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Abstract. We improve the existing results of the long time asymptotical be-
haviour of some basic semilinear diffusion equations (with space variable in the
whole space R). Our method is elementary: it is based on explicit calculations,
weighted sup–norm estimates and a fixed point argument.

1. Main result.

We consider in this paper the classical semilinear diffusion equation

∂tu = ∂2
xu + N (u)(1)

and the associated Cauchy problem with small, integrable initial data. Here N is
a nonlinear function D := {z ∈ C | |z| ≤ 1} → C to be specified later, or more
generally, a nonlinear operator. The unknown function u is defined on R× [0,∞[=:
R×R+ and may be complex valued, and we denote the variables by (x, t) ∈ R×R+

and ∂x := ∂/∂x and ∂t := ∂/∂t.
In [1] the authors proved, among other things, that for N (u) := up, p = 4, 5, . . .

the solution u has the form u = et∂2
xf + v for some integrable f : R → C, where

‖v(·, t)‖∞ := sup
x∈R

|v(x, t)| ≤ Cε

t1−ε
,(2)

ε > 0 arbitrary. In other words, the solution to the nonlinear Cauchy problem
behaves asymptotically like the solution of the corresponding linear problem (of
order 1/

√
t in the sup–norm for large t), with a correction of order 1/t in the sup–

norm.
Similar results were obtained recently by Zhao, [7], Theorem 1.10, for N (u) =

O(1)|u|p, for non–integer p, but only in the case p > 5.
In this paper we prove the result e.g. for N (u) := αup|u|q, for all constants α ∈ R,

p ∈ N, q ≥ 0 with p + q ≥ 4, which is a considerable improvement. Moreover,
our method of proof is quite elementary: it is based on explicit calculations and
weighted norm estimates in suitable Banach spaces. Also the representation of the
leading term is most concrete in our work: it is explicitely the Gaussian function
ϕ(x, t) := (t + 1)−1/2e−

1
4
x2/(t+1).

On the other hand the renormalization group method used in [1] seems to provide
a shorter proof (for the more restricted case).

The nonlinear term can actually be more general in [1] and [7], and also in our
paper. We refer to the cited papers and Section 3 for details.

We refer to [2], [5], [6] and [8] for the literature concerning (1). We just recall
that a time–global solution is known to exist for small initial data, for N (u) := |u|p,
if p > 3. If p ≤ 3, the solution blows up in finite time for general small data. See
the classical paper [3], and also [4].
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We now formulate the main result. The proof is postponed to Section 4. Assume
that the bounded, measurable function f : R → C satisfies

sup
x∈R

|f(x)|(1 + |x|)m+2+ρ ≤ C,(3)

where m > 2 and ρ > 0 can be fixed arbitrarily according to the wishes of the reader,
and the small enough C = CN > 0 is fixed later. Let the function N : D → C (or
more generally, the operator N ) be as in Section 2. (For example, N (u) := αup|u|q,
where α ∈ R, p ∈ N, q ≥ 0 with p + q ≥ 4; for this and other examples, see Section
3.)

Theorem 1. The Cauchy problem

∂tu = ∂2
xu + N (u) on R × R

+(4)

u(x, 0) = f(x) for all x ∈ R,(5)

has a unique classical solution u : R × R+ → C, which satisfies for some A ∈ C

u =
A√
t + 1

e−
1
4
x2/(t+1) + v with ‖v(·, t)‖∞ ≤ C

t + 1
.(6)

Notations. We denote by Cw(R × R
+) the Banach space of continuous functions

u : R × R+ → C with a finite norm

|||u||| := sup
(x,t)∈R×R+

(

1 +
|x|√
t + 1

)m

|u(x, t)|,(7)

where m > 2 is fixed as above. We also denote CW (R × R
+) the subspace of

Cw(R × R+) consisting of functions with finite norm

‖v‖ := sup
(x,t)∈R×R+

(

1 +
|x|√
t + 1

)m

(t + 1)|v(x, t)|,(8)

Given a fixed t ∈ R+, we also denote (with some abuse of notation) ‖u(·, t)‖t :=
‖u‖t := supx∈R

(1 + |x|/
√

t + 1)m|u(x, t)|.
We shall assume |||u||| ≤ 1 in the following, hence the expression N (u) in (4) is

well defined.
We define ϕ(x, t) := (t + 1)−1/2e−

1
4
x2/(t+1). By C, c, C ′ (respectively, cj) etc. we

denote strictly positive constants (resp., constant depending on j) which may vary
from place to place but not in the same inequality.

Acknowledgements. The author wishes to thank Ville Ramula (University of
Joensuu) for some remarks. The research was supported in part by the Academy of
Finland project “Functional analysis and applications”.

2. The nonlinear term.

We now present the assumption on N in Theorem 1. We first give a general form,
and then consider some concrete examples in the next section.

