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Abstract

The general dimension distortion result says that a one dimensional set goes to

a set of dimension at least 1 − k under a k-quasiconformal mapping. An improved

version for rectifiable sets appears in recent work of Astala, Clop, Mateu, Orobitg

and Uriarte-Tuero in connection with quasiregular removability problems. We give

an alternative proof of their result establishing a bound of the form 1− ck2, provided

that either the initial or the target set lies on a line. The bound 1 − k2 holds under

the additional assumption that the line stays fixed.

1 Introduction

A homeomorphism f : Ω → Ω′ between planar domains is called k-quasiconformal if it lies
in the Sobolev class W 1,2

loc (Ω) and satisfies the Beltrami equation

∂̄f(z) = µ(z)∂f(z) a.e. z ∈ Ω,

with a measurable coefficient ‖µ‖∞ ≤ k < 1. In the usual sense it is said to be K-
quasiconformal, with K = 1+k

1−k
. We shall use the dilatations 0 ≤ k < 1 and K ≥ 1

simultaneously. The term dimension always refers to Hausdorff dimension.
Astala [A1] gave a complete description of dimension distortion of general sets under

planar quasiconformal mappings.

1.1 Theorem ([A1]). Let f : Ω → Ω′ be K-quasiconformal and suppose E ⊂ Ω is compact.
Then

(1.2)
1

K

(

1

dim(E)
− 1

2

)

≤ 1

dim(f(E))
− 1

2
≤ K

(

1

dim(E)
− 1

2

)

.

This inequality is best possible.
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It is expected that, say, for subsets of the real line somewhat better dimension distortion
should be valid. In fact, this is the case for quasicircles, these are quasiconformal images
of the unit circle (or a line).

1.3 Theorem ([BP]). For every K-quasicircle Γ for K close to 1,

dimΓ ≤ 1 + 37

(

K − 1

K + 1

)2

.

1.4 Remark. Note that (1.2) would give the bound 1+k, where k = (K−1)/(K+1). The
result above provides a bound of the form 1 + ck2, an improvement for small values of k.
We could choose c = 60 to obtain a valid bound for all values of k. In fact, dim Γ ≤ 1+ k2

due to Smirnov’s unpublished result. This is conjectured to be sharp. That the order k2

is sharp was proven in [BP].

The fact, that for the line we have (1+ck2)-type estimate reflects back to the dimension
distortion of subsets of the line, as well. Allowing us to improve the general estimate (1.2)
in the case of the jump to dimension one. Throughout these notes c ≥ 1 will denote a
fixed positive absolute constant, such that dimΓ ≤ 1 + ck2 holds, for every k-quasicircle
Γ, i.e. we can choose c = 60 or even c = 1 in view of Smirnov’s result.

The following type of result (and in particular Corollary 1.8) is a crucial step in
[ACMOU] for their improved version of Painlevé removability for bounded K-quasiregular
mappings (K > 1): sets of σ-finite Hausdorff measure at the critical dimension are always
removable.

1.5 Theorem. Let f : C → C be a k-quasiconformal map with 0 < k < 1/
√

8c and
E ⊂ R. Then dim fE < 1 provided that dimE ≤ 1− 8ck2. Conversely, if dimE = 1 then
dim fE > 1 − 8ck2.

Discussing their results with the authors of [ACMOU] I found a more direct proof to
this kind of improved quasiconformal dimension distortion. The purpose of this paper is
to present this alternative proof of Theorem 1.5 which has its own interest. Our approach
relies on the original dimension distortion proof of Astala, we shall follow the presentation
in [A1].

1.6 Remark. We wish to emphasize that our setting is not symmetric with respect to the
inverse map, the two cases, distorting the dimension upwards and downwards are different,
a priori. The borderline dimension for the jump to one dimension is 2/(K + 1) = 1 − k
in the general case. Thus Theorem 1.5 is really an improvement for small values of k and
then it is easy to establish some improvement for every k in the second case (see Corollary
1.8). However, we were not able to obtain an improvement for arbitrary values of k in the
first case.

