
Dirichlet problem at infinity for A-harmonic functions∗

Aleksi Vähäkangas†

Department of Mathematics and Statistics
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FIN-00014 University of Helsinki, Finland

aleksi.vahakangas@helsinki.fi

October 2, 2005

Abstract

We study the Dirichlet problem at infinity for A-harmonic functions on a Cartan-Hadamard

manifold M and give a sufficient condition for a point at infinity x0 ∈ M(∞) to be A-regular.

This condition is local in the sense that it only involves sectional curvatures of M in a set U ∩M ,

where U is an arbitrary neighborhood of x0 in the cone topology. The results apply to the

Laplacian and p-Laplacian, 1 < p < ∞, as special cases.

1 Introduction

Throughout this paper M is a Cartan-Hadamard n-manifold, n ≥ 2, and o ∈ M is fixed. Recall
that a Cartan-Hadamard manifold is a complete, simply connected Riemannian manifold with non-
positive sectional curvatures. We denote ρ = d(·, o). In this paper c will denote an arbitrary positive
constant that may vary even within a line.

We are interested in the following question: Are there bounded non-constant harmonic functions
on M? For example, if M = R

n, the answer is no by Liouville’s theorem but if M is the Poincaré
disk, then the answer is yes. Greene and Wu [5] conjectured that M has a non-constant bounded
harmonic function if the sectional curvatures of M satisfy

KM ≤ − A

ρ2

for some constant A > 0 outside a compact set. This is still open in general but has been verified in
the case n = 2 (see [12]).

Let us recall the definition of cone topology. For details and proofs, see [4]. We say that two unit
speed geodesics γ, σ : R → M are asymptotic if supt≥0 d

(

γ(t), σ(t)
)

< ∞. This defines an equivalence
relation. Denote the equivalence class of γ by γ(∞) and the set of all equivalence classes by M(∞).
We call elements of M(∞) points at infinity and denote M̄ = M ∪ M(∞). For every x ∈ M and
y ∈ M̄ \ {x} there exists a unique unit speed geodesic γx,y such that γx,y(0) = x and y ∈ γx,y(0,∞].
Given x ∈ M , v ∈ TxM \ {0}, δ > 0, and r > 0, we define a cone

C(v, δ) = {y ∈ M̄ \ {x} : ^(v, γ̇x,y
0 ) < δ}

and a truncated cone
T (v, δ, r) = C(v, δ) \ B̄(x, r).
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It can be shown that the collection {open balls} ∪ {cones} is a basis for a topology on M̄ . This is
called the cone topology. Equipping M̄ with the cone topology, M̄ is homeomorphic to the closed
unit ball B̄(0, 1) in R

n and M(∞) is mapped onto S
n−1 in this homeomorphism. From now on we

always equip M̄ with the cone topology.

A function u ∈ W 1,p
loc (M) is A-harmonic if it is continuous and a weak solution of the equation

− divA(∇u) = 0.

Here 〈A(∇u),∇u〉 ≈ |∇u|p and 1 < p < ∞. See Section 2 for precise assumptions on A. We say that
the Dirichlet problem at infinity (or asymptotic Dirichlet problem) for A-harmonic functions (or the
operator A) is solvable if for every f ∈ C(M(∞)) there exists a function u ∈ C(M̄) such that u|M is
A-harmonic and u|M(∞) = f . It is easy to see that such u is always unique by compactness of M̄ .
Solvability of this Dirichlet problem implies that M has a lot of bounded non-constant A-harmonic
functions. Therefore one way to approach the Greene-Wu conjecture is to consider the Dirichlet
problem at infinity for the Laplacian.

The Dirichlet problem at infinity for the Laplacian has been solved under various assumptions
on the manifold, see Section 1 in [10] for the history of the problem. In the case of the p-Laplacian,
Pansu [13] showed the existence of non-constant bounded p-harmonic functions with finite p-energy
on Cartan-Hadamard manifolds of pinched curvature −b2 ≤ KM ≤ −a2 for p > (n − 1)b/a. In [8]
Holopainen solved the Dirichlet problem at infinity for the p-Laplacian on Cartan-Hadamard mani-
folds of pinched curvature. This result was generalized in [10] to the setting of Gromov hyperbolic
metric measure spaces.

