(x) = lim
ε→0

Tεf(x),

where

Tε(f)(x) =

∫

X\B(x,ε)

K(x, y)f(y) dµy.
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Here B(x, ε) is the open ball with centre x and radius ε. In such a case
the limit exists trivially for smooth functions due to cancellations, and
by the denseness of smooth functions in L1(Ln) standard techniques can
be used to show that it exists almost everywhere for L1-functions f .
For general measures this approach fails. Unless µ has strong sym-
metry properties around points in its support there are not enough
cancellations to guarantee the existence of the limit even for constant
functions. However, when K is antisymmetric one often defines T (f)
as a distribution by

(1.2) (T (f), g) = (1/2)

∫∫
K(x, y)(f(x)g(y)− f(y)g(x)) dµx dµy

when f and g are bounded Lipschitz functions, see [C] or [D1].
A central concept in the theory of singular integrals is the bound-

edness in L2. This can be formulated in several ways which all agree
in the classical case of Calderón-Zygmund kernels and the Lebesgue
measure. One way is to say that the distributionally defined opera-
tor T , as in (1.2), is bounded in L2(µ) if it has a bounded extension
to L2(µ) → L2(µ). Another way is to require that the truncated op-
erators Tε, ε > 0, are uniformly bounded in L2(µ). This agrees very
generally with the boundedness in L2(µ) of the sublinear maximal op-
erator T ∗:

(1.3) T ∗(f)(x) = sup
ε>0

|Tε(f)(x)|,

see [NTV].
A natural question is whether the L2-boundedness forces the limit

limε→0 Tε(f)(x) to exist for µ almost all x ∈ X. One would expect
this to be true at least if µ is an m-dimensional Ahlfors-David-regular
measure in Rn:

rm/C ≤ µ(B(x, r)) ≤ Crm for x ∈ spt µ, 0 < r < diam(spt µ),

and K is the vector-valued Riesz kernel |x− y|−m−1(x− y). In fact, by
a result of Tolsa, see [T1], this is true when m = 1 even for much more
general measures, but the proof is based on very special relations with
the kernel x/|x|2 (essentially the Cauchy kernel 1/z for z ∈ C = R2)
and the so-called Menger curvature. We shall discuss some relations of
this problem to rectifiability at the end of the paper. And we shall men-
tion some kernels for which L2-boundedness does not give the almost
everywhere convergence of principal values.

In this paper we prove some substitutes for (1.1) under the L2-bound-
edness:

1.4. Theorem. Suppose that T ∗ (defined by (1.3)) is bounded in L2(µ),
that is, there exists a constant C0 such that

(1.5)

∫
T ∗(f)2dµ ≤ C0

∫
f 2 dµ
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for f ∈ L2(µ). Then the truncated operators Tε converge weakly in
L2(µ), that is, there exists a bounded linear operator T : L2(µ) → L2(µ)
such that

lim
ε→0

∫
Tε(f)g dµ =

∫
T (f)g dµ

for f, g ∈ L2(µ). Moreover,

T (f)(z) = lim
r→0

1

µ(B(z, r))

∫

B(z,r)

∫

X\B(z,r)

K(x, y)f(y) dµy dµx

for µ almost all z ∈ X.

So even if we don’t know that T (f) would exist as the limit of the
simpler integrals Tε(f), we know that it is almost everywhere the limit
of the more complicated but still concrete integrals of Theorem 1.4.

Observe that with some natural estimates the limit operator T sat-
isfies (1.2). This is so if, for example,∫∫

|K(x, y| d(x, y) dµy dµx < ∞,

as one easily checks. In many cases also the converse in the first part
of Theorem 1.4 is true. Namely, by the Banach-Steinhaus theorem
the weak convergence implies that the truncated operators Tε are uni-
formly bounded and, as said before, often this is equivalent to the
L2-boundedness of T ∗.

We prove Theorem 1.4 in Section 2. We first establish the weak con-
vergence. Then we deduce from it the average converge using Lebesgue
differentiation theorem. We shall also indicate in Section 3 another way
of getting the average convergence via the martingale convergence the-
orem.