An immediate application of the classical Painlevé’s theorem (in conjunction with
Stoilow factorization) gives the following.
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1.7 Corollary. Let E ⊂ R be a compact set. For every 1 < K < K0 there exists a positive
number ε(K), such that if

dimE ≤ 2

K + 1
+ ε(K),

then E is removable for bounded K-quasiregular mappings.

1.8 Corollary. Let E ⊂ R of dimension 1 and K > 1. Then for any K-quasiconformal
map f : C → C,

dim fE >
2

K + 1
.

Section 2 is devoted to the proof of Theorem 1.5, while in Section 3 we discuss related
results concerning quasisymmetric maps of the line.

Acknowledgement. I would like to thank Professor Kari Astala, Albert Clop and Ignacio
Uriarte-Tuero for useful discussions on the topic. In particular, I am grateful to Kari Astala
for drawing my attention to the result of Smirnov. I thank Professor Stanislav Smirnov
for his kind permission to include Theorem 3.1 in this note.

2 Improved distortion

The key idea in [A1] was to look at quasiconformal mappings as holomorphic motions.
Recall that a function Φ: D × E → C is a holomorphic motion of a set E ⊂ C if

• for any fixed z ∈ E, the map λ 7→ Φ(λ, z) is holomorphic in D (the open unit disk),

• for any fixed λ ∈ D, the map z 7→ Φλ(z) = Φ(λ, z) is an injection, and

• the mapping Φ0 is the identity on E.

A fundamental result about holomorphic motions is the extended version of the λ-
lemma by Slodkowski [S], which says that every holomorphic motion extends to a global
motion Φ: D × C → C and Φλ : C → C is a |λ|-quasiconformal mapping.

In the following theorem we establish the improved dimension distortion estimate under
conformality assumption on finite union of disks. Recall that c > 0 is an absolute constant.

2.1 Theorem. Let f : C → C be a k-quasiconformal homeomorphism of C (k < k0 =
1/
√

4c), conformal outside D, normalized by f(z) = z + o(1) (z → ∞). Assume that f
is conformal on some finite union of disjoint disks E = ∪n

i=1B(zi, ri) ⊂ D, where zi ∈ R.
Then for any 0 < t < 2,

(2.2)
n
∑

i=1

(|f ′(zi)|ri)t(k) ≤ C

(

n
∑

i=1

rt
i

)
1
3

t(k)
t

,
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where C is a positive constant (may be chosen to be 64). The exponent 0 < t(k) < 2 is
determined by formula (2.7). In particular, it is continuous and strictly increasing in t
and k. For the value t = 1 − 8ck2, t(k) < 1, provided that k is nonzero.

In the other direction, we have

(2.3)
n
∑

i=1

r
t(k)
i ≤ C

(

n
∑

i=1

(|f ′(zi)|ri)t
)

1
3

t(k)
t

.

Proof. Embed the map f into a holomorphic motion in a standard way. Denote by µ the
complex dilatation of f and define µλ = λµ

k
for every λ ∈ D. This Beltrami coefficient

satisfies ‖µλ‖∞ ≤ |λ| < 1 and thus have a principal solution fλ by the measurable Riemann
mapping theorem. Principal solution refers to the unique homeomorphic solution with
asymptotics at infinity fλ(z) = z + o(1). By uniqueness, for λ = k, we get back our
original map, fk = f and f0 = id. Since µ and hence µλ vanish on E, the complex
derivatives f ′λ(zi) exist and nonzero. We shall use the important fact: (2.4) the function
λ 7→ f ′λ(zi) is holomorphic [AB, Theorem 3].

By Koebe’s 1/4-theorem

Di(λ) = B(fλ(zi), 1/4|f ′λ(zi)|ri) ⊂ fλ(B(zi, ri))

and fλ(D) ⊂ B(fλ(0), 4). Here Di(λ) − fλ(0) = ψi,λDi(0), where

ψi,λ(z) = f ′λ(zi)(z − zi) + (fλ(zi) − fλ(0)).