In this paper we consider the Dirichlet problem at infinity for a general operator A. Associated
with the Dirichlet problem at infinity are Perron’s method and A-regular points at infinity. In order
to show that a given x0 ∈ M(∞) is A-regular, we construct a barrier-like function w. In fact, in the
case of the Laplacian, we construct for any given δ > 0 a function −w that is a barrier at γ̇o,x0

0 with
angle δ using Choi’s terminology in [3]. The problem is to verify that w(x) → 0 as x → x0. For this
we use Cheng’s ideas from [2] adapted into our setting.

2 Preliminaries

In this section we define A-harmonic functions and A-regular points at infinity.

Let N be a Riemannian manifold and 1 < p < ∞. Suppose that A : TN → TN is an operator
that satisfies the following assumptions for some 0 < α ≤ β < ∞: the mapping Ax = A|TxN :
TxN → TxN is continuous for almost every x ∈ N and the mapping x 7→ Ax(Vx) is measurable for
all measurable vectorfields V on M ; for almost every x ∈ N and every v ∈ TxN :

〈Ax(v), v〉 ≥ α|v|p,

|Ax(v)| ≤ β|v|p−1,
〈

Ax(v) −Ax(w), v − w
〉

> 0,

whenever w ∈ TxN \ {v}, and

Ax(λv) = λ|λ|p−2Ax(v)

for all λ ∈ R \ {0}. We denote the set of all such operators by Ap(N). The numbers α and β are
called structure constants of A.

Suppose that U ⊂ N is an open set and A ∈ Ap(N). A function u ∈ C(U) ∩ W 1,p
loc (U) is

A-harmonic in U if it is a weak solution of the equation

(2.1) − divA(∇u) = 0,
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in other words, if

(2.2)

∫

U

〈

A(∇u),∇ϕ
〉

= 0

for every test function ϕ ∈ C∞
0 (U). If |∇u| ∈ Lp(U), then it is equivalent to require (2.2) for all

ϕ ∈ W 1,p
0 (U) by approximation.

A lower semicontinuous function u : U → (−∞,∞] is A-superharmonic if u 6≡ ∞ in each
component of U , and for each open D ⊂⊂ U and each h ∈ C(D̄), A-harmonic in D, h ≤ u on ∂D
implies h ≤ u in D.

In the case of the p-Laplacian
A(v) = |v|p−2v,

the continuous weak solutions of (2.1) are called p-harmonic functions. In this case α = β = 1. A
function u ∈ C(U) ∩ W 1,2

loc (U) is 2-harmonic if and only if it belongs to C∞(U) and ∆u ≡ 0 in U ,
i.e. u is harmonic in the usual sense.

The A-harmonic functions have many features in common with harmonic functions. See [6] for
properties and theory of A-harmonic and A-superharmonic functions in R

n.

2.3 Perron’s method and regular points at infinity

We approach the Dirichlet problem at infinity using Perron’s method. Our definitions of the upper
and lower Perron solutions follow [6]. Fix p ∈ (1,∞) and A ∈ Ap(M).

2.4 Definition. A function u : M → (−∞,∞] belongs to the upper class Uf of f : M(∞) →
[−∞,∞] if

(i) u is A-superharmonic in M ,

(ii) u is bounded below, and

(iii) lim infx→x0
u(x) ≥ f(x0) for all x0 ∈ M(∞).

The function
Hf = inf{u : u ∈ Uf}

is called the upper Perron solution.

2.5 Theorem. One of the following is true:

(i) Hf is A-harmonic in M ,

(ii) Hf ≡ ∞ in M ,

(iii) Hf ≡ −∞ in M .

Proof. As in [6, Theorem 9.2].

Note that if f is bounded, then also Hf is bounded and by Theorem 2.5 it is then A-harmonic
in M . The upper Perron solution is a good candidate to the solution of the Dirichlet problem at
infinity.

2.6 Definition. A point x0 ∈ M(∞) is A-regular, if

lim
x→x0

Hf (x) = f(x0)

for each continuous f : M(∞) → R.
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Define the lower class Lf = −U−f and the lower Perron solution Hf = −H−f . It then holds

that Hf ≥ Hf .

2.7 Remark. If two points x1, x2 ∈ M(∞), x1 6= x2, are A-regular, then there exists a non-constant
bounded A-harmonic function on M . On the other hand, the Dirichlet problem at infinity for
A-harmonic functions is solvable if and only if all points at infinity are A-regular.

3 Estimates involving Jacobi fields

In this section we establish some elementary geometric estimates that we will need later on.
If K : [0,∞) → (−∞, 0] is a smooth function, let FK ∈ C∞

(

[0,∞)
)

be the solution to the initial
value problem











FK(0) = 0,

F ′
K(0) = 1,

F ′′
K + KFK = 0.

