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Abstract. Analytic composition operators Cϕ : f 7→ f ◦ ϕ are studied
on certain X-valued versions of BMOA, the space of analytic functions
on the unit disk that have bounded mean oscillation on the unit circle,
where X is a complex Banach space. It is shown that if X is reflexive
and Cϕ is compact on the usual scalar-valued BMOA space, then Cϕ

is weakly compact on the X-valued space BMOAC(X) defined in terms
of Carleson measures. A related function theoretic characterization is
given of the compact composition operators on BMOA.

1. Introduction

Let ϕ be an analytic self-map of the unit disk D = {z ∈ C : |z| < 1}.
Compactness properties of the composition operators

Cϕ : f 7→ f ◦ ϕ

have been intensively studied on various Banach spaces of analytic func-
tions on D (see [CoM] for the basic results related e.g. to the classical
Hardy spaces). Recently the question of which composition operators are
weakly compact has been studied also in the vector-valued setting where the
functions f take values in some complex Banach space X, see e.g. [LST],
[BDL], [L], [LT]. In this setting Cϕ is usually never compact if X is infinite-
dimensional. The purpose of this paper is to continue the study from [L]
and [BDL] by considering the weak compactness of Cϕ on certain vector-
valued BMOA spaces, which are X-valued generalizations of the classical
space BMOA of analytic functions on D that have bounded mean oscillation
on the unit circle T.

Compactness and weak compactness of Cϕ on the scalar-valued BMOA
space have been studied in several recent papers, see e.g. [BCM], [Sm], [MT],
[CM], [WX]. In [L] some of these results were extended to the setting of
the space BMOA(X), which is defined as a Möbius invariant version of the
vector-valued Hardy space H1(X). There are also other interesting possibil-
ities of approaching BMOA in the vector-valued setting (see e.g. [Bl], [Bl2],
[BP]). One alternative arises by considering the weak vector-valued BMOA
space wBMOA(X), which consists of the analytic functions f : D → X such
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that x∗ ◦ f ∈ BMOA for all x∗ ∈ X∗. Some properties of composition op-
erators on a wide class of such weak spaces, including wBMOA(X), follow
from general results of Bonet, Domański and Lindström [BDL].

In this paper we study the weak compactness of composition operators on
BMOAC(X), a vector-valued version of BMOA defined in terms of Carleson
measures, which was considered earlier by Blasco [Bl2] in connection with
vector-valued multipliers, see also [BP]. We are partly motivated by the fact
that the spaces BMOA(X), wBMOA(X) and BMOAC(X) are usually differ-
erent. In fact, it was shown by Blasco [Bl2] that BMOA(X) and BMOAC(X)
coincide (and the respective norms are equivalent) only if X is isomorphic to
a Hilbert space. We will show that the spaces BMOAC(X) and wBMOA(X)
never coincide if X is infinite-dimensional.

Our main result states that if ϕ induces a compact composition operator
on BMOA and X is reflexive, then Cϕ is weakly compact on BMOAC(X).
This result complements the earlier ones from [L] and [BDL]. The proof will
be based on a function theoretic condition which characterizes the compact
composition operators on the scalar-valued BMOA. The necessity part of
this characterization will be established in Section 2. In Section 3 we provide
some basic properties of the space BMOAC(X) and composition operators.
Our main result will be proved in Section 4. As a consequence, we character-
ize the weakly compact composition operators on BMOAC(X) under some
restrictions on ϕ for reflexive Banach spaces X.

2. Compactness of composition operators on BMOA

The space BMOA consists of the analytic functions f : D → C which are
Poisson integrals of functions that have bounded mean oscillation on T. We
recall the following equivalent reformulation of BMOA as a Möbius invariant
version of the Hardy space H2 (see [B]). An analytic function f : D → C

belongs to BMOA if and only if

‖f‖∗ = sup
a∈D

‖f ◦ σa − f(a)‖H2 <∞,

where σa(z) = (a − z)/(1 − az) for a, z ∈ D, and ‖ · ‖Hp denotes the
usual norm on the Hardy space Hp (1 ≤ p < ∞) given by ‖f‖pHp =

sup0<r<1

∫ 2π
0 |f(reiθ)|p dθ2π . The map f 7→ ‖f‖∗ is a seminorm. We equip

BMOA with the complete norm ‖f‖BMOA = |f(0)| + ‖f‖∗. Recall that ac-
cording to the John-Nirenberg theorem [B, p. 15] the map f 7→ supa∈D ‖f ◦
σa− f(a)‖Hp defines an equivalent seminorm on BMOA for any 1 ≤ p <∞.
We refer to [G, Chapter VI] for further properties of BMOA.