In Section 4 we apply Theorem 1.4 to prove the following result on
the existence of principal values for measures with zero density:

1.6. Theorem. Suppose X = Rn or µ is doubling. Let h : (0,∞) →
(0,∞) be an increasing function such that limr→0 h(r) = 0, h(2r) ≤
Ch(r) for r > 0 and that for x, y ∈ X, x 6= y,

(1.7) |K(x, y)| ≤ 1

h(d(x, y))
,

and for z ∈ X, z 6= x with d(x, y) > 2d(y, z),

(1.8) |K(x, y)−K(x, z)| ≤ d(y, z)

d(x, y)h(d(x, y))
.

Suppose also that for all x ∈ X and r > 0,

(1.9) µ(B(x, r)) ≤ h(r)

and for µ almost all x ∈ X,

(1.10) lim
r→0

µ(B(x, r))

h(r)
= 0.
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If T ∗ : L2(µ) → L2(µ) is bounded, then for f ∈ L1(µ) for µ almost all
x ∈ X,

lim
ε→0

Tε(f)(x) = T (f)(x)

where T is the weak limit operator of Theorem 1.4.

Note that originally T (f) was only defined for f ∈ L2(µ), but under
the assumptions of the theorem it has a unique extension to L1(µ)
because we have the weak L1-inequality: for t > 0,

(1.11) µ({x ∈ X : |T ∗(f)(x)| > t}) ≤ C||f ||1/t.
For the doubling measures in metric spaces this was proved in [CW]
and for general measures in Rn in [NTV]. The assumptions on the
kernels in [NTV] are not quite same as above but it is easy to check
that the proofs can be modified.

Rather often the growth condition (1.9) is a consequence of the L2

boundedness of T ∗ (see [D1, p. 56].
For general kernels K as above the assumption (1.10) is necessary as

an example of David, which we discuss at the end of the paper, shows.

2. Proof of Theorem 1.4

Let B be a closed ball in X. We denote by χA the characteristic
function of a set A and by Ac its complement in X. We have for
all ε > 0 (1 denotes the constant function identically 1),∫

Tε(1)χB dµ = −
∫

Tε(χB) dµ = −
∫

Bc

Tε(χB) dµ,

because by antisymmetry ∫

B

Tε(χB) dµ = 0.

Clearly, for all x ∈ Bc there is the limit (since B is closed)

T (χB)(x) := lim
ε→0

Tε(χB)(x).

As |Tε(χB)| ≤ T ∗(χB) ∈ L1(µ), the dominated convergence theorem
yields that

(2.1) lim
ε→0

∫
Tε(1)χB dµ = − lim

ε→0

∫

Bc

Tε(χB) dµ = −
∫

Bc

T (χB) dµ.

Call S the dense subspace of L2(µ) consisting of finite linear combi-
nations of characteristic functions of closed balls. (It is easy to verify
that S is dense since we assumed Vitali’s covering theorem for µ.)
Fix f in L2(µ) and take b in S extremely close to f in L2(µ). Then for
0 < ε < δ,∫

(Tδ(1)−Tε(1))f dµ=

∫
(Tδ(1)−Tε(1))(f−b) dµ+

∫
(Tδ(1)−Tε(1))b dµ.
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By (2.1), the second term goes to 0 as δ → 0. For the first term we
have by the Schwartz inequality and the L2-boundedness (1.5) of T ∗,

∣∣∣∣
∫

(Tδ(1)− Tε(1))(f − b) dµ

∣∣∣∣ ≤ ||Tδ(1)− Tε(1)||2||f − b||2

≤ 2||T ∗(1)||2||f − b||2 ≤ 2(C0µ(X))
1
2 ||f − b||2,

which we can make as small as we want. This gives that the finite limit

lim
ε→0

∫
Tε(1)f dµ

exists for all f ∈ L2(µ).
Let again B be a closed ball and f ∈ L2(µ). Then for ε > 0,

∫
Tε(χB)f dµ =

∫

B

∫

B\B(x,ε)

K(x, y) dµyf(x) dµx

+

∫

Bc

∫

B\B(x,ε)

K(x, y) dµyf(x) dµx.