So, in Theorem 1 we assume that the nonlinear operator N : Cw(R × R+) ∩
{|||u||| ≤ 1} → Cw(R × R+) satisfies the following: For some α ∈ C, for some
p ∈ {0, 1, 2, . . .} =: N and q ≥ 0 with p + q ≥ 4, for some 0 < C ≤ 1/2, for every
A ∈ C, |A| < C, for every function v ∈ CW (R × R+) with ‖v‖ ≤ C, we have

N (Aϕ + v) = αAp|A|qϕp+q + MA,v.(9)
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Here MA,v ∈ CW (R × R+), and we assume it satisfies the Lipschitz type condition

sup
x∈R

(

1 +
|x|√
t + 1

)2m

|MA1,v1(x, t) −MA2,v2(x, t)|

≤ C

(t + 1)5/2
(|A1 − A2| + ‖v1 − v2‖)(|A1| + |A2| + ‖v1‖ + ‖v2‖)

= :
C

(t + 1)5/2
L(A1, A2, v1, v2) for all t,(10)

for every Aj and vj, j = 1, 2 (as A and v above).
So the idea is that the term αAp|A|qϕp+q contains the largest stuff for large t; for

example in the case p + q = 4 it is of order (t + 1)−2. The point is to obtain the
bound (t + 1)−5/2 for large t for the remainder term, see (10).

More generally, N may also be a finite sum of such operators, i.e.

N (Aϕ + v) =
n

∑

k=1

αkA
pk|A|qkϕpk+qk + MA,v,(11)

with αk and (pk, qk) as α and (p, q) above, and MA,v as in (10); we thus have

Lemma 1. The acceptable nonlinear terms form a linear space.

3. Examples of the nonlinear term.

Example 1. The function N (u) := up, where p ∈ N, p ≥ 4, satisfies the requirements
of Section 2.

For example, if p = 4, we have the representation (9) with q = 0 and α = 1, since

(Aϕ + v)4 = (Aϕ)4 +
4

∑

j=1

cjv
j(Aϕ)4−j =: (Aϕ)4 + MA,v.(12)

Given (A1, v1) and (A2, v2), let us for example show that the term c1v1(A1ϕ)3 −
c1v2(A2ϕ)3 of MA1,v1 −MA2,v2 satisfies the bound required in (10). Indeed,

|v1(A1ϕ)3 − v2(A2ϕ)3|
= |((A1ϕ)3 − (A2ϕ)3)v1 + (A2ϕ)3(v1 − v2)|
≤ |A1 − A2|max(|A1|2, |A2|2)ϕ3|v1| + |A2|3ϕ3|v1 − v2|,

and here |ϕ(x, t)| ≤ C(t + 1)−1/2(1 + |x|/
√

t + 1)−m and |vj(x, t)| ≤ C(t + 1)−1(1 +
|x|/

√
t + 1)−m‖vj‖ and |v1(x, t)− v2(x, t)| ≤ C(t + 1)−1(1 + |x|/

√
t + 1)−m‖v1 − v2‖

imply the requirement of (10).
The following important example shows that N does not need to be an analytic

function of u, as in [1].

Example 2. The function N (u) := up|u|q, where p + q ≥ 4, p ∈ N, also satisfies the
assumptions of Section 2.

Proof . Let A and v be given. We first derive two representations for MA,v.
If (x, t) is such that

|A|ϕ(x, t) ≥ 10|v(x, t)|,(13)

we write (omitting the variables for notational simplicity)

up|u|q = (Aϕ + v)p|Aϕ + v|q =:
(

(Aϕ)p + M′
)

|Aϕ + v|q.(14)
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Moreover, using the Taylor series of (1 + z)q/2 for small z,

|Aϕ + v|q = (|A|ϕ)q
∣

∣

∣
1 +

v

Aϕ

∣

∣

∣

q

= (|A|ϕ)q
(

1 + 2Rev/(|A|ϕ) + (Rev/|A|ϕ)2 + (Imv/(|A|ϕ))2
)q/2

= (|A|ϕ)q + (|A|ϕ)q
∞

∑

n=1

cnTn,A,v,(15)

where |cn| ≤ 1 for all n and

Tn,A,v :=
(

2
Rev

|A|ϕ +
( Rev

|A|ϕ
)2

+
( Imv

|A|ϕ
)2)n

.(16)

Hence, (14) equals

Ap|A|qϕp+q +

∞
∑

n=1

cnAp|A|qϕp+qTn,A,v + M′|A|qϕq + M′|A|qϕq

∞
∑

n=1

cnTn,A,v

= : Ap|A|qϕp+q + MA,v.(17)

On the other hand, if (x, t) satisfies 0 < |A|ϕ(x, t) ≤ 10|v(x, t)|, we directly write
N (Aϕ) = Ap|A|qϕp+q + MA,v, where

MA,v := −Ap|A|qϕp+q + (Aϕ + v)p|Aϕ + v|q.(18)