The coefficients of the similarities ψi,λ vary holomorphically in λ, thus {Di(λ)−fλ(0)}n
1 is a

holomorphic family of disjoint disks contained in B(0, 4). Choosing additional similarities
φi : B(0, 4) → Di(0), φi(z) = 1

16riz + zi, set γi,λ = ψi,λ ◦ φi. These contractions generate
a holomorphic family of Cantor sets Cλ ⊂ B(0, 4) as described in [A1]. There is a natural
identification of the points of Cλ with sequences of {1, . . . , n}N. This correspondence gives
a bijective map Φλ : C0 → Cλ. Here Φ0 = id and Φλ(z) depends holomorphically on λ and
thus Φλ(z) is a holomorphic motion. By the extended λ-lemma of [S], it extends to a global
Φλ : C → C |λ|-quasiconformal mapping. Observe that C0 ⊂ R sinceDi(0) = B(zi, 1/4ri)’s
are centered on the real line. This shows that Cλ is contained in a |λ|-quasicircle and thus
has dimension at most 1+c|λ|2 according to Theorem 1.3. On the other hand the dimension
s of the self-similar Cantor set Cλ is determined by the formula [H]

n
∑

i=1

(
1

16
|f ′λ(zi)|ri)s = 1.

We certainly have

(2.5)
n
∑

i=1

(
1

16
|f ′λ(zi)|ri)1+c|λ|2 ≤ 1.
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We are going to use this fact to obtain some improvement on the dimension distortion.
For a probability distribution {pi}n

i=1 define the function

u(λ) = 2
∑

pi log(a|f ′λ(zi)|ri) −
∑

pi log pi,

where we write a for 1/16 for simplicity. This is a harmonic function by (2.4) and we have
the estimate

u(λ) =
2

1 + c|λ|2
[

(1 + c|λ|2)
∑

pi log(a|f ′λ(zi)|ri) −
∑

pi log pi

]

+
1 − c|λ|2
1 + c|λ|2

∑

pi log pi

≤ 2

1 + c|λ|2 log
(

∑

(a|f ′λ(zi)|ri)1+c|λ|2
)

+
1 − c|λ|2
1 + c|λ|2

∑

pi log pi ≤
1 − c|λ|2
1 + c|λ|2

∑

pi log pi

in terms of Jensen’s inequality for the concave logarithm function and (2.5).
In order to make use this estimate for the growth of u, apply Harnack’s inequality in

the disk {|λ| < 2k} (k < 1/2),

(2.6) u(k) ≤ 1

3
u(0) +

2

3

1 − 4ck2

1 + 4ck2

∑

pi log pi.

For dimension estimate, write

∑

pi log(a|f ′(zi)|ri) −
1

t(k)

∑

pi log pi =
1

2
u(k) +

(

1

2
− 1

t(k)

)

∑

pi log pi

(2.6)

≤ 1

3

∑

pi log(ari) +

[

1

3

1 − 4ck2

1 + 4ck2
− 1

6
+

1

2
− 1

t(k)

]

∑

pi log pi

=
1

3

(

∑

pi log(ari) −
1

t

∑

pi log pi

)

+

[

1

3

(

1

t
− 1

2
+

1 − 4ck2

1 + 4ck2

)

+
1

2
− 1

t(k)

]

∑

pi log pi

(J)

≤ 1

3t
log
(

∑

(ari)
t
)

.

In the last step we choose t(k), so that the expression in the square brackets will be zero,
that is, by formula (2.7) and (J) refers to another application of Jensen’s inequality. With
a proper choice of the weights pi we actually have equality in Jensen’s inequality, namely
put pi = (|f ′(zi)|ri)t(k)/

∑

(|f ′(zi)|ri)t(k) to arrive at the following form of (2.2)

1

t(k)
log
(

∑

(a|f ′(zi)|ri)t(k)
)

≤ 1

3t
log
(

∑

(ari)
t
)

.