Applying what we proved above to the measure χBµ we conclude that
the first integral converges as ε → 0. The second integral converges
again by the dominated convergence theorem, since

∣∣∣∣
∫

B\B(x,ε)

K(x, y) dµyf(x)

∣∣∣∣ ≤ T ∗(χB)(x)|f(x)|

and T ∗(χB)f ∈ L1(µ). Then also

lim
ε→0

∫
Tε(b)f dµ

exists for all f ∈ L2(µ), b ∈ S. Arguing as above with the L2-bound-
edness we find that

lim
ε→0

∫
Tε(g)f dµ

exists for all f, g ∈ L2(µ). This yields easily that there exists a bounded
linear operator T : L2(µ) → L2(µ) such that

∫
T (g)f dµ = lim

ε→0

∫
Tε(g)f dµ

for all f, g ∈ L2(µ), and we have established the required weak conver-
gence.
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Let B = B(z, r) be an open ball with µ(B) > 0. Using the antisym-
metry of K we have for all ε > 0,

∫

B

Tε(fχBc) dµ = −
∫

fχBcTε(χB) dµ

= −
∫

fTε(χB) dµ +

∫
fχBTε(χB) dµ

=

∫

B

Tε(f) dµ +

∫

B

(f − fB)Tε(χB) dµ,

where fB = 1
µ(B)

∫
B

f dµ and
∫

B
Tε(χB) dµ = 0. Letting ε → 0, we

obtain for the weak limit operator T ,
∫

B

T (fχBc) dµ =

∫

B

T (f) dµ +

∫

B

(f − fB)T (χB) dµ.

Dividing with µ(B) = µ(B(z, r)) and letting r → 0, we have for µ
almost all z for the first term of the right hand side by the Lebesgue
differentiation theorem,

lim
r→0

1

µ(B(z, r))

∫

B(z,r))

T (f) dµ = T (f)(z),

and for the second term by the Schwartz inequality, L2-boundedness
of T and the Lebesgue differentiation theorem,

lim
r→0

1

µ(B(z, r))

∫

B(z,r)

(f − fB(z,r))T (χB(z,r)) dµ = 0.

On the other hand,

Tε(fχBc)(x) =

∫

Bc\B(x,ε)

K(x, y)f(y) dµy →
∫

Bc

K(x, y)f(y) dµy

as ε → 0 for x ∈ B with |Tε(fχBc)(x)| ≤ |T ∗(fχBc)(x)|, and so by the
dominated convergence theorem,

∫

B

T (fχBc) dµ = lim
ε→0

∫

B

Tε(fχBc) dµ =

∫

B

∫

Bc

K(x, y)f(y) dµy dµx.

Combining the above equations, we obtain

lim
r→0

1

µ(B(z, r))

∫

B(z,r)

∫

B(z,r)c

K(x, y)f(y) dµy dµx = Tf(z)

for µ almost all z ∈ X. This proves the theorem.
For further reference we record for every ball B,

(2.2)

∫

B

T (1) dµ =

∫

B

T (χBc) dµ = −
∫

Bc

T (χB) dµ

which follows as in the above proof.
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3. Martingales

We introduce a general nested system of sets. Standard examples are
dyadic lattices of cubes in Rn. For each k ∈ N = {1, 2, . . . } let Dk be
a countable disjoint partition of X into µ measurable sets D such that
µ(∂D) = 0. Let D = ∪∞k=1Dk. We assume that the system {Dk} is
nested in the sense that every D ∈ Dk+1 is contained in some D′ ∈ Dk.
Then every D′ ∈ Dk is a disjoint union of sets in Dk+1.

Suppose that T ∗ is bounded in L2(µ). Let f ∈ L2(µ) and D ∈ Dk.
As µ(∂D) = 0 we have for µ almost all x ∈ D,

∫

Dc

K(x, y)f(y) dµy = lim
ε→0

∫

Dc\B(x,ε)

K(x, y)f(y) dµy.