In the rest of the proof we are given two pairs (A1, v1) and (A2, v2), and our aim
is to show that for all x and t

|MA1,v1(x, t) −MA2,v2(x, t)| =: |M1(x, t) −M2(x, t)|

≤ C

(t + 1)5/2

(

1 +
|x|√
t + 1

)−2m

L(A1, A2, v1, v2),(19)

which implies (10); we distinguish between three cases.
1◦. Given (x, t) such that both pairs (A1, v1) and (A2, v2) satisfy (13), we use the

representation (17). The proof of (19) is in this case lengthy, but straightforward,
and we omit some details. Let us consider only as an example some terms of |M1 −
M2|, like

∣

∣

∣
Ap

1|A1|qϕp+qTn,A1,v1 − Ap
2|A2|qϕp+qTn,A2,v2

∣

∣

∣
.(20)

If |A1 − A2| ≥ 10|A1|, then |A2| ≥ 9|A1| by the triangle inequality, and hence also
|A1 − A2| ≥ |A2| − |A1| ≥ |A2| − |A2|/9 ≥ |A2|/2. In this case we thus have (see
(10) )

L(A1, A2, v1, v2) ≥ C|A2|2.(21)

On the other hand, the first term in (20) has the bound

C|A1|p+qϕp+q(x, t)
( |v1(x, t)|
|A1|ϕ(x, t)

)n

= C|A1|p+q−1ϕp+q−1(x, t)|v1(x, t)|
( |v1(x, t)|
|A1|ϕ(x, t)

)n−1

≤ C ′|A1|p+q−1ϕp+q−1(x, t)|v1(x, t)|

≤ C ′′|A1|2
(t + 1)5/2

(

1 +
|x|√
t + 1

)−2m

≤ C ′′|A2|2
(t + 1)5/2

(

1 +
|x|√
t + 1

)−2m

,(22)
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and the second term of (20) satisfies the same bound. This, in view of (21), implies
(19). In the same way one treats the case |A1 − A2| ≥ 10|A2|. So we are left with
the case |A1 − A2| ≤ 10 min(|A1|, |A2|), which implies

C−1|A1| ≤ |A2| ≤ C|A1|.(23)

Then

∣

∣

∣
Ap

1|A1|qϕp+qTn,A1,v1 − Ap
2|A2|qϕp+qTn,A2,v2

∣

∣

∣

≤ C|A1 − A2|max(|A1|, |A2|)p−1(max |A1|, |A2|)qϕp+q

· max(|Tn,A1,v1|, |Tn,A2,v2|)
+ C|A1 − A2|max(|A1|, |A2|)p(max |A1|, |A2|)q−1ϕp+q

· max(|Tn,A1,v1|, |Tn,A2,v2|)
+ C max(|A1|, |A2|)p(max |A1|, |A2|)qϕp+q|Tn,A1,v1 − Tn,A2,v2 |
≤ C ′|A1 − A2||A1|p+q−1ϕp+q max(|Tn,A1,v1|, |Tn,A2,v2|)
+ C ′|A1|p+qϕp+q|Tn,A1,v1 − Tn,A2,v2|(24)

Consider here for example the second but last line. The factor |Tn,A1,v1(x, t)| has the
bound Cn(|v1(x, t)||A1|−1ϕ(x, t)−1)n. Hence,

|A1ϕ
p+q(x, t)|Tn,A1,v1(x, t)

≤ cn|ϕp+q−1(x, t)||v1(x, t)|
( |v1(x, t)|
|A1|ϕ(x, t)

)n−1

≤ c′n|ϕp+q−1(x, t)||v1(x, t)|

≤ c′′n(t + 1)−5/2
(

1 +
|x|√
t + 1

)−2m

,(25)

applying the definition of the norm for v1, see (8). Because of (23), the same bound
holds for Tn,A2,v2 replacing Tn,A1,v1 . As a conclusion, this line of (24) satisfies (19).

For the last line of (24) one needs to derive the estimate

|Tn,A1,v1(x, t) − Tn,A2,v2(x, t)|

≤ C|A1 − A2|
|A1|

max

(

( |v1(x, t)|
|A1|ϕ(x, t)

)n

,
( |v2(x, t)|
|A2|ϕ(x, t)

)n
)

+
C

t + 1
‖v1 − v2‖

(

1 +
|x|√
t + 1

)−m

· max

( |v1(x, t)|n−1

(|A1|ϕ(x, t))n
,
|v2(x, t)|n−1

(|A2|ϕ(x, t))n

)

(26)

which is a consequence of the mean value theorem and the definition of the norm.
Together with (21) this suffices to imply (19), see also (25).
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2◦. If none of the pairs (Aj, vj) satisfies (13) at the point (x, t), we use (18).
Consider for example the latter term in (18):