It is well-known known that for every analytic map ϕ : D → D the operator
Cϕ : f 7→ f ◦ ϕ is bounded on BMOA, see [St, Theorem 3], [AFP, Theorem
12]. There also are several (equivalent) characterizations of the compact
composition operators on BMOA, see [BCM], [Sm], [WX]. Recall that the
Nevanlinna counting function N(ϕ, ·) of an analytic map ϕ : D → D is defined
by N(ϕ, z) =

∑

w∈ϕ−1(z) log(1/|w|) for z ∈ D \ {ϕ(0)}, where each point in

the preimage ϕ−1(z) is counted according to its multiplicity. The following
result is due to Smith [Sm, Theorem 1.1]. The operator Cϕ is compact on
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BMOA if and only if

(2.1) lim
r→1

sup
{a∈D : |ϕ(a)|>r}

sup
0<|w|<1

|w|2N(σϕ(a) ◦ ϕ ◦ σa, w) = 0

and

(2.2) lim
t→1

sup
{a∈D : |ϕ(a)|≤R}

m({ζ ∈ T : |(ϕ ◦ σa)(ζ)| > t}) = 0,

for every R ∈ (0, 1), where m is the Lebesgue measure on T.
We will provide yet another characterization of the compact composition

operators on BMOA by replacing (2.2) by a condition which involves the
Nevanlinna counting function. This result will be useful in our study of Cϕ
in the vector-valued setting. The following result, which is the main result
of this section, gives the necessity of this condition for the compactness of
Cϕ on BMOA.

Theorem 2.1. Let ϕ : D → D be analytic. If Cϕ is compact on BMOA, then

(2.3) lim
|w|→1

sup
{a∈D : |ϕ(a)|≤R}

N(ϕ ◦ σa, w)

log(1/|w|) = 0,

for every R ∈ (0, 1), where σa(z) = (a− z)/(1 − az) for a, z ∈ D.

We will observe below that conditions (2.1) and (2.3) together are also
sufficient for the compactness of Cϕ on BMOA (see Corollary 4.5).

The main idea for the proof of Theorem 2.3 comes from the work of Bour-
don, Cima and Matheson [BCM, Theorem 4.1], where it was shown that the
compactness of Cϕ on BMOA implies its compactness on H2. The proof in
[BCM] is based on an integral criterion [BCM, Theorem 3.1] which in our
argument will be replaced by an equivalent criterion due to Wirths and Xiao
[WX]. The counting function will be controlled using certain methods from
the proof due to Shapiro [S, Theorem 2.3] of the fact that Cϕ is compact on
the Hardy space H2 if and only if

(2.4) lim
|w|→1

N(ϕ,w)

log(1/|w|) = 0.

Note that condition (2.3) clearly implies (2.4).
We recall next some auxiliary results. We will use frequently the following

easy identities concerning the automorphisms σa : z 7→ (a − z)/(1 − az): It
holds that (σa ◦σa)(z) = z and 1−|σa(z)|2 = (1−|z|2)|σ′a(z)| for all a, z ∈ D

(see [G, I.1] for example). The relevance of the Nevanlinna counting function
is seen from the change of variables formula

(2.5)

∫

D

(λ ◦ ϕ)(z)|ϕ′(z)|2 log
1

|z|dA(z) =

∫

D

λ(z)N(ϕ, z)dA(z),

for positive measurable functions λ : D → R, where A denotes the Lebesgue
measure on D (see [S, 4.3]). Combined with the Littlewood-Paley identity
(see [G, Lemma VI.3.1] or [CoM, Theorem 2.30])

(2.6) ‖f − f(0)‖2
H2 = 2

∫

D

|f ′(z)|2 log
1

|z|
dA(z)

π
,
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formula (2.5) yields the identity

‖f ◦ ϕ− f(ϕ(0))‖2
H2 = 2

∫

D

|f ′(z)|2N(ϕ, z)
dA(z)

π
,

for analytic functions f : D → C and ϕ : D → D. We will also need the
following estimate for the integral in (2.6): There is a constant c such that

(2.7)

∫

D

|f ′(z)|2 log
1

|z|dA(z) ≤ c

∫

D

|f ′(z)|2(1 − |z|2)dA(z)

for all analytic functions f : D → C (see e.g. [G, Lemma VI.3.2]). On the
other hand, it is easy to check that (1 − |z|2) ≤ 2 log(1/|z|) for all z ∈ D.
Finally, we need the “only if”-part of the following result from [WX].

Theorem 2.2 ([WX, Theorem 5.1]). Let ϕ : D → D be analytic. The com-
position operator Cϕ is compact on BMOA if and only if

lim
r→1

sup
‖f‖BMOA≤1

sup
a∈D

∫

{z∈D : |ϕ(z)|>r}
|(f ◦ ϕ)′(z)|2(1 − |σa(z)|2)dA(z) = 0.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Assume that Cϕ is compact on BMOA. Let 0 < R <
1 and ε > 0. Recall that supw∈D ‖fw‖BMOA < ∞, where the functions
fw ∈ BMOA are given by fw(z) = log(1 − wz) for w, z ∈ D. By Theorem
2.2, there is a number t0 ∈ (0, 1) such that

sup
a,b,w∈D

∫

{z∈D : |ϕ(z)|>t0}
|(fw ◦ ϕ)′(u)|2(1 − |(σa ◦ σb)(u)|2)dA(u) < ε,

since |(σa ◦ σb)(u)| = |σc(u)| for some c ∈ D. Let us abbreviate Ω(b) = {z ∈
D : |(ϕ ◦ σb)(z)| > t0} for b ∈ D. By using the change of variable u = σb(z)
and the identities (σb ◦σb)(z) = z and 1−|σa(z)|2 = (1−|z|2)|σ′a(z)|, we get
that

ε > sup
a,b,w∈D

∫

Ω(b)
|(fw ◦ ϕ)′(σb(z))|2|(1 − |σa(z)|2)|σ′b(z)|2dA(z)

= sup
b,w∈D

sup
a∈D

∫

Ω(b)
|(fw ◦ ϕ ◦ σb)′(z)|2(1 − |z|2)|σ′a(z)|dA(z).

