SLOW QUASIREGULAR MAPPINGS AND
UNIVERSAL COVERINGS

PEKKA PANKKA

ABSTRACT. We define slow quasiregular mappings and study co-
homology and universal coverings of closed manifolds receiving slow
quasiregular mappings. We show that closed manifolds receiving
a slow quasiregular mapping from a punctured ball have the de
Rham cohomology type of either S™ or S?~1 x S!. We also show
that, in the case of manifolds of the cohomology type of S*~! x S1,
the universal covering of the manifold has exactly two ends and the
lift of the slow mapping into the universal covering has a remov-
able singularity at the point of punctuation. We also obtain exact
growth bounds and a global homeomorphism type theorem for slow

quasiregular mappings into the manifolds of the cohomology type
Sr—1 x St

1. INTRODUCTION

In the theory of quasiregular mappings a certain class of spaces,
quasireqularly elliptic manifolds, have an important role. A continuous
mapping f: M — N between connected and oriented Riemannian n-
manifolds is called K-quasiregular, K > 1, if f is in the Sobolev class
I/Vll’"(M , N) and satisfies an inequality

ITfI" < KJ; ae.,

where ||Tf|| is the norm of the tangent mapping T'f of f and J; is
the Jacobian determinant of f. A connected and oriented Riemannian
n-manifold N is K -quasireqularly elliptic if there exists a non-constant
K-quasiregular mapping from R” into N. A manifold is quasiregularly
elliptic if it is K-quasiregularly elliptic for some K > 1.

It is known, by the geometric version of Rickman’s Picard theorem
[10, 3.1], that an open quasiregularly elliptic manifold has a bounded
number of ends. It is also known by a theorem of Bonk and Heinonen
[1, Theorem 1.1] that a closed quasiregularly elliptic manifold has a
bounded de Rham cohomology. Both results are quantitative in the
sense, that bounds depend only on the dimension and the constant K.
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Also local versions of these theorems have been under investigation. In
[8] we proved, with Holopainen, a big Picard type version of Rickman’s
Picard theorem, and in [18] a local version of the theorem of Bonk and
Heinonen. For the statements of these local versions, let us give some
definitions.

Let N be a manifold and C' a compact subset. We say that a com-
ponent V of M \ C is an end of N with respect to C, if V is non-
compact in N. Furthermore, we say that C' separates ¢ ends, if N has
q ends with respect to C. Finally, we say that N has at least q ends,
if there exists a compact set C', which separates at least ¢ ends. A
mapping f: B" \ {0} — N has a removable singularity (at origin) in
V if for every compact set C C N there exists r € (0,1) such that
f(B™(r)\ {0}) c V\ C. Furthermore, we say that f has a removable
singularity (at the origin) if either f has a limit or a removable singu-
larity at origin. If f does not have a removable singularity at origin,
we say that f has an essential singularity (at origin).

Theorem 1 ([8, Theorem 1.3]). Let N be a connected and oriented
Riemannian n-manifold. For every K > 1 there exists ¢ = q(K,n) such
that every K -quasiregular mapping f: B™\ {0} — N has a removable
singularity at the origin if N has at least g ends.

A local version of the Bonk-Heinonen theorem reads as follows. Here,
and in this article, H*(M) denotes the de Rham cohomology ring of
manifold M. The /-th de Rham cohomology group of M we denote by
HYM).

Theorem 2 ([18, Theorem 2]). Let n > 2 and K > 1. There ex-
ists a constant C = C(n,K) > 0 such that if N is a closed, con-
nected, and oriented Riemannian n-manifold with dim H*(N) > C
and f: B"\ {0} — N is a K-quasiregular mapping, then the limit
lim, o f(x) exists.

Theorem 1 yields the geometric version of Rickman’s Picard theorem
by a simple compactness argument and Theorem 2 implies the theorem
of Bonk and Heinonen. However, in order to obtain the theorem of
Bonk and Heinonen from Theorem 2, we need an additional growth
result from [18]. The same growth result was also used in the proof
of Theorem 2 in [18]. Arguments of this type are not needed in the
proof of the original Bonk-Heinonen theorem. Let us state this growth
result.

Theorem 3 ([18, Theorem 14]). Let N be a closed, connected, oriented
Riemannian n-manifold such that H4(N) # 0 for some £ € {2,...,n—
2}, and let f: R* \ B® — N be a K-quasiregular mapping having an
essential singularity at infinity. Then there exists a > 0 depending on
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n and K such that

1
liminf—/ Jy > 0.
r=00 T Jpn(r)\Bn(2)

This result partly corresponds to an another result of Bonk and
Heinonen in [1].

Theorem 4 ([1, Theorem 1.11]). Letn > 2 and f: R* — N be a non-
constant K -quasireqular mapping into a closed, connected and oriented
Riemannian n-manifold N. If the {-th cohomology group H(N) of N
1s nontrivial for some £ = 1,...,n — 1, then there exists a positive
constant o = a(n, K) > 0 such that

1
liminf—/ Jy > 0.
r—oo 1% Bn(T)

In Theorem 3 we could replace the assumption on an essential sin-
gularity by an assumption that

(1) / Jp =00 asr — oo
B~ (r)\B"(a)

for any @ > 1. Also non-constant entire quasiregular mappings in
Theorem 4 satisfy (1). Having these observations and Theorems 3 and
4 as our motivation, we define slow quasireqular mappings as follows.

Let N be a connected and oriented Riemannian n-manifold and ay >
0. We say that a quasiregular mapping f: R* \ B"(ag) — N is slow if
f satisfies (1) and

(2) ia Jp—0 asr—0
I J B (r)\B"(a)

for every a@ > 0 and any a > ag. We say that an entire quasiregular
mapping f: R* — N is slow if f|(R* \ B") is slow. Furthermore, we
say that a quasiregular mapping f: B™ \ {0} — N is slow, if f oo is
slow for a M6bius mapping o such that o(R* \ B") = B"\ {0}.

If N is a closed manifold, conditions (1) and (2) can equivalently be
formulated using the averaged counting function A(-; f), since

1
A% f) = W/QJfa

where (2 is a relatively compact open set contained in the domain of
definition of f, and |N| is the volume of N. For a detailed discussion
on the averaged counting function of a quasiregular mapping, see e.g.
[17] or [19].

One of the elementary properties of slow quasiregular mappings is
the stability under composition with BLD-mappings, that is, mappings
of bounded length distortion. Whereas a BLD-mapping itself can not
be a slow mapping, the composition of a slow mapping with a BLD-
mapping is. This observation yields that the class of slow mappings
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does not depend on the particular choice of the Riemannian metric of
the target manifold but only on the bilipschitz equivalence class of the
metric. However, simple examples, based e.g. on the inversion in R”,
show that the class of slow mappings is not invariant under conformal
changes of the Riemannian metric of the target manifold. We use the
observation on the composition of a slow mapping with a BLD-mapping
frequently in this article especially when liftings of slow mappings into
covering spaces are considered. Since the covering map is BLD, the
lifting of a slow mapping is also slow. Naturally, here we could also
use the fact that the covering map is a local isometry. For detailed
discussion on mappings of bounded length distortion, see e.g. [16] and
[5].