∣

∣

∣
(A1ϕ + v1)

p|A1ϕ + v1|q − (A2ϕ + v2)
p|A2ϕ + v2|q

∣

∣

∣

≤ |A1ϕ + v1 − (A2ϕ + v2)|
· max((A1ϕ + v1)

p−1|A1ϕ + v1|q, (A2ϕ + v2)
p−1|A2ϕ + v2|q)

+ |A1ϕ + v1 − (A2ϕ + v2)|
· max((A1ϕ + v1)

p|A1ϕ + v1|q−1, (A2ϕ + v2)
p|A2ϕ + v2|q−1).(27)

Here we use

|A1ϕ + v1 − (A2ϕ + v2)| ≤ CL(A1, A2, v1, v2),(28)

and (by the negation of (13) )

|Ajϕ(x, t) + vj(x, t)| ≤ C|vj(x, t)| ≤ C ′‖vj‖
t + 1

(

1 +
|x|√
t + 1

)−m

.(29)

Hence, (19) follows.
3◦. Thus suppose for example that (A1, v1) satisfies (13), but (A2, v2) not. If

moreover |A1| ≤ 2|A2|, we have the bound |A1ϕ(x, t)| ≤ 2|A2ϕ(x, t)| ≤ 2|v2(x, t)|.
Hence (18) can be used for both (A1, v1) and (A2, v2) as in 2◦, to prove (19).

We are thus left with the final case |A1| ≥ 2|A2|. This implies |A1−A2| ≥ |A1|/2.
Moreover, by the definition of the norm and (13), |A1| ≥ C|A1ϕ| ≥ C|v1|. This also
implies

|A1| + |v1 − v2| ≥ C(|A1| + |v2|).(30)

(If |v1 − v2| ≤ |v2|/10, then |v1| ≥ |v2|/2. As a consequence, the right hand side of
(30) is majorized by a constant times |A1|. Hence, (30) must hold.) Summarizing,
we get

L(A1, A2, v1, v2) ≥ (|A1| + |A2| + |v1| + |v2|)(|A1 − A2| + |v1 − v2|)
≥ C(|A1| + |A2| + |v1| + |v2|)(A1 + |v1 − v2|)
≥ C ′(|A1| + |A2| + |v1| + |v2|)2.(31)

On the other hand, the method of the proof of 1◦ implies the estimate

|M1(x, t)|

≤ C

(t + 1)5/2

(

1 +
|x|√
t + 1

)−2m

(|A1| + |A2| + |v1(x, t)| + |v2(x, t)|)2,(32)

and 2◦ implies the same estimate for |M2(x, t)|. Combining this, (32) and (31)
implies (19). �

Example 3.

(i) Functions like

N (u) :=
up|u|q

1 + |u|r(33)

would also be acceptable, with p and q as in Example 2 and r ≥ 0. Apply 1/(1−z) =
∑∞

n=0 zn and the method above.
(ii) Also functions like N (u) := sin(up|u|q), with p and q as in Example 2, would

satisfy the assumptions. Here the sinus could be replaced by any analytic function
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g of one complex variable which satisfies, say, g(0) = 0 and g([−1, 1]) ⊂ R. Use the
Taylor series to verify this.

(iii) One could add to any of the examples above a nonlinear operator of the form

u 7→ 1

(t + 1)3/2
B(u, u)(34)

where B : Cw(R × R+) → Cw(R × R+) is, say, any bounded bilinear operator such
that

sup
x

(

1 +
|x|√
t + 1

)−2m

|B(u1, u2)(x, t)| ≤ C‖u1‖t‖u2‖t(35)

for uj ∈ Cw(R × R+). A term like that would satisfy (10), since ( writing uj :=
Ajϕ + vj )

sup
x

(

1 +
|x|√
t + 1

)−2m 1

(t + 1)3/2
|B(u1, u1)(x, t) − B(u2, u2)(x, t)|

≤ sup
x

(

1 +
|x|√
t + 1

)−2m 1

(t + 1)3/2
|B(u1 − u2, u1)(x, t) − B(u2, u2 − u1)(x, t)|

≤ C

(t + 1)3/2
‖A1ϕ − v1 − A2ϕ + v2‖t‖u2‖t + . . .

≤ C

(t + 1)3/2

(

|A1 − A2|‖ϕ‖t + ‖v1 − v2‖t

)

‖u2‖t + . . .

≤ C ′

(t + 1)3/2

( |A1 − A2|√
t + 1

+
‖v1 − v2‖

t + 1

)

· 1√
t + 1

+ . . .

≤ C ′′

(t + 1)5/2
L(A1, A2, v1, v2).(36)

It is easy to find analogous examples for higher order multilinear operators.