The defining formula for t(k) reads as

(2.7)
1

t(k)
− 1

2
=

1

3

[(

1

t
− 1

2

)

+
1 − 4ck2

1 + 4ck2

]

.
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Assuming that k ≤ 1/
√

4c, we see that 0 < t(k) < 2 as 0 < t < 2 and that t(k) is
continuous and strictly increasing in both t and k. Observe that, in case of t(k) = 1, t
reads as

t =
1 + 4ck2

1 + 12ck2
> 1 − 8ck2 (k 6= 0).

Our setting is not symmetric with respect to the inverse mapping, however, invoking
Harnack’s inequality the other way around one obtains (2.3) in an analogous way.

Our estimates are only interesting as k → 0. In particular, we often will make the
assumption k < k0 with k0 = 1/

√
4c, this is the range where t(k) is defined at all. We

will need the following standard deformation lemma from [A2, Lemma 4.2]. For the sake
of completeness we sketch here a short proof based on holomorphic motions.

2.8 Lemma. Let f be a K-quasiconformal mapping on C fixing 0, 1 and ∞. Then for
each ε > 0 there is a number % = %(K, ε) ∈ (0, 1) and a (K + ε)-quasiconformal mapping
ϕ on C such that

(a) ϕ(z) = f(z) if 1 ≤ |z|
(b) ϕ(z) = z if |z| ≤ %.

Proof. We consider the associated holomorphic motion {fλ(z)} as in Theorem 2.1 with
the exception that the homeomorphic solution fλ is now normalized by the condition that
it fixes 0, 1 and ∞. Consider the following modified motion of the set {|z| ≤ %}∪{|z| ≥ 1}
for some 0 < % < 1,

Φλ(z) =

{

fλ(z) if |z| ≥ 1
z if |z| ≤ %

Classical distortion properties of quasiconformal mappings assure that the image of the unit
circle fλ(S1) will remain disjoint from the disk {|z| ≤ ρ} as long as |λ| < λ0 = λ0(%) < 1,
where λ0(%) → 1 as % → 0. In other words, Φλ(z) is a holomorphic motion parametrized
by the disk {|λ| < λ0}. The extension of Φk provided by the extended λ-lemma gives a
(k/λ0)-quasiconformal deformation of f described in the statement of the lemma.

2.9 Lemma. Assume that f : C → C is a k-quasiconformal mapping (k < k0) fixing 0, 1
and ∞. Let Bi = B(zi, ri) (zi ∈ R) disjoint disks in D. Then for every sufficiently small
ε > 0 we have

∑

(diam fBi)
t(kε) ≤ C(k, ε)

(

∑

rt
i

)
1
3

t(kε)
t
,

with kε → k as ε→ 0. Similarly, in the other direction

∑

r
t(kε)
i ≤ C(k, ε)

(

∑

(diam fBi)
t
)

1
3

t(kε)
t
.

Proof. Apply Lemma 2.8 to deform f in disks Bi and outside D. We obtain a kε-
quasiconformal map ϕ : C → C which agrees with f in D \ ∪Bi, identity outside B(0, 1/%)
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and a τi similarity inside B(zi, %ri). Here τi is determined by τi(zi) = f(zi) and τi(zi+ri) =
f(zi + ri). Moreover we have a good control on the diameters of the corresponding sets,

(2.10) |ϕ′(zi)|ri = |τ ′i |ri = |f(zi+ri)−f(zi)| ≤ diam fBi . |f(zi+ri)−f(zi)| = |ϕ′(zi)|ri,

up to a constant depending only on k, as quasiconformal maps distort circles in a uniform
manner.

Conjugating with an additional similarity u(z) = (1/%)z, (u−1 ◦ ϕ ◦ u) is identical
outside D and similarity in disks B(%zi, %

2ri). We may apply Theorem 2.1 to find

∑

(|(u−1 ◦ ϕ ◦ u)′(%zi)|%2ri)
t(kε) ≤ C

(

∑

(%2ri)
t
)

1
3

t(kε)
t
,

∑

(%2ri)
t(kε) ≤ C

(

∑

(|(u−1 ◦ ϕ ◦ u)′(%zi)|%2ri)
t
)

1
3

t(kε)
t
.