Moreover,

∣∣∣∣
∫

Dc\B(x,ε)

K(x, y)f(y) dµy

∣∣∣∣ ≤ T ∗(fχDc)(x) ≤ T ∗(f)(x) + T ∗(fχD)(x).

If also g ∈ L2(µ) we get by the dominated convergence theorem

(3.1)

∫

D

∣∣∣∣
∫

Dc

K(x, y)f(y) dµyg(x)

∣∣∣∣ dµx

≤
∫

D

T ∗(f)|g| dµ +

∫

D

T ∗(fχD)|g| dµ < ∞.

Suppose now in addition that f is non-negative. Then by (3.1) we can
define for k ∈ N,

Skf(z) =

(∫

D

f dµ

)−1 ∫

D

∫

Dc

K(x, y)f(y) dµyf(x) dµx

when z ∈ D ∈ Dk, where we interpret Skf(z) = 0 when z ∈ D ∈ Dk

with
∫

D
f dµ = 0.

Let ν be a finite Borel measure on X such that

ν(B) =

∫

B

f dµ

for Borel sets B ⊂ X. Let Ak be the σ-algebra generated by Dk. We
shall check that (Skf,Ak) is a martingale (with respect ν).
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Let D ∈ Dk and let D1, D2, . . . be the sets in Dk+1 which form the
disjoint partition of D. Then

∫

D

Sk+1f dν =
∑

i

∫

Di

Sk+1f dν

=
∑

i

∫

Di

1

ν(Di)

∫

Di

∫

Dc
i

K(x, y) dνy dνx dν

=
∑

i

∫

Di

∫

Dc
i

K(x, y) dνy dνx

=
∑

i

∫

Di

∑

j:i6=j

∫

Dj

K(x, y) dνy dνx

+
∑

i

∫

Di

∫

Dc

K(x, y) dνy dνx

= 0 +

∫

D

∫

Rn\D
K(x, y) dνy dνx,

where 0 comes from the antisymmetry of K. This gives

1

ν(D)

∫

D

Sk+1f dν = Skf(z) for z ∈ D

and implies that (Skf,Ak) is a martingale.
Now we check that the martingale (Skf,Ak) is L1(ν)-bounded. We

estimate using (3.1), the Schwartz inequality and the L2-boundedness
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of T ∗,

∣∣∣∣
∫

Skf dν

∣∣∣∣=
∣∣∣∣∣
∑

D∈Dk

1

ν(D)

∫

D

∫

Dc

K(x, y) dνy dνx ν(D)

∣∣∣∣∣

=

∣∣∣∣∣
∑

D∈Dk

∫

D

∫

Dc

K(x, y)f(y) dµyf(x) dµx

∣∣∣∣∣

≤
∑

D∈Dk

(∫

D

T ∗(f)f dµ +

∫

D

T ∗(fχD)f dµ

)

≤
∑

D∈Dk

((∫

D

(T ∗(f)2 dµ

)1/2 (∫

D

f 2 dµ

)1/2

+

(∫

D

T ∗(fχD)2 dµ

)1/2 (∫

D

f 2 dµ

)1/2
)

≤
∑

D∈Dk

((∫

D

(T ∗(f)2 dµ

)1/2

+

(
C0

∫

D

f 2 dµ

)1/2
)(∫

D

f 2 dµ

)1/2

≤



( ∑
D∈Dk

∫

D

(T ∗(f)2 dµ

)1/2

+

( ∑
D∈Dk

C0

∫

D

f 2 dµ

)1/2



( ∑
D∈Dk

∫

D

f 2 dµ

)1/2

=

((∫
T ∗(f)2 dµ

)1/2

+

(
(C0

∫
f 2 dµ

)1/2
)(∫

f 2 dµ

)1/2

≤ 2C
1/2
0

∫
f 2 dµ.