4. Proofs.

In this section we prove Theorem 1. A function u ∈ Cw(R × R
+) is a solution of

(4)–(5) if it satisfies the integral equation

u(x, t) = et∂2
xf(x) +

t
∫

0

e(t−s)∂2
xN (u)(·, s)ds.(37)

By standard methods one shows that a solution u ∈ Cw(R × R+) to (37) is enough
many times differentiable to be a classical solution to (4)–(5). We write u as

u(x, t) =: Aϕ(x, t) + v(x, t) :=
A√
t + 1

e−
1
4
x2/(t+1) + v(x, t),(38)

where the constant A ∈ R is chosen in Lemma 2 and Lemma 3. Our proof is based
on the fact that a proper choice of A leads to the cancellation of the terms of order
t−1/2 in (37), i.e. the sup–norm of v decays as t−1 for large t. This is proven in the
following lemma, see also (53).
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Lemma 2. Let the initial data f be given as in (3), and let N be as in (11). Denote

A0 :=

∞
∫

−∞

f(x)dx
(

∞
∫

−∞

e−
1
4
x2

dx
)−1

and g := f − A0e
− 1

4
x2

.(39)

The function u = Aϕ+v satisfies the integral equation (37) if the pair (A, v) satisfies
the equations (with some fixed numbers dk depending on pk and qk only)

A = A0 +
∑

k

dkαkA
pk |A|qk +

∞
∫

0

∞
∫

−∞

MA,v(y, s)dyds,(40)

v(x, t) = et∂2
xg(x) +

t
∫

0

e(t−s)∂2
xMA,v(·, s)ds + RA,v(x, t)

− ϕ(x, t)

∞
∫

0

∞
∫

−∞

MA,v(y, s)dyds.(41)

Here MA,v := M := N (u)−∑

k

αkA
pk |A|qkϕbk ∈ CW (R×R+) with bk := pk +qk ≥

4, and the function RA,v ∈ CW (R × R+) satisfies

‖RA1,v1 −RA2,v2‖ ≤ CL(A1, A2, v1, v2)(42)

for arbitrary (A1, v1) and (A2, v2).

Explanation. We later want to show that (41) has a solution v which belongs to
CW (R×R+), so it is of order (t+1)−1 for large t. (That is essentially the main result
of our paper.) On the right hand side (41) the first and third terms are readily of
order (t + 1)−1, but the second term is only of order (t + 1)−1/2. Fortunately, this
large part of the second term is explicit, i.e. exactly the negative of the fourth term
in (41). So these terms will cancel out, and v becomes of order (t + 1)−1.

Proof . We need to show that if (A, v) satisfies (40) and (41), then Aϕ + v =

et∂2
x(A0e

− 1
4
x2

+ g) +
∫ t

0
e(t−s)∂2

xN (Aϕ + v)(·, s)ds. Taking into account (39)–(41) this
is reduced to proving

t
∫

0

e(t−s)∂2
xN (Aϕ + v)(·, s)ds

=
∑

k

dkαkA
pk |A|qkϕ +

t
∫

0

e(t−s)∂2
xM(·, s)ds + RA,v.(43)

But we have N (u) = M +
∑

k

αkA
pk |A|qkϕbk with bk = pk + qk, hence, it remains to

show

Apk |A|qk

t
∫

0

e(t−s)∂2
xϕbkds = dkA

pk |A|qkϕ + Rk(44)

for all k, for some Rk ∈ CW (R×R+) with the property (42) (and with a proper dk).
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We have the general formula
∫ ∞

−∞
e−a(x−y)2−by2

dy =

∫ ∞

−∞
e
−ax2+ a2

a+b
x2−( a

√

a+b
x−

√
a+by)2

dy

=

√
π√

a + b
e−abx2/(a+b),(45)

hence, the expression e(t−s)∂2
xϕbk(·, s) equals

1√
4π

1√
t − s

∞
∫

−∞

e−
1
4
(x−y)2/(t−s)

( 1√
s + 1

e−
1
4
y2/(s+1)

)bk

dy

=
1√

t − s

1

(s + 1)bk/2

1
√

(t − s)−1 + bk(s + 1)−1
e−

1
4
x2/(t−γ(s))

= (s + 1)−bk/2+1/2 1
√

bk(t + 1) − (bk − 1)(s + 1)
e−

1
4
x2/(t−γ(s)),(46)

where γ(s) = s − s/bk − 1/bk. We can write (46) as

(s + 1)−bk/2+1/2 1√
bk

1√
t + 1

1
√

1 − bk−1
bk

s+1
t+1

e−
1
4
x2/(t−γ(s))

=
∞

∑

n=0

cn
(s + 1)−bk/2+1/2+n

(t + 1)n+1/2
e−

1
4
x2/(t−γ(s))(47)

with c0 = b
−1/2
k . We perform the integration

∫

ds of (47) by parts and obtain

[

∞
∑

n=0

c′n
(s + 1)n+3/2−bk/2

(t + 1)n+1/2
e−

1
4
x2/(t−γ(s))