Having the definition of a slow mapping at our disposal, Theorem 4
can be reformulated as follows.

Theorem 5 ([1, Theorem 1.11]). Let f: R* — N be a slow K-quasi-
reqular mapping with N a closed, connected and oriented Riemannian
n-manifold. Then H*(N) = H*(S™).

In this article we first extend Theorem 3 to correspond to a counter-
part of Theorem 5.

Theorem 6. Let N be a closed, connected, and oriented Riemannian

n-manifold receiving a slow quasiregular mapping from B"\ {0}. Then
H*(N) = H*(S™) or H*(N) = H*(S™! x S1).

The proof of this theorem is a refinement of the argument in [18].
Contrary to the proof in [18], we divide this proof into two parts such
that the essential growth result for weakly exact A-harmonic forms is
discussed separately.

In the case of manifolds of the cohomology type of S"~! x S! the
existence of non-trivial cohomology classes gives us a tool to study the
universal covering of the manifold. Especially ends of the universal
covering and the behavior of liftings of slow mappings into the univer-
sal covering are of our interest. Let us first state a general result on
universal coverings and quasiregular mappings. The connection of the
fundamental group of a closed manifold to the isometric deck transfor-
mations of the universal covering yields the following theorem without
additional slowness assumptions on the mapping.

Theorem 7. Let N be a closed, connected, and oriented Riemannian
n-manifold, N the universal covering of N, and f: B"\ {0} = N a
quasireqular mapping. If N has more than two ends, then f and every
lift f of f into N has a limit at the origin.

In Section 2, we do not prove Theorem 7 only for universal coverings,
but extend the theorem to contain also infinitely branching manifolds.
The proof is based on a topological observation and Theorem 1.
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For slow mappings and manifolds of the cohomology type of S*~!xS1,
we can improve the result of Theorem 7.

Theorem 8. Let N be a closed, connected, and oriented Riemannian
n-manifold such that H*(N) = H*(S™ 'xS*'), and let f: B*"\{0} - N
be a slow quasireqular mapping. Then every lift f of f into the universal
covering N of N has a removable singularity at the origin and N has
exactly two ends. More precisely, there exists an n-harmonic function
u on N such that u has compact level sets and N has two ends with
respect to any level set of u.

We also obtain the following corollary.

Corollary 9. Let N be a closed, connected, and oriented Riemannian
n-manifold such that H*(N) = H*(S"™' x S1), and let f: B™\ {0} —
N be a slow quasireqular mapping. Then there exists a finite normal
subgroup H of m(N) such that w1 (N)/H is isomorphic to Z.

Although Theorem 8 describes the behavior of lifted mappings only
in a qualitative manner, we obtain also quantitive information. Namely,
having Theorem 8 at our disposal, we have that slow mappings into
closed manifolds of the cohomology type of S*~!x S! have a logarithmic
growth in the following sense.

Theorem 10. Let N be a closed, connected, and oriented Riemannian
n-manifold, f: R* \ B — N a slow K-quasiregular mapping, and
f: R \ B" — N a lifting of f to the universal covering N of N. Then
there exist constants Cy,, > 0 and Cy > 0 depending only on n, K, N,
and the multiplicity of f such that for any fized a € (1, 00) we have

1
3 liminf —— / Jr > Cp
3) r—oo 10g(7) J g\ B (a) d
and
. 1
(4) hmsup—/ Jy < Cu.
r—o0 108(T) J g\ Br(a)

Theorem 8 also yields a local Zorich type theorem for slow quasireg-
ular mappings.

Theorem 11. Let N be a closed, connected, and oriented Riemannian
n-manifold such that H*(N) = H*(S"'xS'), and let f: B"\{0} - N
be a slow K-quasiregular mapping. If f is a local homeomorphism, then
there exists a neighborhood W of origin such that every lifting f of f
into the universal cover N of N is an embedding on W \ {0}.

This article is organized as follows. In Section 2 we prove Theo-
rem 7 for infinitely branching manifolds. In Section 3 we discuss the
connection of quasiregular mappings to A-harmonic forms and to the
de Rham cohomology. In Sections 4 and 5 we prove Theorems 6 and
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8, respectively, using growth estimates for .A-harmonic functions and
forms. Section 6 contains the proof of Theorem 10 and Section 7 the
proof of Theorem 11. Finally in Section 8, we give examples of slow
quasiregular mappings into S™ and S™ ! x S!. Examples show that a
theorem of the type of Theorem 10 is not possible for slow quasiregular
mappings into spaces of the cohomology type of S™

The notation in this article is standard. Given a Riemannian mani-
fold M we denote by B(z,r) the open ball of radius > 0 centered at
x € M. An open ball in R* with radius r and centered at origin we
denote by B"(r). The unit ball of R* is denoted by B". The closed
balls are denoted by B(z,r), B*(r), and B", respectively. For any
measurable set A on a Riemannian manifold M, we denote by |A| the
measure of A in the Riemannian measure of M. For every path v on
M, we denote by |y| the image of ~.

Acknowledgments. This study was initiated during author’s visit
to the University of Michigan, Ann Arbor. The author wishes to thank
the Department of Mathematics for the hospitality. We would also like
to thank Mario Bonk, David Drasin, Juha Heinonen, Ilkka Holopainen,
Kirsi Peltonen, and Seppo Rickman for inspiring discussions on the
topics of this article.

2. INFINITELY BRANCHING MANIFOLDS AND A BIG PICARD TYPE
THEOREM

In this section we prove Theorem 8 for infinitely branching manifolds.
For the statement, let us give some definitions.

Let M be a manifold. We say that a compact set C; C M splits
the end V' of M separated by a compact set Cy C M if V contains at
least two ends of M with respect to ;. We say that a manifold M is
infinitely branching if every end of M splits.

Theorem 12. Let M be an oriented and connected Riemannian n-
manifold and f: B" \ {0} — M a quasiregular mappings. If M is
infinitely branching, then f has a limit at origin.

The proof of Theorem 12 is based on the following topological lemma
and Theorem 1.

Lemma 13. Let M be a Riemannian n-manifold and f: B"\{0} - M
an open and discrete mapping with a removable singularity at origin and
W a neighborhood of origin compactly contained in B™. Then f has a
finite multiplicity in W\ {0}. Moreover, if f has a limit at origin, then

(5) af(WA{0}) C F(OW) U {lim f(z)},
and if f does not have a limit at origin, then

(6) af(WA\{0}) C f(OW)
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and f(W \ {0}) is an end of M with respect to df (W \ {0}). Further-
more, the end f(W \ {0}) does not split.