Hence the measures µb,w given by

dµb,w(z) = 1Ω(b)
|w|2|(ϕ ◦ σb)′(z)|2
|1 − w(ϕ ◦ σb)(z)|2

(1 − |z|2)dA(z),

are Carleson measures for b, w ∈ D. In particular, by Carleson’s theorem
(see [G, Lemma VI.3.3] or [CoM, Theorem 2.33]), there is a constant C so
that

(2.8) sup
b,w∈D

∫

D

|g|2dµb,w ≤ Cε‖g‖2
H2 ,

for all g ∈ H2.
Consider next b ∈ D such that |ϕ(b)| ≤ R. Let kw denote the analytic

function given by kw(z) =

√
1−|w|2
1−wz for w, z ∈ D, so that ‖kw‖H2 = 1. Recall

that ‖Cψ : H2 → H2‖2 ≤ 2/(1 − |ψ(0)|2) for all analytic maps ψ : D → D

(see [CoM, Corollary 3.7], for instance). Consequently, ‖kw ◦ ϕ ◦ σb‖2
H2 ≤
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2/(1−R2) for all w ∈ D. By choosing g = kw◦ϕ◦σb in (2.8) and abbreviating
dν(z) = (1 − |z|2)dA(z) for z ∈ D, we get that

∫

Ω(b)
|(kw ◦ ϕ ◦ σb)′(z)|2dν(z) =

∫

Ω(b)

|w|2(1 − |w|2)|(ϕ ◦ σb)′(z)|2
|1 − w(ϕ ◦ σb)(z)|4

dν(z)

=

∫

D

|(kw ◦ ϕ ◦ σb)(z)|2dµb,w(z)

≤ Cε‖kw ◦ ϕ ◦ σb‖2
H2 ≤ 2Cε/(1 −R2),

for b, w ∈ D such that |ϕ(b)| ≤ R. Choose next a number r0 ∈ (0, 1) so that
|w|2(1−|w|2)
(1−|w|t0)4 < ε for all w ∈ D with |w| > r0. Then |(kw ◦ ϕ ◦ σb)′(z)|2 ≤
ε|(ϕ ◦ σb)′(z)|2 for such w and z ∈ D \ Ω(b) = {z ∈ D : |(ϕ ◦ σb)(z)| ≤ t0}.
Since ‖ϕ ◦ σb − ϕ(b)‖2

H2 ≤ 4, we get from (2.6) that
∫

D\Ω(b)
|(kw ◦ ϕ ◦ σb)′(z)|2dν(z) ≤ 2ε

∫

D

|(ϕ ◦ σb)′(z)|2 log
1

|z|dA(z) ≤ 4πε,

for all w ∈ D such that |w| > r0. By applying (2.5) to the function λ(z) =
|k′w(z)|2, using (2.7), and combining the above estimates we get that

∫

D

|k′w(z)|2N(ϕ ◦ σb, z)dA(z) =

∫

D

|(kw ◦ ϕ ◦ σb)′(z)|2 log
1

|z|dA(z)

≤ c

∫

D

|(kw ◦ ϕ ◦ σb)′(z)|2dν(z) ≤ c(
2C

1 −R2
+ 4π)ε,

for all b, w ∈ D such that |ϕ(b)| ≤ R and |w| > r0. Hence we conclude that

(2.9) lim
|w|→1

sup
{b : |ϕ(b)|≤R}

∫

D

|k′w(z)|2N(ϕ ◦ σb, z)dA(z) → 0,

as |w| → 1.
We recall finally how condition (2.3) can be obtained from (2.9) by ap-

plying some methods from [S, 5.4] (see also [CoM, p. 138]). Put s =
max{1

2 ,
R+1

2 } ∈ (0, 1) and h = 1−R
4 ∈ (0, 1). Since σ−1

w = σw, we get
that

(2.10) |σ−1
w ((ϕ ◦ σb)(0))| =

∣

∣

∣

∣

w − ϕ(b)

1 −wϕ(b)

∣

∣

∣

∣

≥ 1

2
(|w| − |ϕ(b)|) > h,

for all w, b ∈ D such that |w| > s and |ϕ(b)| ≤ R. Fix next w ∈ D such
that |w| > s. By using the identity (1−|w|2)|k′w(z)|2 = |w|2|σ′w(z)|2 and the
change of variable u = σw(z), we get that

∫

D

|k′w(z)|2N(ϕ ◦ σb, z)
dA(z)

π
=

|w|2
1 − |w|2

∫

D

N(ϕ ◦ σb, z)|σ′w(z)|2 dA(z)

π

=
|w|2

1 − |w|2
∫

D

N(ϕ ◦ σb, σw(u))
dA(u)

π
.

Moreover, (2.10) and the sub-mean value property of N(ϕ, ·) (see [S, 4.6] or
[CoM, p. 137]) give that

∫

hD

N(ϕ ◦ σb, σw(u))
dA(u)

π
≥ h2N(ϕ ◦ σb, w).
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Thus
∫

D

|k′w(z)|2N(ϕ ◦ σb, z)
dA(z)

π
≥ |w|2h2N(ϕ ◦ σb, w)

(1 − |w|2) ≥ h2

8

N(ϕ ◦ σb, w)

log(1/|w|) ,

for all w ∈ D such that |w| > s and |ϕ(b)| ≤ R. Condition (2.3) follows now
from (2.9). �

3. Vector-valued BMOA and composition operators

In the sequel X = (X, ‖ · ‖X) will always be a complex Banach space. We
will consider the following versions of X-valued BMOA (see [Bl], [Bl2], [L]).