This proves the L1-boundedness. Hence by the martingale convergence
theorem (Skf(z)) converges for µ almost all z ∈ X.

Now we assume also that

(3.2) lim
k→∞

sup{diam(D) : D ∈ Dk} = 0.

We define for f ∈ L2(µ), k ∈ N,

Akf(z) =
1

µ(D)

∫

D

∫

Dc

K(x, y)f(y) dµy dµx when z ∈ D ∈ Dk,
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where Akf(z) = 0 if µ(D) = 0. Using the convergence of (Skf(z)) we
shall now verify that for f ∈ L2(µ) there exists the finite limit

(3.3) Tf(z) = lim
k→∞

Akf(z)

for µ almost all z ∈ X. Clearly, we may assume that f is non-negative.
Moreover, since Ak(f) = Ak(f +1)−Ak(1), we may assume that f ≥ 1.
To prove (3.3) for such an f , write fD = 1

µ(D)

∫
D

f dµ for D ∈ Dk with

µ(D) > 0. Then by (3.1), the Schwartz inequality and (1.5) we have
for z ∈ D,

|Skf(z)− Akf(z)|

=

∣∣∣∣∣
(∫

D

f dµ

)−1 ∫

D

∫

Dc

K(x, y)f(y) dµy (f(x)− fD) dµx

∣∣∣∣∣

≤ 1

µ(D)

(∫

D

T ∗(f)|f − fD| dµ +

∫

D

T ∗(fχD)|f − fD| dµ

)

≤ 1

µ(D)

((∫

D

T ∗(f)2 dµ

)1/2

+

(∫

D

T ∗(fχD)2 dµ

)1/2
)(∫

D

(f − fD)2 dµ

)1/2

≤
(

1

µ(D)

(
2

∫

D

(T ∗(f)2 + C0f
2) dµ

)1/2 (
1

µ(D)

∫

D

(f − fD)2 dµ

)1/2
)

.

Here for µ almost all z ∈ X as k → ∞, the first factor goes to
21/2 (T ∗(f)(z)2+C0f(z)2)1/2, and the second goes to 0. Hence Skf(z)−
Akf(z) → 0, which proves (3.3) for non-negative functions f ∈ L2(µ)
and of course then also for all f ∈ L2(µ). Moreover, T : L2(µ) → L2(µ)
is bounded.

To get from this the average convergence with balls one needs to
approximate balls with nested systems. At least in Rn this approxima-
tion procedure can be done with dyadic cubes. The argument is quite
technical and will be omitted.

4. Proof of Theorem 1.6

We shall first make two reductions using the weak type inequal-
ity (1.11). Firstly, we may assume that f = 1. To see this, note that
we may of course assume that f is non-negative. Bounded functions f
such that f > δ for some δ > 0 are dense in the space of non-negative
L1(µ)-functions, whence standard techniques (as for (4.1) below) allow
us to assume that f is such a function. Replacing µ by fµ gives then
the reduction to f = 1.
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Secondly, we may assume the uniform condition

(4.1) µ(B(x, r)) ≤ η(r)h(r) ≤ h(r) for x ∈ X, r > 0,

where η is a non-decreasing function such that η(r) → 0 as r → 0. To
see this, we use Egoroff’s theorem to select closed sets Ek, k = 1, 2, . . . ,
such that µ(X\Ek) < 1/k and µ(B(x, r))/h(r) → 0 as r → 0 uniformly
on Ek. Then using (1.11) we have for all t > 0,

µ({x : lim sup
ε,δ→0

|Tε(1)(x)− Tδ(1)(x)| > t})

= µ({x : lim sup
ε,δ→0

|Tε(1− χEk
)(x)− Tδ(1− χEk

(x)| > t})

≤ µ({x : T ∗(1− χEk
)(x) > t/2})

≤ Cµ(X \ Ek)/t,

provided the limit limε→0 Tε(χEk
)(x) exists for µ almost all x ∈ Ek. (It

exists also for all x ∈ Ec
k since Ek is closed.) That is, if we have the

convergence for the measures χEk
µ, which satisfy (4.1), we have it also

for µ. Then it is easy to check that the limit must be T (1)(x) µ almost
everywhere.