3.1 Example. Suppose that φ > 1 and t0 > 0 are constants and K : [0,∞) → (−∞, 0] is a smooth
function such that K(t) = −φ(φ − 1)/t2 when t ≥ t0. It is easy to verify that then

FK(t) = c1t
φ + c2t

1−φ

for all t ≥ t0, where

c1 = t−φ
0

FK(t0)(φ − 1) + t0F
′
K(t0)

2φ − 1

and

c2 = tφ−1
0

FK(t0)φ − t0F
′
K(t0)

2φ − 1
.

3.2 Lemma. Let k,K : [0,∞) → (−∞, 0] be smooth functions that are constant in some neighbor-
hood of 0. Suppose that v ∈ ToM is a unit vector and γ = γv : R → M is the unit speed geodesic
with γ̇0 = v. Suppose that for every t > 0 we have

k(t) ≤ KM (P ) ≤ K(t)

for every 2-dimensional subspace P ⊂ Tγ(t)M that contains the radial vector γ̇t.
(a) If W is a Jacobi field along γ with W0 = 0, |W ′

0| = 1, and W ′
0⊥v, then

FK(t) ≤ |W (t)| ≤ Fk(t)

for every t ≥ 0.
(b) For every t > 0 we have

(n − 1)
F ′

K(t)

FK(t)
≤ ∆ρ

(

γ(t)
)

≤ (n − 1)
F ′

k(t)

Fk(t)
.

Proof. Let MK be R
n equipped with the Riemannian metric dr2 + FK(r)2dθ2, where r is the dis-

tance function from 0 and dθ2 is the standard metric on S
n−1. Note that since K is constant in a

neighborhood of 0, the metric dr2 + FK(r)2dθ2 extends smoothly over 0. Now MK is a rotationally
symmetric manifold with radial curvature function K. Similarly, let Mk be R

n equipped with the
the metric dr2 + Fk(r)

2dθ2.
(a) Let ṽ ∈ T0MK , |ṽ| = 1, and let W̃ be a Jacobi field along the unit speed geodesic γṽ with

W̃0 = 0, W̃ ′
0⊥ṽ, and |W̃ ′

0| = 1. Then we then have that

|W̃ (t)| = FK(t)
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for every t ≥ 0. Applying the Rauch comparison theorem shows that |W (t)| ≥ |W̃ (t)| = FK(t) for
every t ≥ 0. The other inequality follows similarly but using k instead of K.

(b) On the manifold MK we have that

∆r = (n − 1)
F ′

K ◦ r

FK ◦ r

in MK \ {0} by [5, Proposition 2.20]. It follows from the Hessian comparison theorem [5, Theorem
A] that ∆ρ(γ(t)) ≥ ∆r(γ̃(t)) = (n − 1)F ′

K(t)/FK(t) for every t > 0. The other inequality follows
similarly but using k instead of K.

Write SoM = {v ∈ ToM : |v| = 1} and define ϕ : (0,∞) × SoM → M \ {o},

ϕ(r, ξ) = expo(rξ).

We denote λM = |Jϕ|, the absolute value of the Jacobian. Let ξ ∈ SoM and W1,W2, . . . ,Wn−1 be Ja-
cobi fields along the geodesic γ : t 7→ expo(ξt) such that Wi(0) = 0 for every i and

(

W ′
1(0), . . . ,W

′
n−1(0), γ̇0

)

is an orthonormal basis of ToM . Then

(3.3) λM (r, ξ) =
∣

∣det
(

W1(r), . . . ,Wn−1(r), γ̇r

)
∣

∣,

where the determinant is taken with respect to any orthonormal basis of Tγ(r)M . So, if the the radial
curvatures along the geodesic ϕ(·, ξ) are bounded from below by k ◦ ρ, we have

(3.4) λM (r, ξ) ≤ Fk(r)
n−1

by (3.3) and Lemma 3.2(a).

3.5 Lemma. Let x0 ∈ M \ {o}, U = M \ γo,x0(R), and define θ : U → [0, π], θ(x) = ^o(x0, x) :=
arccos〈γ̇o,x0

0 , γ̇o,x
0 〉. Let x ∈ U and γ = γo,x. Then

|∇θ(x)| ≤ 1

j
(

ρ(x)
) ,

where j(t) = inf
{

|W (t)| : W is a Jacobi field along γ with W (0) = 0, W ′
0⊥γ̇0, and |W ′

0| = 1
}

.