Proof. We prove (5) and (6) simultaneously. Let y € of(W \ {0}) and
let (x;) be a sequence in W\ {0} such that f(z;) — y. If the set {z;} is
relatively compact in W'\ {0}, then there exists a subsequence (z;;) and
r € W\ {0} such that #;, — = and f(x) = y. This is a contradiction,
since f is open. Thus {z;} is not relatively compact in W\ {0}. Hence
there exists a subsequence () of (z;) such that either [z; | — r or
z;; — 0. In the former case, we may assume that z;, — z for some
x € OW. Thus either y € f(OW) or y = lim,_, f(x), since f has a
removable singularity at origin. This proves (5) and (6).

Suppose that f does not have a limit at origin. Since f has a remov-
able singularity at origin by Theorem 1, f(W \ {0}) is not relatively
compact in M. By (6), 0f(W \ {0}) is compact. Thus f(W \ {0}) is
an end of M with respect to 0f(W \ {0}). To show that f(W \ {0})
does not split, let us assume towards contradiction that there exists
a compact set E in M such that E splits f(W \ {0}). Let V4,...,Vj
be the ends of M with respect to E contained in f(W \ {0}). Since
f has a removable singularity at origin, there exists r > 0 such that
f(B™(r)\{0})) C V; for some i. We may assume that f(B"(r)\{0})) C
Vi. Thus Vo U---UV, C f(W\ B™(r)). This is a contradiction, since
f(W\ B"(r)) is compact. Thus f(W \ {0}) does not split.

Let us now show that f has a finite multiplicity in W. We employ
here the local topological degree of the mapping f, for details see [19,
I.4]. Suppose first that f has a limit at origin. Then f can be continued
to the origin and f is quasiregular in B™. Thus f has finite multiplicity
in W, see e.g. [19, 1.4.10(3)].

Suppose now that f does not have a limit at origin. Let ) be the
component of fWW \ f(OW) that is not relatively compact. Fix yo €
2 and let G be a domain compactly contained in €2. Let D be a
component of f~'G N W. Since G C fW \ f(OW), D is compactly
contained in W. Furthermore, since f has a removable singularity at
origin, 0 € D and D is compactly contained in W \ {0}. Thus D is
a normal domain of f and fD = G, see e.g. [19, 1.4.7]. Since the set
=Y (yo) is finite, f~'G is a finite union of normal domains of f. Thus,
by [19, 1.4.10],

card (f ' (y) N ') < uly, f, F'G) = wlyo, f, f'G)
= Z iz, f) < oo

z€f (yo)nf~1Q

for every y € G. Since for every y € (2 we find a domain containing
y and yo which is compactly contained in 2, the claim follows from
compactness of W\ f~1Q. O
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Proof of Theorem 12. Since M is infinitely branching, M has infinitely
many ends. Hence, by Theorem 1, f has a removable singularity at
origin. Suppose f does not have a limit at origin. Then, by Lemma 13,
f(B™"(1/2)\{0}) is an end of M with respect to 0 f(B™(1/2)\{0}). Since
M is infinitely branching, f(B™(1/2) \ {0}) splits. This contradicts
Lemma 13. Thus f has a limit at origin. O

To obtain Theorem 7 from Theorem 12, it is enough to show that
a universal covering with more than two ends is infinitely branching.
Although this is well known, we give, for the reader’s convenience, a
simple proof based on the Riemannian geometry of covering spaces.
The results on Riemannian geometry used in the proof are standard,
see e.g [2].

Lemma 14. Let N be a closed Riemannian manifold and N the uni-
versal covering of N. Then either N has at most two ends or N is
infinitely branching.

Proof. Suppose N has at least three ends and let C; be a compact set
separating at least three ends. Let Vi,...,V,,, where 3 < m < oo, be
the ends of N with respect to C.

Let ¢: N — N be a Riemannian covering map. Since N and C,
are compact, we may fix z € C; and R > 0 such that C; C B(xz, R)
and R > diamN. Since N is a covering space of a compact manifold,
it is complete. Hence, by the Hopf-Rinow theorem, closed balls of N
are compact and ends V; are not bounded. Thus V; \ B(x,6R) # 0 for
every i and we may, for every i < m, fix z; € V; \ B(z,6R) such that
z; € ¢~ (p(2)).

For every i, we fix a path ¥; from x to z; and a deck transformation
vi: N - N corresponding to the loop v; := ¢ o %;, that is, for every
2 € N and o: [0,1] — N such that o(0) = z and o(1) = ¢z( ), Yioo
is (freely) homotopic to 7;. Since 9; is an isometry, 1;(B(z,2R)) =
B(z;,2R) and N \ ¢;(Cy) = ¢;(N \ C1). Thus N has m ends, say
Vit -+ Vim, with respect to 1;(C}) for every i. We may assume that
C1 C Vjy forevery i. Since Vi, C V; foreveryl1 <i<mand2 <k < m,
we have that every end V; splits into m—1 ends Vjo, ..., Viy,. The claim
now follows by induction. U

Remark 15. Lemma 14 reveals that also another line of argument is
available for the proof of Theorem 7. Indeed, using the argument of
Lemma 14, we have that the fundamental group of NV has an exponen-
tial growth. Thus the covering space is n-hyperbolic, see [22, Chapter
X]. Thus f has a limit at the origin, see e.g. [8, Lemma 3.1]. This ar-
gument, however, is not available in the more general case of Theorem
12.

Remark 16. Tt is easy to construct infinitely branching manifolds which
are not universal covering spaces of closed manifolds. Indeed, given any
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locally finite tree with edges whose length is bounded from below, we
may construct a complete Riemannian n-manifold which is roughly
isometric to the tree and has finite volume. If the tree is infinitely
branching, so is the manifold. Manifolds constructed this way are not
n-hyperbolic but n-parabolic. For details on conformal types of Rie-
mannian manifolds, see e.g. [3], [7], and [9].

3. A-HARMONIC FORMS, QUASIREGULAR MAPPINGS, AND DE RHAM
COHOMOLOGY

Our discussion on .A-harmonic forms in this section is brief. For
detailed discussions, see e.g. [11], [13], [14], [15], and [20]. For the
connection of A-harmonic forms to quasiregular mappings, see e.g. [1]
and [14].

Let p € (1,00). We denote by W*?(A\* M) the partial Sobolev space
of fforms. A form w € L2 _(A"M) is in the space W/*P(A\* M) if
the distributional exterior derivative dw exists and dw € L} ( AT M),
The global space W%P(A® M) is defined similarly. We say that a form
w € WEP(N* M) is weakly closed if dw = 0 and weakly ezact if w = dr
for some 7 € WP (A" M).