Thus it is enough to prove that limε→0 Tε(1)(a) = T (1)(a) for µ
almost all a ∈ X assuming (4.1). It is enough to consider points a ∈ X
such that

T (1)(a) = lim
ε→0

1

µ(B(a, ε))

∫

B(a,ε)

T (1) dµ.

Let 0 < δ < 1/2 and choose p > 1/δ. Using (2.2) we can write for
ε > 0,

φ(ε) := Tε(1)(a)− 1

µ(B(a, ε))

∫

B(a,ε)

T (1) dµ

=

∫

B(a,pε)\B(a,ε)

K(a, x) dµx

+

∫

B(a,pε)c

K(a, x) dµx +
1

µ(B(a, ε))

∫

B(a,pε)c

T (χB(a,ε)) dµ

+
1

µ(B(a, ε))

∫

B(a,pε)\B(a,ε)

T (χB(a,ε)) dµ

= φ1(ε) + φ2(ε) + φ3(ε),

where

φ1(ε) =

∫

B(a,pε)\B(a,ε)

K(a, x) dµx,

φ2(ε) =

∫

B(a,pε)c

K(a, x) dµx +
1

µ(B(a, ε))

∫

B(a,pε)c

T (χB(a,ε)) dµ
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and

φ3(ε) =
1

µ(B(a, ε))

∫

B(a,pε)\B(a,ε)

T (χB(a,ε)) dµ.

The first term φ1 is easy to estimate:

|φ1(ε)| =
∣∣∣∣
∫

B(a,pε)\B(a,ε)

K(a, x) dµx

∣∣∣∣

≤ µ(B(a, pε))

h(ε)
≤ Cp

µ(B(a, pε))

h(pε)
< δ

by (1.7) and (1.10) for sufficiently small ε. Here and later Cq for q > 1
denotes a constant such that h(qr) ≤ Cqh(r) for r > 0. We estimate
φ2 using (1.8) and (4.1),

|φ2(ε)|

=

∣∣∣∣
∫

B(a,pε)c

K(a, x) dµx +
1

µ(B(a, ε))

∫

B(a,pε)c

T (χB(a,ε)) dµ

∣∣∣∣

=

∣∣∣∣
1

µ(B(a, ε))

∫

B(a,ε)

(∫

B(a,pε)c

K(a, x) dµx−
∫

B(a,pε)c

K(y, x) dµx

)
dµy

∣∣∣∣

≤ 1

µ(B(a, ε))

∫

B(a,ε)

∫

B(a,pε)c

d(a, y)

d(a, x)h(d(a, x))
dµx dµy

≤ ε

∞∑
i=0

µ(B(a, 2i+1pε))

2ipεh(2ipε)
≤

∞∑
i=0

µ(B(a, 2i+1pε))

2ipC−1
2 h(2i+1pε)

≤ 2C2/p < 2C2δ.

To estimate φ3 we first show that at almost every point µ is doubling
at some small scales. Then we only need to treat the case X = Rn.
More precisely, let C > 2C2 be a constant and let F be the set of
those a ∈ Rn for which there exists ε, 0 < ε < 1, such that

µ(B(a, 21−kε)) ≥ Cµ(B(a, 2−kε) for k = 0, 1, . . . .

We also assume that C > 2n+1. We show now that µ(F ) = 0. To prove
this we may assume that the support of µ is bounded, say spt µ ⊂
B(0, R). For a ∈ F let ε = ε(a) be as above. Fix a big positive
integer m and pick for each a ∈ F an integer k(a) ≥ m such that for
k ≥ k(a),

C−k ≤ (2−kε(a))n+1.

By Vitali’s covering theorem we can find disjoint balls B(ai, 2
−kiεi) ⊂

B(0, R) with εi = ε(ai) and ki ≥ k(ai) which cover µ almost all of F .
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Then

µ(F ) ≤
∑

i

µ(B(ai, 2
−kiεi)) ≤

∑
i

C−kiµ(B(a, εi))

≤
∑

i

(2−kiεi)
n+1µ(Rn) ≤ Rn2−mµ(Rn).