Proof. Let ϕ : M → R
n be a normal chart at o. Let X ∈ TxM be a unit vector. We want to prove

that |Xθ| ≤ 1/j(ρ(x)). If X = γ̇ρ(x), then Xθ = 0 so without loss of generality we can assume that
X⊥γ̇ρ(x). Now

θ = θ̃ ◦ ϕ|U,

where θ̃ : ϕU → [0, π],

θ̃(z) = ^0

(

ϕ(x0), z
)

= arccos
(v · z

|z|
)

,

and v = ϕ(x0)
|ϕ(x0)| . We see that |∇θ̃(z)| = |z|−1.

Let w = ϕ(x)
|ϕ(x)| and define

Wt = (ϕ−1)∗tw(t ϕ∗X
|ϕ∗X|).

Then W is a Jacobi field along the geodesic γ with W0 = 0, |W ′
0| = 1, and Wρ(x) = ρ(x) X

|ϕ∗X| . Since
W0 = 0 and Wρ(x)⊥γ̇ρ(x), also W⊥γ̇. Now

|Xθ| = |X(θ̃ ◦ ϕ)| =
∣

∣∇θ̃
(

ϕ(x)
)

· ϕ∗X
∣

∣ ≤ |ϕ∗X|
ρ(x)

=
1

|Wρ(x)|
≤ 1

j
(

ρ(x)
)

as we wanted.
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The next lemma is a modification of [2, Lemma 3.2].

3.6 Lemma. Let v ∈ ToM be a unit vector and γ = γv. Suppose that r0 > 0 and k < 0 are constants
such that KM (P ) ≥ k for every 2-dimensional subspace P ⊂ TxM , x ∈ B(o, r0). Suppose also that
there exists a constant C ≥ 1 such that

|KM (P )| ≤ C|KM (P ′)|

whenever t ≥ r0 and P,P ′ ⊂ Tγ(t)M are 2-dimensional subspaces containing the radial vector γ̇t. Let
V and V̄ be two Jacobi fields along γ such that V0 = 0 = V̄0, V ′

0⊥γ̇0⊥V̄ ′
0, and |V ′

0 | = 1 = |V̄ ′
0 |. Then

there exists a constant c0 = c0(C, r0, k) > 0 such that

|Vr|C ≥ c0|V̄r|

for every r ≥ r0.

Proof. Let t1 ≥ r0. Denote W = V/|Vt1 |. As in the proof of [2, Lemma 3.2], there exist plane
sections σ and σ̂ along γ containing the radial vectors such that

1

2

(

log
|V |2C

|V̄ |2
)′

(t1) ≥
∫ t1

0

(

KM (σ̂) − CKM (σ)
)

|W |2.

We continue from this and estimate
∫ t1

0

(

KM (σ̂) − CKM (σ)
)

|W |2 ≥ k

∫ r0

0
|W |2.

We note that if 0 ≤ t ≤ r0, then the Rauch comparison theorem implies that

|Wt| =
|Vt|
|Vt1 |

≤ sinh
(

r0

√
−k

)

/
√
−k

t1
.

Combining the above yields
(

log
|V |2C

|V̄ |2
)′

(t1) ≥ −c1/t
2
1.

where c1 = c1(r0, k) > 0. We integrate with respect to t1 and get

(

log
|V |2C

|V̄ |2
)

(r) ≥
(

log
|V |2C

|V̄ |2
)

(r0) −
∫ r

r0

c1

t2
dt

for every r ≥ r0. The Rauch comparison theorem implies that the right hand side is bounded from
below by a constant c2 = c2(C, r0, k) ∈ R and the claim follows.

4 The main theorem

Fix 1 < p < ∞ and A ∈ Ap(M). We are ready to formulate our main result.

4.1 Theorem. Let x0 ∈ M(∞) and φ > 1. Suppose that x0 has a neighborhood U (in the cone
topology) such that

(4.2) KM (P ) ≤ −φ(φ − 1)

ρ(x)2

for every x ∈ U ∩ M and every 2-dimensional subspace P ⊂ TxM that contains the radial vector
∇ρ(x). Suppose also that there exists a constant C ≥ 1 such that

(4.3) |KM (P )| ≤ C|KM (P ′)|
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whenever x ∈ U ∩M and P,P ′ ⊂ TxM are 2-dimensional subspaces containing ∇ρ(x). Suppose that

(4.4) 1 < p <
α

β

(

1 + (n − 1)φ
)

,

where α and β are the structure constants of A. Then x0 is A-regular.