Given £ € {1,...,n—1}let A: A*T*M — A"T*M be a measurable
bundle map such that there exist positive constants a and b satisfying

(7) (AE) — A(Q), €= Q) > a(lgl+[¢l)?le - ¢,
(8) [A©) — A < b(g]+[¢])7*1€ — <], and
9) Ate) = ttPT2A(g)

for all £,¢ € /\z TxM, t € R, and for almost every x € M. We also
assume that z — A, (w) is a measurable ¢-form for every measurable
¢-form w: M — N'T*M.

We say that an ¢-form & is A-harmonic (of type p) on M if € is a

weakly closed continuous form in W?(A\* M) and satisfies an equation

(10) d*(A(£) =0
weakly, that is,

/M (A©), dg) = 0

for all ¢ € C(A" M). In the special case A(¢) = |C|P~2¢, we say
that an A-harmonic form £ is p-harmonic.

A continuous function v on M is called A-harmonic (of type p) if
du is an A-harmonic 1-form. If du is p-harmonic, also u is called p-
harmonic.

Let f: M — N be a quasiregular mapping between Riemannian
manifolds M and N. Since f is almost everywhere differentiable, we
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may define the pull-back f*w of w € L"/‘q(/\z N) by

loc
(ffw)e = (Tof) wi)-
The quasiregularity of f yields that f*w € Ln/e(/\1Z M) and d(f*w) =

loc

ffldw) if w € Wd’"/e(/\eN). Thus ffw € Wd’"/e(/\zM) for w €

loc loc

Wfl(i’:/ z(/\e N). Furthermore, if w is an (n/f)-harmonic ¢-form on N,
then f*¢ is A-harmonic, where
Aw) = (G*w,w)WG*w

and
G = (2, )*M(Tf) (Tef) ) ace..

Since the pull-back of a smooth form in a quasiregular mapping may
not be smooth, the formula [w] — [f*w] does not induce a homomor-
phism between de Rham cohomologies of N and M. Since the exterior
derivation commutes with the pull-back f* induced by f, it is natural
to consider cohomology groups of forms with Sobolev coefficients, that
is, for p € (1, 00) we set
_ Ker(d: Wit?(\* M) — WP (A" M)

loc loc

Im(d: Wig? (N~ M) — Wie? (N M)

loc loc

HYP (M)

By the discussion above, f induces for every £ € {1,...,n} a map-
ping f*: H"(N) — HY(M) by [£] — [f*€]. Since for all Rie-
mannian manifolds M and all p € (1,00) H*P(M) is naturally iso-
morphic to H*(M), we have homomorphisms f*: H(N) — H*(M) for
¢e{1,...,n}. For £ =0 the homomorphism f*: H*"(N) — H""(M),
[v] = [vo f], gives the desired mapping. Induced homomorphisms have
the usual properties, that is, id* = id and (f o h)* = h* o f* whenever
the composition of quasiregular mappings f and h is defined.

Cohomologies H*P(M) and H*(M) are isomorphic by the de Rham
theorem for H*P(M). For the reader’s convenience we give an outline
of the proof. We follow here [23, Chapter 5].

Let us first construct sheaves W¥(M) for £ > 0. Let € M. We say
that forms € and 7 in W%P(A\* M) are equivalent at z if there exists a
neighborhood U of x such that & = n almost everywhere in U. Clearly
this is an equivalence relation in VVl‘é’f(/\e M). We denote the set of
equivalence classes by WP (M). We let W (M) = (J,cp WEP(M)
and 7: W (M) — M be the natural projection. We endow W (M)
with the topology whose basis is given by the sets

Je
zeU

where £ is the equivalence class of £ € WP (A" M) at z and U is an

loc

open set in M. As in the smooth case, this gives W%P(M) a topology
which makes it a sheaf of real vector spaces.
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Since the exterior derivative d induces an operator between germs,
we have a sequence of sheaves
(11) 0% R — WOP(M) 5 W (M) % ...
where R is the constant sheaf M x R and ¢ is the natural injection.
We are now left to show that the sequence (11) is a fine (torsionless)
resolution of R. By the Poincaré lemma of Iwaniec and Lutoborski
[12], the sequence is exact. Thus it is a resolution of R. Since ev-
ery smooth partition of unity on M induces a partition of unity for
WP (M), sheaves WP (M) are fine. Thus the sequence (11) induces a
cohomology theory with coefficients in sheaves of R-modules over M,
that is, for every sheaf T of real vector spaces over M we have

HY M, T):= H(TW"? (M) ® T)),

where T(W*(M) ® T) is the module of global sections of W (M) ® T .

Since all cohomology theories on M, with coefficients in sheaves of
R-modules over M, are uniquely isomorphic ([23, Theorem 5.23]), we
have that H‘(M,R) is isomorphic to the /-th singular cohomology of
M with real coefficients and to the ¢-th de Rham cohomology of M,
see e.g. [23, 5.28, 5.30] for details. It is now sufficient to show that
HYM,R) and H*?(M) are isomorphic. Since we may apply the same
argument as in the smooth case, we refer to [23, 5.30].

4. PROOF OF THEOREM 6

Theorem 6 is based on the following estimate on the growth of the
p-energy of exact A-harmonic forms.

Theorem 17. Let n > 3 and n a weakly exact A-harmonic £-form,
te{2,...,n—1}, on R*\ B" such that

(12 [ =
R™\B"(2)
Then there exists v = y(n,a,b) > 0 such that
1
(13) lim inf — / > 0.
rmree TS Br(r)\Br(2)

Here a and b are as in (7) and (8)

The proof of Theorem 17 is based on following three lemmata from
[18]. We set Dr = B"(R) \ B"(2), Qr = B"(2R) \ B"(R), and Qf =
B"(4R) \ B"(R/2) for R > 2.

Lemma 18 ([18, Lemma 16]). Let 1 < £ <n, p € (1,00), R> 4, and
let w be a form in W‘l’p(/yq_1 B"(2R)\ B") such that dw is A-harmonic
(of type p) in B"(2R) \ B™. Then

- Cy -
ldw| Dl < Crlldw| Dolly™ lw| Dallp + - lld| 2l ll| 2l
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where Cy = 2b/a, and constants a and b are as in (7) and (8).

Lemma 19 ([18, Lemma 17]). Let2 < {¢<n—1, p € (1,00), R > 8,
and let T € W(A\*' B*(4R) \ B") be such that ||dr|Qg||, > 0. Then
there exists w € W (A" B*(4R) \ B") such that dw = dr, w|Dy =
7| Do, and

lw|€2gl, < 2[jw|S2k + dBIQ2kl,

for every B € W\ Q).
Lemma 20 ([18, Lemma 18]). Let 2 < ¢ < n — 1. Then for ev-

ery R >0 and w € Wd="/£(/\zflﬂ—’R) there exists a closed form wy €
Wen/t(A\ET ) such that

(14) lw = wollnje < C(R/2)||dw|lnse,

where C = C(n/f) > 0.