Definition 3.1. (1) The space BMOA(X) consists of the analytic functions
f : D → X such that ‖f‖∗,X = supa∈D ‖f ◦ σa − f(a)‖H1(X) < ∞, where

‖ · ‖H1(X) denotes the norm on the X-valued Hardy space H1(X) given

by ‖f‖H1(X) = sup0<r<1

∫ 2π
0 ‖f(reiθ)‖X dθ

2π . We equip BMOA(X) with the
complete norm

‖f‖BMOA(X) = ‖f(0)‖ + ‖f‖∗,X .
(2) The space wBMOA(X), a weak vector-valued version of BMOA, con-

sists of the analytic functions f : D → X such that x∗ ◦ f ∈ BMOA for every
functional x∗ ∈ X∗. The complete norm on wBMOA(X) is given by

‖f‖wBMOA(X) = sup
‖x∗‖≤1

‖x∗ ◦ f‖BMOA.

(3) The space BMOAC(X) consists of the analytic functions f : D → X
such that

‖f‖2
C,X = sup

a∈D

∫

D

‖f ′(z)‖2
X (1 − |σa(z)|2)

dA(z)

π
<∞.

We equip BMOAC(X) with the complete norm ‖f‖BMOAC(X) = ‖f(0)‖ +
‖f‖C,X .

Note that the space BMOAC(X) can be characterized in terms of cer-
tain Carleson measures. In fact, by using the identity 1 − |σa(z)|2 = (1 −
|z|2)|σ′a(z)| and a theorem of Carleson (see [G, Lemma VI.3.3] or [CoM,
Theorem 2.33]) we get that f ∈ BMOAC(X) if and only if the measure
dµf (z) = ‖f ′(z)‖2

X(1 − |z|2)dA(z) is a Carleson measure.
It is known that the seminorms ‖ · ‖∗,C and ‖ · ‖C,C are comparable in the

special case where X = C (one checks this fact from (2.6) and (2.7) using
a change of variables). In fact, BMOA = BMOA(C) = wBMOA(C) =
BMOAC(C) with equivalent norms. In the general case, however, these
spaces are usually different. By [Bl2, Corollary 1.1] the spaces BMOA(X)
and BMOAC(X) coincide, and the respective norms are equivalent, if and
only ifX is isomorphic to a Hilbert space. It is also known that BMOA(X) =
wBMOA(X), and the respective norms are equivalent, if and only if X is
finite-dimensional (see e.g. [L, Example 15]). The following result comple-
ments these facts.

Proposition 3.2. The spaces BMOAC(X) and wBMOA(X) coincide, and
the respective norms are equivalent, if and only if X is finite-dimensional.
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Proof. Let X be any complex Banach space. We get from (2.6), (2.7) and
the change of variables w = σa(z) that

‖x∗ ◦ f ◦ σa − x∗(f(a))‖2
H2 ≤ 2c

∫

D

|(x∗ ◦ f ◦ σa)′(z)|2(1 − |z|2)dA(z)

= 2c

∫

D

|(x∗ ◦ f)′(w)|2(1 − |σa(w)|2)dA(w) ≤ 2c‖x∗‖2
X∗‖f‖2

C,X ,

for f ∈ BMOAC(X) and x∗ ∈ X∗, where we also used the identity (σa ◦
σa)(w) = w. Thus ‖f‖wBMOA(X) ≤

√
2c‖f‖BMOAC(X) for f ∈ BMOAC(X).

Moreover, if dim(X) = n < ∞, then it is not difficult to find a constant
C (depending on n) such that ‖f‖BMOAC(X) ≤ C‖f‖wBMOA(X) for all f ∈
wBMOA(X).

Assume next that X is infinite-dimensional. Let n ∈ N. By Dvoretzky’s
theorem (see e.g. [DJT, Theorem 19.1]) there exists an n-dimensional sub-
space En ⊂ X and a linear isomorphism Tn : `n2 → En so that ‖Tn‖ ≤ 2 and
‖T−1

n ‖ = 1. Define the analytic function fn : D → X by

fn(z) =
n

∑

k=1

(Tnek)z
k

√
k

for z ∈ D, where (e1, . . . , en) is an orthonormal basis of `n2 . Then the argu-
ment in [L, p. 744] shows that supn∈N ‖fn‖wBMOA(X) < ∞. On the other
hand, since

‖f ′n(z)‖2
X = ‖

n
∑

k=1

√
k(Tnek)z

k−1‖2
X ≥ ‖

n
∑

k=1

√
kekz

k−1‖2
`n2

=
n

∑

k=1

k|z|2(k−1),

we get that

‖fn‖2
C,X ≥ 2

n
∑

k=1

k

∫ 1

0
r2(k−1)(1 − r2)rdr =

n
∑

k=1

1

k + 1
≥ log n

2
.