Combining with (2.10), the desired estimates follow.

Proof of Theorem 1.5. We shall prove the following claim

Let f : C → C be a k-quasiconformal map with k < k0 and E ⊂ R. Then

dimE ≤ t⇒ dim fE ≤ t(k),

dim fE ≤ t⇒ dimE ≤ t(k).

Theorem 1.5 follows now from the fact that for t = 1 − 8ck2, t(k) < 1. The claim
follows from Lemma 2.9 by a standard covering argument. We sketch the proof in the
second case, distorting the dimension downwards. The first case is similar.

First of all, we may clearly assume that E ⊂ [−1/2, 1/2] and f fixes 0, 1 and ∞.
Suppose that dim fE = t, what we need to prove is that dimE ≤ t(k). Choose an exponent
t′ > t. Making use of a basic covering theorem we can find a countable family of disjoint
disks Di = B(wi, %i) such that fE ⊂ ∪5Di, and

∑

%t′

i is arbitrary small. Furthermore,
we may assume that wi ∈ fE. Set zi = f−1(wi) ∈ E and ri = dist(zi, ∂f

−1(Di)). In this
way Bi = B(zi, ri) ⊂ f−1(Di), so the disks Bi are disjoint, centered on the real line and
∪Bi ⊂ D may be assumed, as well.

Now the uniform bound of Lemma 2.9 (with a fixed ε > 0) holds for this possibly
infinite family of disks, too

(2.11)
∑

r
t′(kε)
i ≤ C(k, ε)

(

∑

(diam fBi)
t′
)

1
3

t′(kε)

t′

.

Observe that {f−1(5Di)} gives a cover of E with sets of size

diam f−1(5Di) . ri,
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up to a constant depending only on k by distortion properties of quasiconformal maps.
While the right-hand side of (2.11) can be made arbitrary small with a proper choice of
the family {Di}, since diam fBi ≤ 2%i. We conclude that dimE ≤ t′(kε), letting ε → 0
and t′ → t, dimE ≤ t(k) follows.

Proof of Corollary 1.8. Decompose f = f1 ◦ f2, where f1 K1-quasiconformal and f2 K2-
quasiconformal homeomorphism of the plane with K = K1K2 and K2 close enough to 1.
We use the general dimension distortion estimate (1.2) for f1 and the improvement pro-
vided by Theorem 1.5 for f2. Such decomposition always exists for planar quasiconformal
maps [L, Theorem 4.7, p. 29].

3 Distortion of quasisymmetric functions

In this section we make the assumption that our map fixes the real line. In other words,
we consider quasisymmetric maps of R, where the quasisymmetricity is measured by the
dilatation of (the best) quasiconformal extension. This assumption allows us to sharpen
our estimates and obtain the aesthetically appealing (and possibly sharp) bound 1 − k2

for distortion of 1-dimensional sets. This is a dual result to Smirnov’s (1 + k2)-bound on
the dimension of quasicircles, apparently known to him. In fact, we rely on some of the
ideas of him developed for the quasicircle estimate. We are grateful to him for allowing us
to include this result here.

3.1 Theorem. Let f : C → C be a k-quasiconformal map for which f(R) = R. Then for
a 1-dimensional set E ⊂ R,

dim fE ≥ 1 − k2.

Standard covering arguments reduces the theorem to the following statement. We
sketch the details after the proof of Lemma 3.2.

3.2 Lemma. Given a sequence of finite families of disjoint disks {Bi,j = B(zi,j , ri,j)}nj

i=1

(j = 1, 2, . . .) in the unit disk D, such that in every collection zi ∈ R, for any t < 1
∑

i r
t
i → ∞, ri ≤ δj and δj → 0 as j → ∞. Consider a sequence of k-quasiconformal

maps fj : C → C, fj(z̄) = fj(z), fj conformal outside D, normalized by fj(z) = z + o(1)
(z → ∞). Assume that fj is conformal on the disks Bi,j belonging to the level j. Then

nj
∑

i=1

(

1

16
|f ′j(zi)|ri

)1−k2−ηj

≥ 1.