Proof of Theorem 17. Set p = n/{. Since n is weakly exact, there exists
a form 7 in W (A" R* \ B") such that ) = dry. By (12), we may

loc

fix Ry > 2 such that
9l B (Ro) \ B* (@)% > 2C4n| D12 70| Dl
Let R > Ry. Let w € W% (A" B*(R) \ B") as in Lemma 19 such
that w = 79 on D,. By Lemma 18 and choices above,

Gy _
Il Drlly < 27 0|l 1w/l

By Lemma 20, there exists a closed form wy € WP (A" Q) such that
[w]$2k — wollp < C(R/2)[InlSkllp-

Since wy is exact, we have, by Lemma 19,
C _
1| Drll; < 2 lInlS2I1; Hwlklly < COInIQRIE-

Hence

[ wrzasucoy [
B"(4R)\B"(2) B"(R/2)\B"(2)
Thus (13) holds for v = logg(1 + 1/(CCY)). O

Having Theorem 17 at our disposal, Theorem 6 follows from a local
version of the value distribution result of Mattila and Rickman, see [17,
5.11] and [18, Theorem 6].

Proof of Theorem 6. For n = 2 the result follows from the Measurable
Riemann Mapping Theorem and uniformization, and does not require
slowness, see e.g. [18, Theorem 3] for details.

Suppose now that n > 3. We replace f with f o o where o is an
orientation preserving Mobius mapping such that o(R*\B") = B"\{0}.
Suppose Kerf* # 0 for some £ € {2,...,n—1}. Since every cohomology
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class weakly contains an (n/¢)-harmonic form by [20, Section 7], we may
fix an (n/f)-harmonic ¢-form on N such that f*¢ is weakly exact and

[ rerre=1.

By [18, Theorem 6], there exists a set £ C (1,00) of finite logarithmic
measure such that

. Jnenan2) | fr€*

= P
Hence Theorem 17 contradicts the slowness of f and Kerf* =0 for £ €
{2,...,n—1}. Thus either H*(N) = H*(S") or H*(N) = H*(S""'xS")
by Poincaré duality. (]

5. PROOF OF THEOREM &8

In this section we assume that V is a closed, connected, and oriented
Riemannian n-manifold with dim H*(N) = 1. Let us fix some notation
for this section. 3

Let N be the universal covering of N and ¢: N — N a Riemannian
covering map. Let us also fix a loop 7p: [0,1] = N and = € H'(N) as
follows. Let = be a non-trivial cohomology class in H'(N). Since the
integration of smooth 1-forms over 1-chains induces an isomorphism
H'(N) — Hom(H;(N),R), we fix a homology class ¢ € H;(N) such
that

(15) I::/E:m;n/5>0,

where the minimum is taken over all such ¢’ € H; (V) that the integral
is positive, see e.g. [4, Section 15.c] for details.

By Hurewicz’s theorem, we may represent ¢ by a loop vp: [0,1] — N.
Furthermore, we may assume that 7, is smooth. For every smooth 1-
form w in = we have

(16) /WMZ/CE'

We set v: R — N to be the periodic extension of 7y, i.e. v(t+k) = v(t)
for all k € Z and ¢ € [0,1].

Let & be the n-harmonic 1-form weakly contained in =, i.e. for every
smooth form w representing = there exists w € WH*(N) such that
£ —w = dw. By [21], £ is locally Holder continuous. Hence we may
integrate £ over vy and (16) holds also for €. Indeed, let w € = and
w € WH*(N) be such that £ = w + dw. Since dw is continuous,
w € C*(N) and

(17) /70§=[mw+[mdw:/05.
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Since H'(N) = 0 and ¢*¢ is continuous, we may fix u € C'(N) such
that du = ¢*&. Since ¢*¢ is an n-harmonic 1-form, v is an n-harmonic
function. For every total lift 7 of v, we have, by change of variables,

/ oE = / £= €= / c
F[k,k+1] poF|[k,k+1] Y[k k+1] c

for every k € Z, since ¢ is a local isometry. Thus

(18) a3 (k) = u(30) = [ =.
for every total lift 4 of v and every k € Z.

The proof of Theorem 8 is based on a study of the pull-back uo f of u.
The following result, based on Harnack’s inequality and a Phragmén-
Lindel6f type theorem for A-harmonic functions, is essential in the
proof.

Proposition 21. Let v be an A-harmonic function on R* \ B™ such
that limsup,_,, v(z) = co. Then either

lim v(z) =00 or liminfo(z)= —o0.
|| —o00 || =00
If liminf|, . v(z) = —oc0, then there erists v = y(n,a,b) > 0, where
a and b are as in (7) and (8), such that
1
(19) lim inf—/ Vol" = oo
ree 1T Br\Br(2)

Proof. Suppose that lim infj; . v(z) > —0o. We may assume that v
is positive on R™ \ B"(2), since there exists ¢ > 0 such that v + c is
positive on R" \ B"(2). We show that liminf ,_, v(z) = cc.

Let ko be such that for every R > 10, there exists ko balls B; =
B(z;, R/4) covering S™ (R) such that z; € S"1(R) for every i.

Let R > 10 and By, ..., By, balls as above. By Harnack’s inequality,
there exists 6 = 6(n,a,b) > 1 such that maxg, v < § ming, v for every
1. Thus, by a standard chain argument,

max v < 6 min v.
Sn=1(R) Sn=1(R)
Hence lim supy,_,o, v = 00 yields liminf};) o v = co.

Let us now assume that liminf ;v = —oco. We show that (19)
holds. Since v is bounded on S"~!(2), we may assume, by adding a
constant if necessary, that ming.-19yv < 0. Fix Ry > 2. By the
Maximum Principle, there exists a closed connected set I'y such that
v|To < 0 and Ty N S" 1 (R) # 0 for every R > R,.

Since for r > R,

cap,(B"(r)NT, B"(2r)) > ¢,
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where ¢ > 0 depends only on n, we have, by a Phragmén-Lindel&f type
theorem [19, VII.6.7], that

lim inf MaXsnin) Y
T—00 Tﬁ

> 0,

where 3 depends only on n and constants a and b of A. Here we used
the assumption limsup,, . v(z) = co. Let ¢ > 0 and Ry > Ry be
such that maxgn-1(,y v > crB for r > Ry.