Thus ‖fn‖BMOAC(X) → ∞ as n → ∞, which shows that the norms are
not equivalent. Moreover, by using the open mapping theorem we get that
BMOAC(X) ( wBMOA(X). �

We consider next the composition operators Cϕ : f 7→ f ◦ ϕ on the space
BMOAC(X). It is known that for every analytic map ϕ : D → D the operator
Cϕ is bounded on BMOA(X) and wBMOA(X) (see [L, Proposition 3] and
e.g. [LT, Theorem 5.2]). We sketch here for completeness a proof that Cϕ is
bounded on BMOAC(X) for any complex Banach space X. We need first a
vector-valued version of (2.7): It holds that

(3.1)

∫

D

‖f ′(z)‖2
X log

1

|z|dA(z) ≤ c

∫

D

‖f ′(z)‖2
X (1 − |z|2)dA(z),

for any complex Banach space X and analytic function f : D → X. In fact,
the proof of (3.1) in [G, Lemma VI.3.2] remains valid also in the vector-
valued setting, since the map z 7→ ‖f ′(z)‖2

X is subharmonic. Moreover, by
the change of variable w = σa(z) and the identity (σa ◦ σa)(z) = z we get
that

(3.2)

∫

D

‖f ′(w)‖2
X (1−|σa(w)|2)dA(w) =

∫

D

‖(f ◦σa)′(z)‖2
X (1−|z|2)dA(z),
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for all analytic functions f : D → X. By using the estimate (1 − |z|2) ≤
2 log(1/|z|), we get from (3.1) and (3.2) that

(3.3) ‖f‖2
C,X ≤ 2 sup

a∈D

∫

D

‖(f ◦ σa)′(z)‖2
X log

1

|z|
dA(z)

π
≤ 2c‖f‖2

C,X .

Recall also that by an inequality due to Littlewood it holds that N(ϕ ◦
σa, z) ≤ N(σϕ(a), z) for all z ∈ D\{ϕ(a)} and a ∈ D (see [S, p. 380] or [CoM,
p. 33]). The fact that Cϕ is bounded on BMOAC(X) can then be seen from
(3.3) and the formula (2.5) applied to the function λ(z) = ‖f ′(z)‖2

X . Indeed,
we have that

‖f ◦ ϕ‖2
C,X ≤ 2 sup

a∈D

∫

D

‖(f ◦ ϕ ◦ σa)′(z)‖2
X log

1

|z|
dA(z)

π

= 2 sup
a∈D

∫

D

‖f ′(z)‖2
XN(ϕ ◦ σa, z)

dA(z)

π

≤ 2 sup
a∈D

∫

D

‖f ′(z)‖2
XN(σϕ(a), z)

dA(z)

π

= 2 sup
a∈D

∫

D

‖(f ◦ σϕ(a))
′(z)‖2

X log
1

|z|
dA(z)

π
≤ 2c‖f‖2

C,X ,

for all f ∈ BMOAC(X). The upper bound

(3.4) ‖Cϕ : BMOAC(X) → BMOAC(X)‖ ≤
√

2c+
1√
2

log
1 + |ϕ(0)|
1 − |ϕ(0)|

can be calculated from the above estimate and the following lemma, which
will be useful in the sequel.

Lemma 3.3. Let f ∈ BMOAC(X) and R ∈ (0, 1) be arbitrary. Then

(3.5) sup
a∈D

∫ 2π

0
‖(f ◦ σa)′(Reiθ)‖2

X

dθ

2π
≤

2‖f‖2
C,X

(1 −R2)2

and

(3.6) ‖f(z)‖X ≤ ‖f(0)‖X +
1√
2
‖f‖C,X log

1 + |z|
1 − |z| ,

for every z ∈ D.

Proof. Let R ∈ (0, 1), a ∈ D and f ∈ BMOAC(X). Recall that since the

function z 7→ ‖(f ◦ σa)′(z)‖2
X is subharmonic on D, the integral

∫ 2π
0 ‖(f ◦

σa)
′(ρeiθ)‖2

Xdθ increases with ρ ∈ (0, 1). By using (3.2) we get that

‖f‖2
C,X ≥

∫

D

‖(f ◦ σa)′(z)‖2
X (1 − |z|2)dA(z)

π

≥ 1

π

∫ 1

R

∫ 2π

0
‖(f ◦ σa)′(reiθ)‖2

Xdθ(1 − r2)rdr

≥ 1

π

∫ 2π

0
‖(f ◦ σa)′(Reiθ)‖2

Xdθ

∫ 1

R
(1 − r2)rdr

=
(1 −R2)2

4π

∫ 2π

0
‖(f ◦ σa)′(Reiθ)‖2

Xdθ.
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This proves (3.5). From the Hölder inequality we get that

(1 − |z|2)‖f ′(z)‖X = ‖(f ◦ σz)′(0)‖X ≤
(

∫ 2π

0
‖(f ◦ σz)′(Reiθ)‖2

X

dθ

2π

)1/2

,

for every z ∈ D and R ∈ (0, 1). Thus (3.5) gives that

(3.7) sup
z∈D

(1 − |z|2)‖f ′(z)‖X ≤
√

2‖f‖C,X ,

for every f ∈ BMOAC(X). Since f(z) − f(0) = eiθ
∫ |z|
0 f ′(teiθ)dt for every

z = |z|eiθ ∈ D, this yields that

‖f(z) − f(0)‖X ≤
√

2‖f‖C,X
∫ |z|

0

1

1 − t2
dt =

1√
2
‖f‖C,X log

1 + |z|
1 − |z| ,

which proves (3.6). �

4. Weakly compact composition operators on BMOAC(X)

Recall that a bounded linear map T on a Banach space E is weakly com-
pact if TBE is a weakly compact set, where BE is the closed unit ball of
E. We note that if the composition operator Cϕ : f 7→ f ◦ ϕ is weakly com-
pact on BMOAC(X), then X is reflexive and Cϕ is weakly compact also
on BMOA. In fact, since Cϕ(fx) = fx for the constant functions fx ≡ x
(where x ∈ X), the weak compactness of Cϕ on BMOAC(X) yields that