Letting m →∞ we get µ(F ) = 0.
Let now a ∈ F c and 0 < ε < 1. Then there is k = 0, 1, . . . , such that

µ(B(a, 21−kε)) ≤ Cµ(B(a, 2−kε))

and

µ(B(a, 21−jε)) ≥ Cµ(B(a, 2−jε) for j = 0, . . . , k − 1,

whence

µ(B(a, 2−jε)) ≤ C−jµ(B(a, ε) for j = 0, . . . , k − 1.

Let ε1 = 2−kε. Then µ(B(a, 2ε1)) ≤ Cµ(B(a, ε1)) and, since C > 2C2,
we get

|Tε(1)(a)− Tε1(1)(a)| ≤
k∑

j=1

|T21−jε(1)(a)− T2−jε(1)(a)|

≤
k∑

j=1

∫

B(a,21−jε)\B(a,2−jε)

|K(a, x)| dµx

≤
k∑

j=1

µ(B(a, 21−jε))

h(2−jε)

≤
k∑

j=1

C1−jµ(B(a, ε))

C−j
2 h(ε)

≤ C η(ε)
k∑

j=1

2−j ≤ C η(ε) < δ

when ε is small enough. Consequently,

|φ(ε)− φ(ε1)| ≤ |Tε(1)(a)− Tε1(1)(a)|

+

∣∣∣∣
1

µ(B(a, ε))

∫

B(a,ε)

T (1) dµ− 1

µ(B(a, ε1))

∫

B(a,ε1)

T (1) dµ

∣∣∣∣ < δ
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when ε is small enough. Now we estimate the average of |φ3(t)| over
[ε1, 2ε1] by

1

ε1

∫ 2ε1

ε1

|φ3(t)| dt

≤ 1

ε1

∫ 2ε1

ε1

1

µ(B(a, t))

∫

B(a,pt)\B(a,t)

∫

B(a,t)

|K(x, y)| dµx dµy dt

=
1

ε1

∫∫∫

A

1

µ(B(a, t))
|K(x, y)| dµx dµy dt

where

A = {(x, y, t) : d(x, a) < t ≤ d(y, a) < pt, ε1 ≤ t ≤ 2ε1}
⊂ {(x, y, t) : d(x, a) < 2ε1, d(y, a) < 2pε1, d(x, a) < t ≤ d(y, a)}.

Thus by Fubini’s theorem, (1.7) and (4.1),

1

ε1

∫ 2ε1

ε1

|φ3(t)| dt

≤ 1

ε1µ(B(a, ε1))

∫

B(a,2pε1)

∫

B(a,2ε1)

|K(x, y)|
∫ d(y,a)

d(x,a)

dt dµx dµy

=
1

ε1µ(B(a, ε1))

∫

B(a,2ε1)

∫

B(a,2pε1)

|K(x, y)|(d(y, a)− d(x, a)) dµy dµx

≤ 1

ε1µ(B(a, ε1))

∫

B(a,2ε1)

∫

B(x,2(p+1)ε1)

|K(x, y)| d(x, y) dµy dµx

≤ 1

ε1µ(B(a, ε1))

∫

B(a,2ε1)

∞∑
i=0

∫

B(x,21−i(p+1)ε1)\B(x,2−i(p+1)ε1)

|K(x, y)| d(x, y) dµy dµx

≤ 1

ε1µ(B(a, ε1))

∫

B(a,2ε1)

∞∑
i=0

21−i(p + 1)ε1µ(B(x, 21−i(p + 1)ε1))

h(2−i(p + 1)ε1)
dµx

≤ 1

ε1µ(B(a, ε1))

∞∑
i=0

21−i(p+1)ε1η(21−i(p+1)ε1)h(21−i(p+1)ε1))

h(2−i(p + 1)ε1)
µ(B(a, 2ε1))