Let R > Ry and A = B"(2R) \ B"(R). By the Maximum Principle,
there exists a continuum I'; connecting S"~!(R) to S"~!(2R) in A such
that v|['; > ¢/ RP. By a standard capacity estimate,

Vv

Vol dz > /anz c'Rﬂ"/
/Bn(QR)\Bn(2)| | A| "2 (R a|CRP

> JC'R"M,(A(T,TyNA;A)) > CR™,
where C' and C” depend only on n. Thus (19) holds for v = ng. O

n

dx

For the proof of Theorem 8, let us also fix a deck transformation h
on N corresponding to 7y, i.e. given z € N and o 0,1] — N such
that 0(0) = z and o(1) = h(z) then ¢ o ¢ is (freely) homotopic to
Y. Then for every t € R and € N we have h(5(t)) = 7(t + 1) and
u(h(z)) = u(z) + I, where [ is the integral in (15) and ¥ is any total
lift of v. The deck transformation h has also the following covering
property.

Lemma 22. Suppose that V is an end of N such that u is bounded from
below in V' and there exists a total lift ¥ of v such that |7|[to,00)| C V
for some ty € R, then

(20) N=|Jr*v
keN

Proof. Let R > 0. We show that B(¥(to), R) is contained in A *(V') for
some k € N. Set 79 = J(tp). Since N is complete, B(xg, R) is compact.
Thus V U B(zg, R) is an end of N and u is bounded from below in
V' U B(zo, R). We fix k € N such that kI > maxsy u — infynp(se,r) U-
Then

= Flz)) — kI Fz)) — inf

u () u(h®(x)) — kI < u(h®(z)) I%{a/xu—i-VUéI(le,R)u
< inf wu
VUB(z0,R)

for every z € h=¥(0V'). Thus h=%(0V') does not intersect V U B(zy, R).
Since h=*(5(to + k)) = 7(to), h=*V intersects V. Hence, by connected-
ness of V' U B(zg, R), V U B(zg, R) C h™*V. O

Proof of Theorem 8. We replace f with f o o, where o is a sense-
preserving Mébius mapping such that o(R™ \ B") = B™ \ {0}. We
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may assume that f is continuous up to S™7!, since we may replace f
with the map = — f(2/2) if this is not the case.

Let us first show that a lift f of f has a removable singularity at
infinity. Suppose towards contradiction that f has an essential singu-
larity at infinity. Let v = wo f. Then v is an A-harmonic function
on R* \ B". Since f has an essential singularity at infinity, for every
k > 1 the set f(R"\ B"(k)) covers whole N except a possible set of
zero capacity. Thus we may fix a sequence (z;) in R* \ B" such that
zr € R*\ B"(k) and v(z)) = 0 for every k. Similarly, we may fix a
sequence (1) in R® \ B" such that y;, € R* \ B"(k) and v(y;) — oo as
k — oo. Since v is A-harmonic, there exists, by Proposition 21, v > 0
such that

1
lim inf—/ |[Vou|" = o0
Booon RY Jgn )\ (2)
On the other hand,

f(©)=f¢e=fdu=duof) =
Thus, by change of variables,

1
= < KoPlielgs [ g
Ry Bﬂ(R)\Bﬂ@)' | R Jpmrpamgy

as B — oo, since f is slow. This is a contradiction and f has a
removable singularity at infinity.

Let us now show that N has exactly two ends. Since f is slow, f
does not have a limit in N at infinity. By Lemma 13, f(R* \ B") is
an end of N with respect to 8f(]R” \ B") and, by Theorem 7, N has
at most two ends. Suppose towards contradiction that N has only one
end. Then N \J f(R™\ B") is compact. Since u is unbounded from above
and below in N, u is unbounded from above and below in f(R" \ B").
Thus

—o0 = liminfv(z) < limsupv(z) = oo,
|z| =00 |z| =00
where v = u o f as above. Following the reasoning above, this is a
contradiction with the assumption that f is slow and Proposition 21.
Therefore N has exactly two ends.

Finally, we show that u has compact level sets. As the first step,
we show that u is unbounded in f(R® \ B"). Since f(R™\ B") is
an end of N, there exists a sequence (zj) in f(R® \ B") such that

dist (xk, F(sm 1)) > k() and o(z) = v(0). For all k > 1, we
denote by 9, the total lift of ([0, 00) with (0) = x4. If 4 is contained
in f(R"\ B") for some k, u is unbounded from above, since

u(F(m)) = u(zg) + ml — oo



SLOW QUASIREGULAR MAPPINGS AND UNIVERSAL COVERINGS 17

as m — oo. On the other hand, if 7, is not contained in f(R" \ B")
for any k, then

u(zg) < max wu(x) — kI - —oc0

ze f(Sn—1)
as k — oo and u is unbounded from below. Since v is unbounded in
f (R*\ B"), we may assume u to be unbounded from above by replacing
¢ with —¢ and by replacing vy with ¢ — ~o(1 — ¢) if necessary. Thus,
by Proposition 21 and reasoning above, limz| o v(z) = oo.

For the second step, we fix ¢ € R such that ¢ > maxygn-1yu. We
show that v '(c) is compact and separates two ends of N. Let F =
u ()N f(R* \ B"). Since f has a removable singularity at infinity
and lim,| o v = 00, E is compact. Since u is unbounded from above
and below in N and bounded from below in f(R" \ B"), E separates
two ends of N. It is now sufficient to show that u~'(c) C f(R" \ B").

Let V and W be the ends of N with respect to E such that V C
f(R™\ B"). We fix a total lift 4 of v and #, € R such that 5(t,) € V
and

u(¥(tp)) > ¢ — min / o €.
Y0/1Y,

t€[0,1]
Since
u(J(to+k+1t) = u(Fto+1t)) +kI

> u(’Ny(tO))+kI+/ E>c+ kI
¥ [to,to+1]
for every k£ € Z and t € [0, 1], we have that |7|[ty,00)| C V.
Since the sets h%(V), k € N, cover N by Lemma 22, it suffices to
show that h=*(V)Nu~1(c) C f(R*\ B") whenever f(R*\ B") C h=*V.

Let k € N be such that f(R* \ B") C h=*V. Since
u|oh™*V =ulh ¥ (E) <c— kI < c

and u|f(S"') < ¢, we have that u < ¢ on (h~*V \ f(R* \ B").
Thus, by the Maximum Principle, v < ¢ on h~ %V \ f(R* \ B"). Hence
ARV Nut(e) € f(R™\ B™).