When n = 2 the condition (4.3) is trivially valid and we immediately obtain the following special
case.

4.5 Corollary. Suppose that n = 2 and that there exists a constant φ > 1 such that

KM ≤ −φ(φ − 1)

ρ2

outside a compact set. Suppose also that

1 < p <
α

β
(1 + φ).

Then the Dirichlet problem at infinity is solvable for A-harmonic functions.

The proof of Theorem 4.1 is a variant of the proof of [2, Theorem 3.1]. We start with the following
lemma, which is our main tool in using A-harmonicity.

4.6 Lemma. Let η : M → R be a non-negative Lipschitz function and θ ∈ C(M)∩W 1,p
loc (M). Suppose

that Ω ⊂⊂ M is an open set and u is a bounded A-harmonic function in Ω with |∇u| ∈ Lp(Ω). Denote
h = |u − θ|. Suppose that q ≥ p and that ηphq−p(u − θ) ∈ W 1,p

0 (Ω). Then

(

∫

Ω
ηphq−p|∇h|p

)1/p
≤

(

1 +
β

α

)(

∫

Ω
ηphq−p|∇θ|p

)1/p
+

pβ

(q − p + 1)α

(

∫

Ω
hq|∇η|p

)1/p
.

Proof. Denote
ϕ = ηphq−p(u − θ).

Then ϕ ∈ W 1,p
0 (Ω) by assumption and

∇ϕ = (q − p + 1)ηphq−p∇(u − θ) + phq−p(u − θ)ηp−1∇η.

Testing the A-harmonicity of u with the test function ϕ gives

∫

Ω
ηphq−p|∇u|p ≤ 1

α

∫

Ω

〈

A(∇u), ηphq−p∇u
〉

=
1

α

∫

Ω

〈

A(∇u), ηphq−p∇θ
〉

− p

(q − p + 1)α

∫

Ω

〈

A(∇u), hq−p(u − θ)ηp−1∇η
〉

≤ β

α

∫

Ω
ηphq−p|∇u|p−1|∇θ|+ pβ

(q − p + 1)α

∫

Ω
hq−p+1|∇u|p−1ηp−1|∇η|

≤ β

α

(

∫

Ω
ηphq−p|∇u|p

)(p−1)/p(
∫

Ω
ηphq−p|∇θ|p

)1/p

+
pβ

(q − p + 1)α

(

∫

Ω
ηphq−p|∇u|p

)(p−1)/p(
∫

Ω
hq|∇η|p

)1/p
.

The claim follows now from Minkowski’s inequality.

The next lemma corresponds to [2, Proposition 1.1] but instead of assuming λ1(M) > 0, we
assume that the radial curvatures have a weak upper bound.
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4.7 Lemma. Assume that φ > 1 and

1 < p <
α

β

(

1 + (n − 1)φ
)

.

Let v ∈ ToM \ {0}, δ > 0, and r0 > 0 be such that

KM (P ) ≤ −φ(φ − 1)

ρ(x)2

whenever x ∈ T (v, δ, r0)∩M and P ⊂ TxM is a 2-dimensional subspace containing the radial vector
∇ρ(x). Then there exist constants r1 = r1(φ, p, n, β/α, r0) > r0, c0 = c0(φ, p, n, β/α) > 0, and
q0 = q0(φ, p, n, β/α) > p such that if θ ∈ C(M) ∩ W 1,p

loc (M), R > r ≥ r1, Ω = T (v, δ, r) ∩ B(o,R),

and u is the unique A-harmonic function in Ω that satisfies u − θ ∈ W 1,p
0 (Ω), then

∫

Ω
|u − θ|q ≤ (c0q)

q

∫

Ω
ρq|∇θ|q

whenever q ≥ q0.

Proof. Choose ε > 0 such that

2(1 + ε)2 = 1 +
1 + (n − 1)φ

pβ/α

and choose

q0 =
1 + ε

ε
p.