Here ηj → 0 as j → ∞ for some subsequence.

Proof. For every j embed the map f = fj into the standard holomorphic motion fλ(z)
as in Theorem 2.1. In this way f0 = id, fk = f(j). Since the level j is fixed for a while
we will not explicitly write the dependence on j. As µ the complex dilatation of f is

8



symmetric with respect to the real axis, we have µλ(z̄) = µλ̄(z). This inherits to the
solutions, fλ(z̄) = fλ̄(z). In particular, for purely imaginary λ

(3.3) |f ′−λ(zi)| = |f ′λ(zi)|,

while for real values of λ the map fλ is symmetric with respect to the real axis.
Recall from the proof of Theorem 2.1 that the disks Di(λ) = B(fλ(zi), 1/4|f ′λ(zi)|ri)

are disjoint and included in a disk of radius 4. Hence comparing their area gives (with
a = 1/16)

∑

(a|f ′λ(zi)|ri)2 ≤ 1.

Moreover if λ is real then all the disks Di(λ) are centered on the real line as fλ preserves
the real axis. In this case, we have

∑

(a|f ′λ(zi)|ri) ≤ 1.

As before, consider the harmonic function for a given probability distribution {pi}n
i=1,

u(λ) = uj(λ) = 2
∑

pi log(a|f ′λ(zi)|ri) −
∑

pi log pi.

Jensen’s inequality and the estimates above tell us that u is negative for every λ ∈ D

and u(λ) ≤ ∑

pi log pi for real valued λ. Due to (3.3) u is even on the imaginary axis,
u(−λ) = u(λ) for λ ∈ iR.

Choose a sequence tl → 1− as l → ∞. For a fixed l,
∑

i r
tl
i,j → ∞ as j → ∞ by

assumption. So there exits a subsequence jl such that
∑

i(ari,jl
)tl ≥ 1 for every l. For a

level j = jl, set the weights

pi,j = pi =
rtl
i

∑

rtl
i

.

Then

ujl
(0) = 2

∑

pi log(ari) −
∑

pi log pi

=
2

tl

(

∑

pi log(ari)
tl −

∑

pi log pi

)

+

(

2

tl
− 1

)

∑

pi log pi

=
2

tl
log
(

∑

(ari)
tl
)

+

(

2

tl
− 1

)

∑

pi log pi ≥
(

2

tl
− 1

)

∑

pi log pi.

(3.4)

The family −ujl
(λ)

ujl
(0) form a normal family of harmonic functions, there exists a harmonic

function u0 such that ujl
→ u0 locally uniformly as jl → ∞ through a subsequence. For

this limit function we have

• u0(λ) ≤ 0 (λ ∈ D)

• u0(−λ) = u0(λ) for λ ∈ iR
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• u0(λ) ≤ −1 for λ ∈ R and u0(0) = −1

The last one follows from (3.4) and the fact that uj(λ) ≤∑ pi log pi if λ ∈ R.
Now the second item tells us that ∂

∂y
u0(0) = 0 and the third one says ∂

∂x
u0(0) = 0. In

this case we have a squared–type Harnack inequality (see Lemma 3.6) of the form

u0(λ) ≥ 1 + |λ|2
1 − |λ|2u0(0).

Put λ = k, then

(3.5) uj(k) ≥
(

1 + k2

1 − k2
+ εj

)

uj(0),

with εj → 0 (j → ∞) for a subsequence.
The usual manipulation with Jensen’s inequality provides the desired estimate (here

j = jl and j(k) denotes an exponent depending on k and j to be chosen later).