As the third step, we note that, since u=!(c) is compact for ¢ >
maxfgn-1) U and sets u~!(c — kI) are homeomorphic to u~!(c) for all
k € Z and all c € R, all level sets of u are compact. O

Proof of Corollary 9. Let F': m;(N) — R be a homomorphism

6+—>/U§,

where & is the homotopy class of a loop o in N. Let H = KerF'. Then
H is a normal subgroup of 71 (/N) and m;(/N)/H is isomorphic to the
image of F. Since the image of F' is generated by one element, the
claim follows, if we show that H is finite.
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Fix z € N and y = ¢(z). For every homotopy class & in H, we fix a
representative o: [0,1] — N starting from y and a lift & of o starting
from z. Since u(6(1)) = u(6(0)), we have that H is in one-to-one
correspondence with u='(u(z)) N ¢~ (y). Since v~ '(u(zx)) is compact
and ¢~ '(y) is discrete, H is finite. O

6. SLOW MAPPINGS INTO SPACES OF THE COHOMOLOGY TYPE OF
S™1 x S HAVE LOGARITHMIC GROWTH

In this section we prove Theorem 10. In the proof we use notation
fixed in Section 5, that is, /V is the universal covering of N, p: N —+ N
and h: N — N are the Riemannian covering map and the fixed deck
transformation, respectively, 2 € H'(N) the fixed cohomology class, &

the n-harmonic form in =, v an n-harmonic function on N such that
du = ¢*¢, and I the integral in (15). The proof of Theorem 10 is based
on following observations.

Lemma 23. For almost every c € R and every k € Z we have
lut(c,c+ kI)| = Cyk
where Cy > 0 is a constant depending only on N.

Proof. Since h is an isometry with the property v o h = u + I, sets
u~'(c+4I,c+ (i+1)I) have the same volume for every i € Z and every
c € R. For almost every ¢ € R we have |u~'(c)| = 0. Let c € R be such
that |u='(c)| = 0. Since |u~'(c+iI)| = 0 for every i € Z,

(21) [u™ (e, e + kI)| = kJu™" (c,c + 1))

for every k € Z. Since ¢ is a local isometry, |o(u~"(c))| = 0. For every
y € N we also have

card (o~ (y) Nutc,c+ 1)) = card H,
where H is as in Corollary 9. Thus

(22) (card H)|N|=/ Jo=|u(c,c+I)|.
u(c,c+1)

O

The following lemma is a simplified version of [6, 3.8] adapted to our
setting.

Lemma 24. Let c € R and k € Z. Then
(23) Mo (A (e), u (e + k1)) = Chk! ™,
where Cy > 0 is a constant depending only on N.

Proof. Since u is n-harmonic,
/ v
w1 (c,c+kI)

u—=c¢

(c+kI)—c

= inf / \Vwl|",
u=(c,c+kI)
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where the infimum is taken over all functions w € W, (u~" (¢, 00)) such
that w > 1 on u™'(c + kI). Since the level sets u~'(c) and u™"(c + kI)
separate N,

u-—=c

(c+kI)—c)

7 .
- \dul™.
(k[)n u~(e,c+kI)

Since du = ¢*¢ and ¢ is a local isometry, |du|™ = |£|™ o ¢. Thus

[ wap= e =k [ e
u{(c,c+kI) u=L(c,c+kI) N

Since the constant
1
Cl [ n

does not depend on =, (23) follows. O

Mn(A(u—l(c),u_l(c—{—kI))) = /1( o \Y

Proof of Theorem 10. By monotonicity, it is sufficient to show that
there exist positive constants Cp, > 0 and Cp > 0 depending only
on n, K, N, and the multiplicity of f such that

ij—i-C’;nS/ _ J; < Cmj+Cly
B (210)\B"(a)
for j € Z large enough and given a € (0,1), where C], and C}, are
constants independent of j. 5

Let u be as in Section 5 and v = wo f. Let m(r) = mingn-1(,) v for
all 7 € (0,1). By Proposition 21, we may assume that lim|y_,ov = oo.
Thus we may fix a € (2,00) such that m(a) > maxgn-1yv and
m(a/2) > 0. Since v is A-harmonic, we may, as in the proof of Propo-
sition 21, fix ' = ¢'(n, K) > 1 such that maxgn-1(yv < 6’ mingn-1¢y v
for every r > a.

Let R € (a,00). By the Maximum Principle,

u™ (0'm(a), m(R)) C f(B"(R)\ B"(a)) C u™" (m(a),#'m(R)).
Thus

w7 (@'ma), m(R)| < |F(B"(R)\ B"(@))] < [u™(m(a) 0'm(R))|.

By Lemma 23,

‘u—l(m(a)’ 0'm(R))| < CN (Q’m(R) - m(a) + 1)
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where Cy is a constant depending only on N and Cuy > 0 depends
only on n, K, and N. Similarly,

ju"!(0'm(a), m(R))| = |u"(m(a),m(R))| — [u""(m(a), 0'm(a))]
m(R) —m(a)
(M)

where Cly is a constant depending on N and C,, > 0 depends only on
n, K, and N. Thus

(24 Com(R)+Cy <|F(B"(®)\ B"()] < Cym(R) + Ci

for R € (a,00), Where~C~'m > 0 and Cu > 0 depend only on n, K,
and N, and constants C;, and C}, are independent of R. On the other
hand, by Theorem 8 and Lemma 13, f has finite multiplicity, say u.
Thus

(25)

freo\sw|< [ gealfereo) B
B (27a)\B"(a)
By (24), it is sufficient to show that m(27a) ~ j for large j. Set
Trr=A(S"(r),S" '(R);R" \ B")

and

f‘c,d =A™ (c),u*(d); N)

for R>r>1andd>c.
Since sets u ' (m(a)), u ' (¢'m(a)), u ' (m(R)) and u~*(¢'m(R)) sep-
arate N into two ends, every path in f I’y r has a subpath in Lo (a),;m(R)-

Thus, by the Kjy-inequality,
™~ r3 Mn Fa.
(26) Mn(re’m(a),m(R)) > Mn(fra,R) > Kﬁil,,ujR)

Let us now show that every path in fm(a)’glm(R) has a subpath in
fTar. Let @:[0,1] — N be a path in fm(a),glm(R). We may assume
that & is contained in u~'[m(a), #'m(R)]. Let & be a maximal lift of &
in f such that &(0) € S" !(a). Since v o & = u o &, when defined, and

max v < m(a) < u(a(t)) < 8m(R),

Sn=1(2
for all ¢ € [0,1], we have that & is a total lift of &. Since &(1) >
maxgn-1(g) v, we have by the Maximum Principle that &(1) ¢ B"(R).
Hence & has a subpath ﬂ in I'; . Thus fo ﬂ is a subpath of & con-

tained in f Iy r. Hence Fm(a) ¢'m(R) 1s minorized by f ', r and Poletsky’s
inequality yields

(27) My (Tona) orm(r)) < Mo (fTar) < K" My (Ta g).
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Combining (26) and (27) with the modulus of the spherical ring, we
have that

1 R 1—-n B R 1—n
28 — | log — < M, (I'ia).60m < C | log —
(28) C(Ot%@) < Mu(Linga),0rm(r)) <0ga>

where C' depends only on n, K, and p. Thus, by (28) and Lemma 23,
we have

(29) C;. log R+ C] <m(R) < Cj,log R+ CY,

where C], and C), depend only on n, K, N, and multiplicity p of 1,
and constants C)r and C,; are independent of R. O

7. A LOCAL ZORICH TYPE THEOREM FOR SLOW QUASIREGULAR
MAPPINGS

The proof of Theorem 11 is based on following observations on the
universal covering N of N.