Let K : [0,∞) → (−∞, 0] be a smooth function such that K(t) = 0 for t ∈ [0, r0], K(t) ≥ −φ(φ−1)/t2

for t ∈ [r0, r0 +1], and K(t) = −φ(φ−1)/t2 for t ≥ r0 +1. Then the radial curvatures in C(v, δ)∩M
are bounded from above by K ◦ ρ. By Lemma 3.2(b) we get

∆ρ ≥ (n − 1)
F ′

K ◦ ρ

FK ◦ ρ

in C(v, δ) ∩ M . By Example 3.1 there exist constants c1 > 0 and c2 ∈ R such that FK(t) =
c1t

φ + c2t
1−φ for all t ≥ r0 + 1. We conclude that there exists a constant r1 ≥ r0 + 1 such that

(4.8) ∆ρ ≥ (n − 1)φ

(1 + ε)ρ

in T (v, δ, r1) ∩ M .

Fix an arbitrary q ≥ q0. Fix θ ∈ C(M) ∩ W 1,p
loc (M) and R > r ≥ r1. Denote Ω = T (v, δ, r) ∩

B(o,R). Let u be the A-harmonic function in Ω that satisfies u − θ ∈ W 1,p
0 (Ω). Denote h = |u − θ|.

Then u ∈ W 1,p(Ω) and ρphq−p(u − θ) ∈ W 1,p
0 (Ω) so that we can apply Lemma 4.6 with η = ρ to

obtain

(

∫

Ω
ρphq−p|∇h|p

)1/p
≤

(

1 +
β

α

)(

∫

Ω
ρphq−p|∇θ|p

)1/p
+

pβ

(q − p + 1)α

(

∫

Ω
hq|∇ρ|p

)1/p
.(4.9)

We use (4.8) and Green’s formula to estimate

∫

Ω
hq ≤ 1 + ε

(n − 1)φ

∫

Ω
hqρ∆ρ = − 1 + ε

(n − 1)φ

∫

Ω

〈

∇(hqρ),∇ρ
〉

≤ − 1 + ε

(n − 1)φ

∫

Ω
hq +

(1 + ε)q

(n − 1)φ

∫

Ω
ρhq−1|∇h|,
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which implies

(

1 + (n − 1)φ
)

∫

Ω
hq ≤ (1 + ε)q

(

∫

Ω
hq

)(p−1)/p(
∫

Ω
ρphq−p|∇h|p

)1/p
.

Next we use (4.9) to obtain

(

1 + (n − 1)φ
)

(

∫

Ω
hq

)1/p
≤ (1 + ε)q

(

∫

Ω
ρphq−p|∇h|p

)1/p

≤ cq
(

∫

Ω
ρphq−p|∇θ|p

)1/p
+ (1 + ε)q

( pβ

(q − p + 1)α

)(

∫

Ω
hq

)1/p
.

Our choices of q0 and ε allow us to estimate the constant that appears here by writing

(1 + ε)q
( pβ

(q − p + 1)α

)

≤ (1 + ε)
( q0

q0 − p + 1

)(pβ

α

)

≤ (1 + ε)2
(pβ

α

)

=

(

pβ/α
)

+
(

1 + (n − 1)φ
)

2
<

(

1 + (n − 1)φ
)

.

Using Hölder’s inequality then gives
∫

Ω
hq ≤ cqp

∫

Ω
ρphq−p|∇θ|p

≤ cqp
(

∫

Ω
hq

)(q−p)/q(
∫

Ω
ρq|∇θ|q

)p/q

so that
∫

Ω
hq ≤ (c0q)

q

∫

Ω
ρq|∇θ|q.

This is the result we came looking for.

In order to obtain pointwise estimates from Lp-estimates we need the following lemma, which is
a modification of [2, Theorem 2.2].

4.10 Lemma. Let θ ∈ C(M) ∩ W 1,p
loc (M). Let x ∈ M , R > 0, and u be an A-harmonic function in

B(x, 2R). Suppose that A > 0 is a constant such that

|u − θ|, |∇θ| ≤ A

in B(x, 2R). Let Q ≥ p. Then

sup
B(x,R)

|u − θ|Q+np ≤ C

∫

B(x,2R)
|u − θ|Q,

where C = C(n, p, β/α,R,A,Q).