≤ 4C2(p + 1)η(2(p + 1)ε1))µ(B(a, 2ε1))

µ(B(a, ε1))
≤ 4CC2(p + 1)η(2(p + 1)ε) < δ.

when ε is small enough. So there is ε2, ε1 ≤ ε2 ≤ 2ε1, such that
|φ3(ε2)| < δ. Then |φ(ε1)− φ(ε2)| < δ as above and so

|φ(ε)| ≤ |φ(ε)− φ(ε1)|+ |φ(ε1)− φ(ε2)|+ |φ(ε2)|
< 2δ + |φ1(ε2)|+ |φ2(ε2)|+ |φ3(ε2)| < (4 + 2C2)δ.

This completes the proof of Theorem 1.6.
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5. Remarks on rectifiability

One motivation for the developments in this paper was to find some
new insight to the following problem:

Let m be an integer, 0 < m < n, and let µ be an m-dimensional
Ahlfors-David-regular Borel measure on Rn, as in Section 1. For i =
1, 2, . . . , n let T ∗

i be the maximal operator related to µ and the kernel
|x− y|−m−1(xi − yi). Suppose that each T ∗

i is bounded in L2(µ). Does
µ have to be rectifiable, or even uniformly rectifiable in the sense of
David and Semmes?

By the rectifiability of µ we mean that there are m-dimensional
C1-surfaces M1,M2, . . . such that µ(Rn \ ∪iMi) = 0. For the defi-
nitions of uniform rectifiability, see [DS].

If m = 1, the answer to the above question is yes by [MMV], and
the regularity assumptions on µ can be considerably relaxed, see [T2].
The problem is open for m ≥ 2.

It was shown in [MPr], see also [M], that the rectifiability of an
Ahlfors-David-regular measure µ follows from the existence of the prin-
cipal values

lim
ε→0

∫

Rn\B(x,ε)

|x− y|−m−1(xi − yi) dµy, i = 1, . . . , n,

for µ almost all x ∈ Rn. But it is not known if the L2-boundedness
implies the above almost everywhere convergence. Thus Theorem 1.4
is a kind of replacement for this. Unfortunately we don’t know if the
almost everywhere convergence of the averages of Theorem 1.4 implies
rectifiablity, nor do we know if it implies the almost everywhere exis-
tence of the principal values in this particular case.

These questions are also related to geometric properties of removable
sets of bounded analytic functions in C, see [MMV], [P] and [T3], and
of Lipschitz harmonic functions in Rn, see [MP].

The L2-boundedness does not always imply the almost everywhere
existence of principal values in the setting of Theorem 1.4. This can be
seen by considering a standard example of a purely unrectifiable 1-di-
mensional Ahlfors-David-regular set in the plane which is the Cantor
set obtained by starting with the unit square, taking four squares of
side-length 1/4 inside it in its corners, then taking the squares of side-
length 1/16 in the corners of these, and so on. The final Cantor set C
is the compact set inside all these squares of all generations. In [D2]
David constructed a 1-dimensional odd Calderón-Zygmund kernel K
such that the operator T ∗ related to K is bounded in L2(µ) where µ is
the natural (1-dimensional Hausdorff) measure on C. However, it is
easy to check that the principal values

lim
ε→0

∫

B(x,ε)c

K(x− y) dµy



16 PERTTI MATTILA AND JOAN VERDERA

fail to exist at µ almost all points x ∈ R2.
In [H2] Huovinen considered homogeneous kernels such as

K(z) = Re(z/|z|2 − z3/|z|4)
for z ∈ C. He showed that there exist purely unrectifiable 1-dimensional
Ahlfors-David-regular sets on which for such a kernel the principal val-
ues exist almost everywhere and the related operator is bounded in L2

on some subset of positive measure. On the other hand, he showed
in [H1] that for the kernels z2k−1/|z|2k, k = 1, 2, . . . , and their linear
combinations the almost everywhere convergence of principal values on
1-dimensional AD-regular sets implies their rectifiability.
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