1

j(k)
log
(

∑

(a|f ′j(zi)ri)j(k)
)

≥
∑

pi log(a|f ′j(zi)|ri) −
1

j(k)

∑

pi log pi

=
1

2
uj(k) +

(

1

2
− 1

j(k)

)

∑

pi log pi

(3.5)

≥ 1

2

(

1 + k2

1 − k2
+ εj

)

uj(0) +

(

1

2
− 1

j(k)

)

∑

pi log pi

(3.4)

≥
[

1

2

(

1 + k2

1 − k2
+ εj

)(

2

tl
− 1

)

+

(

1

2
− 1

j(k)

)]

∑

pi log pi = 0.

We define j(k) by the expression in the square brackets, so that it will be zero. Since
εj → 0 and tl → 1 as jl → ∞ (for a subsequence) we see that j(k) = 1 − k2 − ηj where
ηj → 0 for some subsequence.

Proof of Theorem 3.1. Let E ⊂ [−1/2, 1/2] with dimE = 1. Assume to the contrary that
dim fE < 1 − k2 for some k-quasiconformal map which is, as we may assume, symmetric
with respect to the real axis. We can find a sequence of finite families of disjoint disks
{Bj

i = B(zi, ri)} such that zi ∈ R, sup ri → 0, for any t < 1,
∑

rt
i → ∞ (j → ∞)

and
∑

(diam fBi)
d → 0 (j → ∞), with a fixed exponent d < 1 − k2. Choose ε0 >

0 so that also d < 1 − k2
ε0

. Now deform f according to the family on the level j to
obtain a kε0-quasiconformal map ϕj which is identical outside the unit disk and similarity
in B(%zi, %

2ri), here % = %(ε0, k). Moreover, diam fBi � |ϕ′
j(%zi)|ri. Note that the

deformation can be made so to preserve the symmetry with respect to the real line. This
follows from examining the proof of [A2, Lemma 4.2]. Apply Lemma 3.2 to the sequence
ϕj , we have a contradiction as j → ∞.
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3.6 Lemma (Squared-type Harnack’s inequality). Suppose that the function u ≤ 0
is harmonic in D and ∇u(0) = 0. Then we have an improved Harnack’s inequality of the
form

1 + |z|2
1 − |z|2u(0) ≤ u(z) ≤ 1 − |z|2

1 + |z|2u(0).

Proof. The proof is a slight modification of the complex analytic proof of the standard
Harnack’s inequality. There is a holomorphic function f : D → {w : <w < 0} such that
f = u + iv, where v is real-valued harmonic function. We may assume, that f(0) = −1,
that is u(0) = −1 and v(0) = 0. In virtue of the Cauchy–Riemann equations f ′(0) = 0,
since (∇u)(0) = 0. Map the left half-plane onto the unit disk by the linear fractional
transformation w+1

w−1 , this takes −1 to 0. The composed function maps the unit disk into
the unit disk and vanishes at the origin with double multiplicity. We have a squared–type
Schwarz lemma in this situation,

∣

∣

∣

∣

fz + 1

fz − 1

∣

∣

∣

∣

≤ |z|2.

Observe the following geometric fact for u = <w,

u+ 1

u− 1
≤
∣

∣

∣

∣

w + 1

w − 1

∣

∣

∣

∣

.

Combining the two estimates leads us to

u(z) ≥ −1 + |z|2
1 − |z|2 .

Noting that u(0) = −1, this is the left hand side of the inequality in (3.6). The argument
for the right hand side follows similar lines, one just needs to replace the linear fractional
transformation w+1

w−1 by its negative.

3.7 Remark. The order k2 in Theorem 1.5 and Theorem 3.1 is sharp. Answering a question
of Hayman and Hinkkanen, Tukia [T] constructed a k-quasisymmetric map of the unit
interval which does not preserve one-dimensional sets. It is actually even more singular,
mapping a set of less-than-one dimensional complement to a less-than-one dimensional set.
Moreover, the quasisymmetricity k can be arbitrary close to 0. An analysis of the example
shows that the dimension distortion is of the type 1 − Ck2 as k → 0.
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