Proof. Let q ≥ Q. Denote h = |u − θ| and λ = n/(n − 1). Let Ω ⊂⊂ B(x, 2R) be an open
set and suppose that η : M → R is a non-negative Lipschitz function such that η|Ωc ≡ 0. Then
ηphq−p(u − θ) ∈ W 1,p

0 (Ω) and hence Lemma 4.6 and the inequality (a + b)p ≤ 2p−1ap + 2p−1bp, with
a, b ≥ 0, imply

∫

Ω
ηphq−p|∇h|p ≤ c1

∫

Ω
ηphq−p|∇θ|p + c1q

−p

∫

Ω
hq|∇η|p,

where c1 = c1(p, β/α). It follows that

(4.11)

∫

Ω
ηp|∇(hq/p)|p ≤ c1q

p

∫

Ω
ηphq−p|∇θ|p + c1

∫

Ω
hq|∇η|p.
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For j = 0, 1, . . . , write rj = R + λ−jR/2, Bj = B(x, rj), and

qj = λj(Q + np) − np.

Then q0 = Q and qj+1 = λ(qj + p) for all j. Define ηj : M → R by

ηj(y) =











1, d(x, y) ≤ rj+1,
rj−d(x,y)
rj−rj+1

, rj+1 ≤ d(x, y) ≤ rj,

0, d(x, y) ≥ rj.

We write ε = λ−jR. Then

|∇ηj | ≤ 2nλj/R = 2nε−1.

Use Young’s inequality

ab ≤ 1

p
εp−1ap +

p − 1

p
ε−1bp/(p−1), a, b ≥ 0,

to estimate

|∇(ηphq)| ≤ pηp−1hq|∇η| + qηphq−1|∇h|
= pηp−1hq|∇η| + pηphq−q/p|∇(hq/p)|

≤
(

εp−1hq|∇η|p + (p − 1)ε−1ηphq
)

+
(

εp−1ηp|∇(hq/p)|p + (p − 1)ε−1ηphq
)

= εp−1hq|∇η|p + 2(p − 1)ε−1ηphq + εp−1ηp|∇(hq/p)|p.

(4.12)

Recall that since M is a Cartan-Hadamard manifold, it admits a Sobolev inequality, see [7]. This
means that there exists a positive constant CS = CS(n) such that

(

∫

M
|ϕ|λ

)1/λ
≤ CS

∫

M
|∇ϕ|

for all ϕ ∈ W 1,1
0 (Ω). Using the Sobolev inequality, (4.12) and (4.11) we get

(

∫

Bj+1

hλq
)1/λ

≤
(

∫

Bj

|ηp
j h

q|λ
)1/λ

≤ c

∫

Bj

∣

∣∇(ηp
j hq)

∣

∣

≤ cεp−1

∫

Bj

hq|∇ηj |p + cε−1

∫

Bj

ηp
j h

q + cεp−1

∫

Bj

ηp
j |∇(hq/p)|p

≤ cεp−1

∫

Bj

hq|∇ηj |p + cε−1

∫

Bj

ηp
j h

q + cεp−1qp

∫

Bj

ηp
j h

q−p|∇θ|p

≤ cε−1

∫

Bj

hq + cεp−1qp

∫

Bj

hq−p|∇θ|p

≤ c2A
pε−1

∫

Bj

hq−p + c2A
pε−1(εq)p

∫

Bj

hq−p,

where c2 = c2(p, n, β/α,CS). We apply this with q = qj + p to obtain

(

∫

Bj+1

hqj+1

)1/λ
≤ c2ε

−1Ap
(

1 +
(

ε(qj + p)
)p)

∫

Bj

hqj

≤ c22
jR−1Ap

(

1 + Rp(Q + np)p
)

∫

Bj

hqj .
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Define

Ij =
(

∫

Bj

hqj

)1/λj

.

Then

Ij+1 ≤ 2j/λj

c
1/λj

3 Ij ,

where c3 = c2R
−1Ap

(

1 + Rp(Q + np)p
)

. As j → ∞,

Ij = ‖h‖qj/λj

Lqj (Bj)
→ ‖h‖Q+np

L∞(B(x,R)).

Hence

sup
B(x,R)

hQ+np = lim
j→∞

Ij ≤ 2
∑∞

k=0
j/λj

cn
3I0 ≤ ccn

3

∫

B(x,2R)
hQ

as wanted.

We are now ready to prove Theorem 4.1.

Proof. (Proof of Theorem 4.1.) Let f : M(∞) → R be any continuous function. We have to prove
that

lim
x→x0

Hf (x) = f(x0).

Fix an arbitrary ε > 0. Denote v = γ̇o,x0

0 . Let δ ∈ (0, π) and r0 > 0 be such that T (v, δ, r0) ⊂ U
and that |f(x1) − f(x0)| < ε for all x1 ∈ C(v, δ) ∩ M(∞). Then the assumptions of Lemma 4.7 are
satisfied. Let r1 > r0, c0 > 0, and q0 > p be the constants described in Lemma 4.7.