BX is weakly compact so that X is reflexive. Moreover, given some non-
zero x0 ∈ X, we get that Cϕ is weakly compact on the closed subspace
x0BMOAC(C) = {x0f : f ∈ BMOAC(C)} of BMOAC(X). Since BMOA is
obviously isomorphic to x0BMOAC(C), we deduce that Cϕ is weakly com-
pact on BMOA. Note also that ifX is infinite-dimensional, then composition
operators Cϕ are never compact on BMOAC(X).

Our main result provides a sufficient condition for the weak compactness
of composition operators on BMOAC(X).

Theorem 4.1. Let X be a reflexive Banach space and suppose that ϕ : D →
D is an analytic map such that Cϕ : BMOA → BMOA is compact. Then
Cϕ : BMOAC(X) → BMOAC(X) is weakly compact.

Theorem 4.1 complements [L, Theorem 7] and [BDL, Proposition 11]
where it is shown that if X is reflexive and Cϕ is compact on BMOA, then
Cϕ is weakly compact on both BMOA(X) and wBMOA(X). In the case
of wBMOA(X) this result follows from a general theorem for composition
operators on a large class of vector-valued spaces of weak type. In the case
of BMOA(X) the proof is essentially a vector-valued modification of Smith’s
characterization of the compact composition operators on BMOA (see con-
ditions (2.1) and (2.2)). We start the proof of Theorem 4.1 by combining
(2.1) and Theorem 2.1: If Cϕ is compact on BMOA, then

(4.1) lim
r→1

sup
{a∈D : |ϕ(a)|>r}

sup
0<|w|<1

|w|2N(σϕ(a) ◦ ϕ ◦ σa, w) = 0

and

(4.2) lim
|w|→1

sup
{a∈D : |ϕ(a)|≤R}

N(ϕ ◦ σa, w)

log(1/|w|) = 0,
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for every R ∈ (0, 1). The remaining parts of the argument are essentially
contained in the following two lemmas which will be proved below. Here Cr
denotes the linear operator given by (Crf)(z) = f(rz) for analytic functions
f : D → X and r ∈ (0, 1).

Lemma 4.2. The operators Cr : BMOAC(X) → BMOAC(X) satisfy the fol-
lowing properties for r ∈ (0, 1).

(1) sup0<r<1 ‖Cr‖ <∞.
(2) For every 0 < R < 1, one has

sup
‖f‖BMOAC(X)≤1

sup
|z|≤R

max{‖(f − Crf)′(z)‖X , ‖(f −Crf)(z)‖X} → 0,

as r → 1.
(3) If X is reflexive, then Cr is weakly compact on BMOAC(X).

Lemma 4.3. Let ϕ : D → D be an analytic map such that conditions (4.1)
and (4.2) hold. Then

‖Cϕ − CϕCr : BMOAC(X) → BMOAC(X)‖ → 0,

as r → 1.

We note that the proof of Theorem 4.1 is easy to complete by using Lem-
mas 4.2 and 4.3. Indeed, assume that X is reflexive and Cϕ is compact on
BMOA so that (4.1) and (4.2) hold. Let rn = n

n+1 and consider the lin-

ear operators Tn = CϕCrn for n ∈ N. By parts (1) and (3) of Lemma 4.2
the operators Tn are bounded and weakly compact on BMOAC(X). Since
‖Cϕ−Tn‖ → 0 as n→ ∞ by Lemma 4.3, the operator Cϕ is weakly compact
on BMOAC(X). This proves Theorem 4.1.

We prove next Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. The assertion (1) follows from the fact that Cr is the
composition operator induced by the mapping z 7→ rz. In fact, from (3.4)

we get that ‖Cr‖ ≤
√

2c for every r ∈ (0, 1) (where c is the constant from
(2.7)).

We prove next (2). Let 0 < r,R < 1. Consider an analytic function
f : D → X and a point z ∈ D. Put ρ = (|z|+1)/2 so that |rz| < |z| < ρ < 1.
Using the Cauchy integral formula we obtain that

‖f ′(z) − rf ′(rz)‖X =

∥

∥

∥

∥

∫ 2π

0

(

ρf ′(ρeiθ)
ρ− ze−iθ

− ρrf ′(ρeiθ)
ρ− rze−iθ

)

dθ

2π

∥

∥

∥

∥

X

≤
∫ 2π

0

(1 − r)‖f ′(ρeiθ)‖X
|ρ− ze−iθ||ρ− rze−iθ|

dθ

2π
≤ 4(1 − r)

(1 − |z|)2
∫ 2π

0
‖f ′(ρeiθ)‖X

dθ

2π
.