Let ¢: N — N be a Riemannian covering map. Let also = be a
cohomology class in H'(N) and 7, a loop in N as in Section 5. As
before, let h: N — N be a deck transformation of N with respect to ¢
corresponding to 7.

Let ¢ be the harmonic 1-form in Z, that is, ( satisfies Laplace equa-
tion AC = 0. We fix a harmonic function w on N such that dw = ¢*C.
Since w is smooth, we may assume, by Sard’s theorem, that w="(0) is a
smooth submanifold of N. By our choices, w(h(z)) = w(z) + I, where
I is the integral in (15).

Let u be an n-harmonic function on N as in Section 5. Since the
function w — v is bounded on N and u has compact level sets, also w
has compact level sets.

Let Q = w™'(0,1), Q; = h'Q, and

=
Qij == Qz U U Qk UQ]',1
k=it+1

for every ¢ and j in Z such that + < j. Denote also

Qiy = U U oA
k=i
for every i. By the properties of h, we have that Q; = w='(il, (i+1)I),
Qi =w (il 5I), and Q;y = w™t(il, 0).
The proof of Theorem 11 is based on following two topological ob-
servations.

Lemma 25. There exists k > 0 such that ;1 is simply connected in
Q(i—k)+ for every i, that is, for every i and every loop o in € there
erists homotopy contracting o in Qg4
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Proof. Let us first fix k > 0. Since Qo; = w™![0, 21] is a compact mani-
fold with boundary, the fundamental group of Qy; is finitely generated.
Thus we may fix loops {ay, ..., aq} generating m; (€Q;). Since N is sim-
ply connected, there exists £ > 0 such that loops «; are contractible in
Q_j k+1. Hence all loops in €2y are contractible in £ 4.

To show that €2;, is simply connected in Q(;_g)4 for every i, it is
sufficient to show that €2;; is simply connected in §2;_j ;i for every
J > . We do this by induction. Since ;11 = hiQo1, the claim holds
for j =i+ 1.

Suppose that the claim holds for j > i+ 1 and let 3: [0,1] — N be
a loop in €; ;11. We may assume that [ is not contained in €2;;.;. We
have, by compactness, a finite number of maximal essentially disjoint
intervals [a, by] such that 3([ag, b)) C Qj 41, B(lae, b)) N Q41 # 0, and
that (3 is contained in €2; ; outside these intervals. For every £ we choose
a path (: [ag, be] — N in ;; with the end points f(a;) = B(ar) and
Be(be) = B(be). Since B|[ag, be] is homotopic to B¢ in Qg (j+1)+k, B is
homotopic to a path ' in €;_ (j11)4k, Where §'|[ag, bs] = oy for every
¢, and (' coincides with (3 outside intervals [ag, b]. By the induction
assumption, ' is contractible in €;_ ;1. Thus § is contractible in
Qi_k,(j+1)+%- The claim now follows. O

Lemma 26. Let M be an n-manifold and let f: B" \ {0} — M be
a local homeomorphism with a removable singularity, which is not a
limit, at origin. Then there exists a neighborhood W of origin such
that f is a covering map in W\ {0}.

Proof. Let R € (0,1). By Lemma 13, f(B"(R) \ {0}) is an end of M
with respect to df(B™(R) \ {0}). Let © be the end of M with respect
to f(S""'(R)) contained in f(B"(R)\{0}). Let W’ be the component
of f~'Q contained in B"(R) \ {0}. Since f has a removable singularity
at origin, f is a proper map in W’ and W' U {0} is a neighborhood of
origin. Hence f is a covering map in W \ {0} for W =W'uU {0}. O

Proof of Theorem 11. Suppose that f is a slow quasiregular local home-
omorphism. Then also f is a local homeomorphism. By Theorem 8,
f has a removable singularity at the origin. Hence, by Lemma 26, f
is a covering map in a neighborhood W' of origin. Since fov\ {O})
is an end of N, there exists i such that either Q;, C f (BW\ {0}) or
N\ Qi c f(W\ {0}). We may assume that Q;, c f(W \ {0}) for
some 4. Let k > 0 be as in Lemma 25. Since f has the homotopy lifting
property in f(W \ {0}) and Q;yr)+ is simply connected in €, fis
one-to-one in f~ ( (i+k)+)- By the unique path lifting property and
connectedness of f(W \ {0}), f is one-to-one and hence an embedding

in W\ {0}. 0
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8. EXAMPLES

In this section we show that Theorem 6 is sharp by constructing
examples of slow quasiregular mappings from B" \ {0} into S™ and
S™ 1 x S!. Let us first consider the case of S ! x SL.

Ezample 27. A slow quasiregular mapping from B™\{0} into S *xS"is
constructed in [18]. For the reader’s convenience, we sketch the short
construction. Let ¢: B*(2) \ B® — S" ! x S, x > (x/|z], e?27I2]).
Extend ¢ into R* \ B periodically, i.e. ¥(2¥z) = v(x) for every k > 0
and z € B"(2) \ B". Let us now fix a M&bius mapping o such that o
is sense-preserving and o(B" \ {0}) = R*\ B". Then f =t oo is a
slow quasiregular mapping from B" \ {0} into S"~' x S™.

Example 28. For an example of a slow quasiregular mapping from
B™\ {0} into S™, it is sufficient to construct an entire slow quasireg-
ular mapping from R" into S”. We thank Juha Heinonen and Seppo
Rickman for bringing examples of this type to our attention.

First step is to construct a quasiregular mapping h: B" — S™ such
that A is finite-to-one and onto mapping such that A is the identity on
0B™ = S™ ! C S™. Since we may identify B" with the lower hemisphere
S™ of S® C R"*!, the restriction to S” of the mapping R*~! x C —
R x C, (z,2) — (,2%), satisfies our needs.

Let (yx) be a sequence in R” such that distance of the points in the
sequence is at least 3. We identify R" with S™\ {e 11} and let f: R* —
S™ be the identity outside open balls B"(yx, 1) and f(z) = h(z—yi)+yk
in B™(yy, 1) for every k. Since, for every k, f is BLD in B™(yy,2) with
a constant independent of k, f is quasiregular. Furthermore,

/ Jp ~card {k: |yx| <7}
B"(r)

for large . Thus f satisfies (1) and (2) when we choose the sequence
properly. This example also shows that a result like Theorem 10 is
not possible when we consider slow mappings into manifolds of the
cohomology type of S™.
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