]t

s=0

+

t
∫

0

∞
∑

n=0

c′′n
(s + 1)n+3/2−bk/2

(t + 1)n+1/2

x2

(t − γ(s))2
e−

1
4
x2/(t−γ(s))ds.(48)

The number dk is chosen to be c′0. Except for the term with n = 0 and
]

s=0
, the sum

of the other terms of the first line is bounded by C(t+1)−1e−cx2/(t+1) (notice bk ≥ 4).
The second line of (48) also satisfies this bound, since we can use the estimate

∣

∣

∣

x2

(t − γ(s))2
e−

1
4
x2/(t−γ(s))

∣

∣

∣
≤ C

t − γ(s)
e−cx2/(t−γ(s))

and since γ(s) ≤ ct for a c, 0 < c < 1. Multiplied by Apk |A|qk, all of these terms
fall into Rk in (44). (It may happen that −bk/2 + 1/2 + n = −1 for some n, and
then the above reasoning cannot be used. But this is only possible if bk = 5, 7, 9 . . .,
which is so large a number that the corresponding term in (47) is easily seen to fall
into Rk.)

So we are left with

dk
1√

t + 1
e−

1
4
x2/(t−γ(0)).(49)

But using standard Taylor series developements this can also be written as dk times
(t + 1)−1/2e−

1
4
x2/(t+1) = ϕ(x, t) plus an expression bounded by C(t + 1)−1e−cx2/(t+1):
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we have
∣

∣

∣
e−

1
4
x2/(t+1) − e−

1
4
x2/(t−γ(0))

∣

∣

∣

= e−
1
4
x2/(t+1)

∣

∣

∣
1 − e−

1
4
(1+γ(0))x2(t+1)−1(t−γ(0))−1

∣

∣

∣

≤ Ce−
1
4
x2/(t+1)

∞
∑

m=1

1

m!

( C(1 + γ(0))x2

(t + 1)(t − γ(0))

)m

≤ C ′e−
1
4
x2/(t+1)

∞
∑

m=1

1

m!

( C ′x2

(t + 1)2

)m

≤ C ′′

t + 1
e−cx2/(t+1). �(50)

Our main result naturally follows from

Lemma 3. The equation system (40)–(41) has a unique solution (A, v), if ‖f‖0 is
small enough.

To prove Lemma 3 we shall need

Lemma 4. We have for every n > 2 and 1 > ε > 0
∞

∫

−∞

e−
1
4
(x−y)2/(t−s)(1 + |y|/

√
s + 1)−ndy

≤ C(n, ε)
√

s + 1
(

1 +
|x|√
t + 1

)−n+1+ε

.(51)

Proof . The integral can be estimated by
∞

∫

−∞

e−
1
4
(x−y)2/(t−s)(1 + |y|/

√
s + 1)−n+1+ε(1 + |y|/

√
s + 1)−1−εdy

≤ sup
y∈R

e−
1
4
(x−y)2/(t−s)(1 + |y|/

√
s + 1)−n+1+ε ·

∞
∫

−∞

(1 + |y|/
√

s + 1)−1−εdy

≤ C(n, ε)
(

1 +
|x|√
t + 1

)−n+1+ε√
s + 1. �(52)

Proof of Lemma 3. It is convenient to define

B :=
{

(A, v)
∣

∣

∣
A ∈ R , |A| ≤ B1 ,

v ∈ CW (R × R
+) , ‖v‖ ≤ B2

}

,(53)

where the small enough positive numbers B1 and B2 are fixed later. We want to
show that the integral equation (40)–(41) has a unique solution in the complete
metric space B ⊂ R×CW (R×R+), by applying the contraction mapping principle.

1◦. We first assume that (A1, v1) and (A2, v2) ∈ B, and consider the right hand
sides of (41) for them, call these ṽ1 and ṽ2. We show that ṽ1 and ṽ2 are elements of
CW (R × R+) such that

‖ṽ1 − ṽ2‖ ≤ CL(A1, A2, v1, v2).(54)
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From (10) we have

|M1(y, s) −M2(y, s)| ≤ CL(A1, A2, v1, v2)(s + 1)−5/2
(

1 +
|y|√
s + 1

)−2m

.(55)

We define

∞
∫

y

MA,v(z, s)dz =: FA,v(y, s) for y ≥ 0(56)

and

y
∫

−∞

MA,v(z, s)dz =: GA,v(y, s) for y ≤ 0;(57)

hence, from (55) we obtain estimates for Fj := FAj ,vj
and Gj := GAj ,vj

, j = 1, 2:

|F1(y, s) − F2(y, s)|

≤ CL(A1, A2, v1, v2)(s + 1)−2
(

1 +
|y|√
s + 1

)−2m+1

for y ≥ 0 and

|G1(y, s) − G2(y, s)|

≤ CL(A1, A2, v1, v2)(s + 1)−2
(

1 +
|y|√
s + 1

)−2m+1

for y ≤ 0.(58)