From the Hölder inequality and Lemma 3.3 we get that

(4.3) ‖(f − Crf)′(z)‖X ≤ 4
√

2(1 − r)

(1 − |z|)2(1 − ρ2)
‖f‖C,X ≤ 16(1 − r)

(1 − |z|)3 ‖f‖C,X .

Moreover, since (f − Crf)(z) = eiθ
∫ |z|
0 (f − Crf)′(teiθ)dt where z = |z|eiθ ,

we have that

(4.4) ‖(f −Crf)(z)‖X ≤ 16(1−r)‖f‖C,X
∫ |z|

0

dt

(1 − t)3
≤ 8(1 − r)

(1 − |z|)2 ‖f‖C,X .
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We obtain (2) by taking the supremum over all z ∈ D and f satisfying
|z| ≤ R and ‖f‖BMOAC(X) ≤ 1 in (4.3) and (4.4), and letting r → 1.

Finally we prove (3). We will approximate Cr using the truncation opera-
tors Pn, where (Pnf)(z) =

∑n
k=0 xkz

k for f(z) =
∑∞

k=0 xkz
k in BMOAC(X)

and n ≥ 0. We note first that the operators Pn are bounded on BMOAC(X).
Indeed, for any analytic function f : D → X with f(z) =

∑∞
k=0 xkz

k we
have that ‖x0‖X = ‖f(0)‖X ≤ ‖f‖BMOAC(X). Moreover, there is a con-

stant K such that supk≥1 ‖xk‖X ≤ K supz∈D(1 − |z|2)‖f ′(z)‖X for all f ∈
BMOAC(X). Here one may apply the familiar scalar-valued argument (see
[Bl3, p. 101], for example). By applying (3.7) we get that supk≥1 ‖xk‖X ≤√

2K‖f‖BMOAC(X). Since ‖zn‖BMOAC(C) ≤ 1 for n ≥ 1, we obtain that

‖Pn‖ ≤
√

2K(n+ 1).
Let next ε > 0 and fix n0 so that

∑∞
k=n0+1 kr

k < ε. For any z ∈ D and

f ∈ BMOAC(X) with f(z) =
∑∞

k=0 xkz
k we get that

‖((Cr − Pn0Cr)f)′(z)‖X ≤
∞
∑

k=n0+1

‖xk‖Xrkk|z|k−1 ≤
√

2Kε‖f‖BMOAC(X).

Since ‖(Cr − Pn0Cr)f‖BMOAC(X) ≤ supz∈D ‖((Cr − Pn0Cr)f)′(z)‖X by the
definition of the BMOAC(X) norm, we get that ‖Cr−PnCr‖ → 0 as n→ ∞.
The proof of (3) is completed by noting that for every n ∈ N the operator
Pn is weakly compact on BMOAC(X) since it factors through the reflexive
direct sum `n+1

2 (X) (see the proof of [LST, Proposition 2]). �

For the proof of Lemma 4.3 we need a refinement of condition (2.1) due
to Smith [Sm, Lemma 2.1]. For convenience, we use the following technical
modification of Smith’s result from [L].

Lemma 4.4 ([L, Lemma 10]). Let ψ : D → D be an analytic function with
ψ(0) = 0. Suppose that there is ε ∈ (0, 1

e ) such that

sup
0<|w|<1

|w|2N(ψ,w) ≤ ε2.

Then N(ψ, z) ≤ 2ε log(1/|z|) for all z ∈ D with
√
ε ≤ |z| < 1.

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. For r ∈ (0, 1) let Sr denote the linear operator f 7→
f − Crf so that ‖Sr‖ ≤ K := 1 +

√
2c, by Lemma 4.2(1). Since

lim
r→1

sup
‖f‖BMOAC(X)≤1

‖(f − Crf)(ϕ(0))‖X = 0,

by Lemma 4.2(2), it suffices to show that

(4.5) lim
r→1

sup
‖f‖BMOAC(X)≤1

sup
a∈D

Ma(CϕSrf) = 0,

where we denote

Ma(g) =

∫

D

‖g′(z)‖2
X (1 − |σa(z)|2)

dA(z)

π
,

for g ∈ BMOAC(X) and a ∈ D. Let ε ∈ (0, 1
e ) and let f ∈ BMOAC(X)

be arbitrary. We will abbreviate ϕa = σϕ(a) ◦ ϕ ◦ σa and gr,a = (Srf) ◦
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σϕ(a) for all a ∈ D and r ∈ (0, 1). By (4.1) there is R ∈ (0, 1) such that

sup0<|w|<1 |w|2N(ϕa, w) < ε2 for all a ∈ D with |ϕ(a)| > R. Since ϕa(0) = 0,
we get from Lemma 4.4 that

(4.6) N(ϕa, z) ≤ 2ε log(1/|z|)

for all a, z ∈ D such that |ϕ(a)| > R and
√
ε ≤ |z| < 1. Using (3.2) and the

identity (CϕSrf) ◦ σa = gr,a ◦ ϕa we get that

Ma(CϕSrf) =

∫

D

‖(gr,a ◦ ϕa)′(z)‖2
X(1 − |z|2)dA(z)

π
.

Thus the estimate (1 − |z|2) ≤ 2 log(1/|z|) and the formula (2.5) applied to
the function λ(z) = ‖g′r,a(z)‖2

X give that

(4.7) Ma(CϕSrf) ≤ 2

∫

D

‖g′r,a(z)‖2
XN(ϕa, z)

dA(z)

π
,

for all r ∈ (0, 1). By applying (4.6), (3.1) and (3.2), we get that
∫

√
ε≤|z|<1

‖g′r,a(z)‖2
XN(ϕa, z)

dA(z)

π
≤ 2ε

∫

D

‖g′r,a(z)‖2
X log

1

|z|
dA(z)

π

≤ 2cε

∫

D

‖((Srf) ◦ σϕ(a))
′(z)‖2

X(1 − |z|2)dA(z)

π
≤ 2cε‖Srf‖2

C,X ,

for a ∈ D such that |ϕ(a)| > R. On the other hand, recall that N(ϕa, z) ≤
log(1/|z|) for z ∈ D\{0} by Littlewood’s inequality (see [S, p. 380] or [CoM,
p. 33]). Thus we get from Lemma 3.3 that

∫

|z|<√
ε
‖g′r,a(z)‖2

XN(ϕa, z)
dA(z)

π
≤

∫

|z|<√
ε
‖g′r,a(z)‖2

X log
1

|z|
dA(z)

π

= 2

∫

√
ε

0

∫ 2π

0
‖((Srf) ◦ σϕ(a))

′(ρeiθ)‖2
X

dθ

2π

(

log
1

ρ

)

ρdρ

≤
4‖Srf‖2

C,X
(1 − ε)2

∫

√
ε

0

(

log
1

ρ

)

ρdρ ≤ 4
√
ε

(1 − 1
e )

2
‖Srf‖2

C,X .

By combining these estimates with (4.7) we get that

(4.8) sup
{a∈D : |ϕ(a)|>R}

Ma(CϕSrf) ≤ C(ε+
√
ε)‖f‖2

BMOAC(X).

for all r ∈ (0, 1), where C is a constant.
We consider next a ∈ D such that |ϕ(a)| ≤ R. By (4.2) there is t0 ∈ (0, 1)

such that

(4.9) N(ϕ ◦ σa, z) ≤ ε log(1/|z|),

for every a, z ∈ D satisfying |ϕ(a)| ≤ R and |z| > t0. Using Lemma 4.2(2)
we choose r0 ∈ (0, 1) so that

(4.10) sup
|z|≤t0

‖(Srf)′(z)‖2
X ≤ ε‖f‖2

BMOAC(X)
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for all r ≥ r0. Using (3.2), the estimate (1 − |z|2) ≤ 2 log(1/|z|) and the
formula (2.5) applied to the function λ(z) = ‖(Srf)′(z)‖2

X we get that

Ma(CϕSrf) =

∫

D

‖((Srf) ◦ ϕ ◦ σa)′(z)‖2
X (1 − |z|2)dA(z)

π

≤ 2

∫

D

‖(Srf)′(z)‖2
XN(ϕ ◦ σa, z)

dA(z)

π
.(4.11)

From (4.9) and (3.1) we get that
∫

t0<|z|<1
‖(Srf)′(z)‖2

XN(ϕ ◦ σa, z)
dA(z)

π
≤ ε

∫

D

‖(Srf)′(z)‖2
X log

1

|z|
dA(z)

π

≤ cε

∫

D

‖(Srf)′(z)‖2
X (1 − |z|2)dA(z) ≤ K2cε‖f‖2

BMOAC(X).

Moreover, by using (4.10) we get that
∫

|z|≤t0
‖(Srf)′(z)‖2

XN(ϕ ◦ σa, z)
dA(z)

π
≤ 2ε‖f‖2

BMOAC(X),

for r ≥ r0, since 2
∫

D
N(ϕ ◦σa, z)dA(z)

π = ‖ϕ ◦σa−ϕ(a)‖2
H2 ≤ 4 by (2.5) and

(2.6). By combining the preceding estimates with (4.11) we get that

sup
{a∈D : |ϕ(a)|≤R}

Ma(CϕSrf) ≤ 2(K2c+ 2)ε‖f‖2
BMOAC(X),

for all r ≥ r0. Finally, by taking (4.8) together with the above estimate, we
get (4.5). This proves the lemma and finishes the proof of Theorem 4.1. �

We record separately the special case X = C of Theorem 4.1, where Cϕ
is compact on BMOA, since the operators Cr are compact on BMOA for
r ∈ (0, 1).

Corollary 4.5. The composition operator Cϕ is compact on BMOA if and
only if (4.1) and (4.2) hold.

A complete characterization of the weakly compact composition opera-
tors on BMOAC(X) depends on the question whether all weakly compact
composition operators on BMOA are compact or not. Unfortunately this
question is open for arbitrary composition operators on BMOA (see e.g.
[CM]). However, there are some partial positive results in the literature,
which in combination with Theorem 4.1 lead to characterizations of weakly
compact composition operators on BMOAC(X) in some cases. By applying
[Sm, Theorem 4.1], [CM, Theorem 1] and [MT, Corollary 5.4] we obtain the
following partial characterization. Assume that ϕ : D → D is analytic and
satisfies one of the following conditions:

(1) ϕ is univalent, or
(2) ϕ ∈ VMOA and ϕ(D) lies inside a polygon inscribed in the unit

circle.

Then Cϕ is weakly compact on BMOAC(X) if and only if X is reflexive
and Cϕ is compact on BMOA. See [L, p. 741] for the details.

Acknowledgements. I thank my supervisor Hans-Olav Tylli for his valu-
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