We apply integration by parts. In order to obtain a properly behaving integral
function of Mj(y, ·) we have to split the y–integration domain to two parts :

e(t−s)∂2
xMj(·, s) =

∞
∫

−∞

1√
t − s

e−
1
4
(x−y)2/(t−s)Mj(y, s)dy

= −
[ 1√

t − s
e−

(x−y)2

4(t−s) Fj(y, s)
]∞

y=0
+

∞
∫

0

1

2

x − y

(t − s)3/2
e−

(x−y)2

4(t−s) Fj(y, s)dy

+
[ 1√

t − s
e
− (x−y)2

4(t−s) Gj(y, s)
]0

y=−∞
−

0
∫

−∞

1

2

x − y

(t − s)3/2
e
− (x−y)2

4(t−s) Gj(y, s)dy.(59)

Here the first term equals 1√
t−s

e−
1
4
x2/(t−s)Fj(0, s). Moreover, we obtain from the

inequality
√

ze−z ≤ Ce−z/2 (z ≥ 0)

∣

∣

∣

∞
∫

0

x − y

(t − s)3/2
e−

1
4
(x−y)2/(t−s)

(

F1(y, s) −F2(y, s)
)

dy
∣

∣

∣

≤
∞

∫

0

C

t − s
e−

1
8
(x−y)2/(t−s)

∣

∣

∣
F1(y, s) −F2(y, s))

∣

∣

∣
dy(60)
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Integrating this
∫ t/2

0
ds we get, using (58), and Lemma 4 (take ε ≤ m−2) the bound

t/2
∫

0

CL(A1, A2, v1, v2)

(t − s)

1

(s + 1)3/2

(

1 +
|x|√
t + 1

)−2m+2+ε

ds

≤ C ′L(A1, A2, v1, v2)

t + 1

t/2
∫

0

1

(s + 1)3/2

(

1 +
|x|√
t + 1

)−m

ds

≤ C ′′L(A1, A2, v1, v2)

t + 1
(1 + |x|/

√
t + 1)−m.(61)

Integrating (60) as
∫ t

t/2
ds is different: we have t − s ≤ s + 1, hence, we obtain by

(58) the bound

t
∫

t/2

∞
∫

0

CL(A1, A2, v1, v2)

(t − s)
e−

1
8
(x−y)2/(t−s) 1

(s + 1)2

(

1 +
|y|√
t + 1

)−m

dyds

≤ C ′L(A1, A2, v1, v2)

t
∫

t/2

1

(s + 1)2

1

t − s

·
(

∫

|x−y|≥|x|/2

e−
1
8
(x−y)2/(t−s)

(

1 +
|y|√
t + 1

)−m

dy

+

∫

|x−y|≤|x|/2

e−
1
8
(x−y)2/(t−s)

(

1 +
|y|√
t + 1

)−m

dy
)

ds

≤ C ′L(A1, A2, v1, v2)

t
∫

t/2

1

(s + 1)2

1

t − s

·
(

e−
1
32

x2/s

∫

|x−y|≥|x|/2

e−
1
16

(x−y)2/(t−s)dy

+
(

1 +
|x|√
t + 1

)−m
∫

|x−y|≤|x|/2

e−
1
8
(x−y)2/(t−s)dy

)

ds

≤ C ′′L(A1, A2, v1, v2)
(

1 +
|x|√
t + 1

)−m

.

t
∫

t/2

1

(s + 1)2

1√
t − s

ds

≤ C ′′′L(A1, A2, v1, v2)

t + 1

(

1 +
|x|√
t + 1

)−m

.(62)

Similar representations and bounds apply to the terms with Gj.
So we are left with

t
∫

0

1√
t − s

e−
1
4
(x−y)2/(t−s)Fj(y, s)ds(63)
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and the similar integral for Gj. These contain some stuff of order (t + 1)−1/2 only,
but that will be cancelled out by the last line of (41). Let us see.

Integrating again by parts yields

t/2
∫

0

1√
t − s

e−
1
4
x2/(t−s)Fj(0, s)ds

=
[ 1√

t − s
e−

1
4
x2/(t−s)

∞
∫

s

Fj(0, σ)dσ
]t/2

s=0

−
t/2
∫

0

( C1

(t − s)3/2
+

C2x
2

(t − s)5/2

)

e−
1
4
x2/(t−s)

∞
∫

s

Fj(0, σ)dσds

= :
1√
t
e−

1
4
x2/t

∞
∫

0

Fj(0, σ)dσ +
C√
t
e−

1
2
x2/t

∞
∫

t/2

Fj(0, σ)dσ + Yj(x, t),(64)

From (58) we obtain |
∫ ∞

s
(F1(0, σ) − F2(0, σ))dσ| ≤ CL(A1, A2, v1, v2)(s + 1)−1;

hence, we get the bound

|Y1(x, t) − Y2(x, t)|

≤ CL(A1, A2, v1, v2)

t/2
∫

0

( C1

(t − s)3/2
+

C2x
2

(t − s)5/2

)

e−
1
4
x2/(t−s)(s + 1)−1/2ds

≤ C ′L(A1, A2, v1, v2)

t/2
∫

0

1

(t − s)3/2

1√
s + 1

e−
1
8
x2/(t−s)ds

≤ C ′′L(A1, A2, v1, v2)
1

(t + 1)3/2

t/2
∫

0

1√
s + 1

e−
1
8
x2/tds

≤ C ′′′L(A1, A2, v1, v2)
1

t + 1

(

1 +
|x|√
t + 1

)−m

.(65)

The second term of the last line of (64) easily leads to a smaller bound because of
(58).

Moreover, returning to (63)

∣

∣

∣

∣

t
∫

t/2

1√
t − s

e−
1
4
x2/(t−s)(F1(0, s) − F2(0, s))ds

∣

∣

∣

∣

(66)

is easily seen to be at most CL(A1, A2, v1, v2)(t + 1)−1e−cx2/(t+1), since, in (58),
(s + 1)−2 can be replaced by C(t + 1)−2.

Hence, the integral
∫ t

0
ds of (59) is

1√
t
e−

1
4
x2/t

∞
∫

0

(Fj(0, s) + Gj(0, s))ds + Wj(x, t),(67)
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where ‖W1(·, t) − W2(·, t)‖t ≤ CL(A1, A2, v1, v2)/(t + 1). In (67) we can replace

t−1/2e−
1
4
x2/t by (t+1)−1/2e−

1
4
x2/(t+1), since the difference of these two is bounded by

∣

∣

∣

1√
t
− 1√

t + 1

∣

∣

∣
e−

1
4
x2/t +

1√
t

∣

∣

∣
e−

1
4
x2/t − e−

1
4
x2/(t+1)

∣

∣

∣

≤ C
1

t + 1
e−

1
4
x2/(t+1) +

1√
t
e−

1
4
x2/t

(

1 − e−
1
4
x2t−1(t+1)−1

)

≤ C ′ 1

t + 1
e−

1
4
x2/(t+1) +

1√
t
e−

1
4
x2/t

∞
∑

m=1

1

m!

( x2

t(t + 1)

)m

≤ C ′′

t + 1
e−

1
4
x2/(t+1) +

C ′′

t3/2
e−cx2/t.(68)

Thus we have shown that (54) holds.
2◦. We prove that if (A1, v2) and (A2, v2) ∈ B, then the right hand sides of (40),

call them Ã1 and Ã2, satisfy

|Ã1 − Ã2| ≤ CL(A1, A2, v1, v2).(69)

Clearly, every |Apk

1 |A1|qk − Apk

2 |A2|qk | satisfies this bound. Moreover, by (58)

∣

∣

∣

∣

∞
∫

0

(F1(0, s) −F2(0, s))ds

∣

∣

∣

∣

≤ CL(A1, A2, v1, v2)

∞
∫

0

(s + 1)−bk/2ds ≤ C ′L(A1, A2, v1, v2),

and the same is true for
∫

G.
3◦. We summarize. Taking into account the definition of B, (53), and

L(A1, A2, v1, v2), (10), and choosing the constants B1 and B2 small enough in (53),

and looking at (54) and (69), we find that the mapping Ψ : (A, v) 7→ (Ã, ṽ) (notation
as in the beginning of 1◦ and 2◦ above) has the following properties:

(i) The set B is invariant for Ψ. To see this, take (A2, v2) = (0, 0) in the proofs
above; in addition, take f small enough in (39). Notice that in (41) we have

‖et∂2
xg‖ ≤ C sup

x∈R

(1 + |x|)m+2+ρ|f(x)|,(70)

since

et∂2
xg(x) =

C√
t + 1

∞
∫

−∞

e−
1
4
(x−y)2/t(f(y) − A0e

− 1
4
y2

)dy

= −
∞

∫

−∞

C ′(x − y)

(t + 1)3/2
e−

1
4
(x−y)2/t

y
∫

−∞

(f(z) − A0e
− 1

4
z2

)dzdy.(71)

Here f(z) − A0e
− 1

4
z2

is a function whose integral over the real line vanishes and
which moreover is bounded by C(1 + |z|)−m−2−ρ. Hence,

∣

∣

∣

y
∫

−∞

(f(z) − A0e
− 1

4
z2

)dz
∣

∣

∣
≤ C

(1 + |y|)m+1+ρ
,(72)
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and we can bound (71) by
∞

∫

−∞

C

t + 1
e−c(x−y)2/t 1

(1 + |y|)m+1+ρ
dy ≤ C ′

t + 1

1

(1 + |x|/
√

t + 1)m
.(73)

So (70) follows.

(ii) Ψ is a strict contraction in B.

So the contraction mapping principle applies to complete the proof of our lemma.
�
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