Define θ : M̄ → R,

θ(x) = min
(

1,max
(

0, r1 + 1 − ρ(x), δ−1
^o(x0, x)

)

)

.

For j ∈ N ∩ (r1,∞), let uj be the A-harmonic function in Ωj := T (v, δ, r1) ∩ B(o, j) that satisfies

uj−θ ∈ W 1,p
0 (Ωj). Since exp−1

o (Ωj) = T
(

(exp−1
o )∗v, δ, r1

)

∩B(0, j) ⊂ ToM satisfies the external cone
condition and exp−1

o |B(o, j + 1) is bilipschitz, we see that Ωj is a regular domain for the Dirichlet
problem. Write Ω = T (v, δ, r1) ∩ M . Since (uj)j is a uniformly bounded sequence of A-harmonic

functions, there exists a subsequence (uij )j and an A-harmonic limit function u ∈ W 1,p
loc (Ω) such that

uij → u locally uniformly in Ω as j → ∞.

Let y0 ∈ M ∩ ∂Ω. We claim that

(4.13) lim
y→y0, y∈Ω

u(y) = 1.

Choose j0 ∈ N such that j0 > ρ(y0). Let η ∈ C∞
0 (M) be such that 0 ≤ η ≤ 1, η|B

(

o, ρ(y0)
)

≡ 1, and

supp η ⊂ B(0, j0). Let w be the A-harmonic function in Ωj0 such that w − ηθ ∈ W 1,p
0 (Ωj0). Since

Ωj is regular for every j, we have

lim
y→y1, y∈Ωj0

w(y) = η(y1)θ(y1) ≤ lim
y→y1, y∈Ωj0

uj(y)

for every j ≥ j0 and y1 ∈ ∂Ωj0 . It then follows from the comparison principle that w ≤ uj in Ωj0 for
every j ≥ j0. Hence

lim inf
y→y0, y∈Ω

u(y) ≥ lim inf
y→y0, y∈Ωj0

w(y) = η(y0)θ(y0) = 1.

Equation (4.13) follows from this since u ≤ 1 everywhere.
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Next we claim that

(4.14) lim
y→x0, y∈Ω

u(y) = 0.

For x ∈ Ω, let J(x) be the supremum and j(x) the infimum of |V (ρ(x))| over Jacobi fields V along
γo,x that satisfy V0 = 0, |V ′

0 | = 1, and V ′
0⊥γ̇o,x

0 . By Lemma 3.6 and the assumption (4.3) there exists
a constant c1 > 0 such that

(4.15) J(x) ≤ c1j(x)C

for every x ∈ Ω. By Lemma 3.5 there exists a constant c2 > 0 such that

(4.16) |∇θ(x)| ≤ c2

j(x)

for all x ∈ Ω. Let K : [0,∞) → (−∞, 0] be a smooth function such that K(t) = 0 for t ∈ [0, r0],
K(t) ≥ −φ(φ − 1)/t2 for t ∈ [r0, r0 + 1], and K(t) = −φ(φ − 1)/t2 for t ≥ r0 + 1. Then the radial
curvatures in C(v, δ) ∩ M are bounded from above by K ◦ ρ by the assumption (4.2). By Lemma
3.2(a) and Example 3.1 we get

(4.17) j(x) ≥ (FK ◦ ρ)(x) ≥ cρ(x)φ

for all x ∈ Ω. Using the inequality (4.16), the equation (3.3) and inequalities (4.15) and (4.17) we
get

∫

Ω
ρq|∇θ|q ≤ c

∫

T (v,δ,r1)∩M
ρ(x)qj(x)−q dmM (x)

= c

∫ ∞

r1

∫

SoM∩C((exp−1
o )∗v,δ)

rqj(r, ξ)−qλM (r, ξ) dξ dr

≤ c

∫ ∞

r1

∫

SoM∩C((exp−1
o )∗v,δ)

rqj(r, ξ)−qJ(r, ξ)n−1 dξ dr

≤ c

∫ ∞

r1

∫

SoM∩C((exp−1
o )∗v,δ)

rqj(r, ξ)−q+C(n−1) dξ dr

≤ c

∫ ∞

r1

r(1−φ)q+φC(n−1) dr

for all q > C(n − 1). We conclude that there exists a constant q1 > 0 such that
∫

Ω ρq|∇θ|q < ∞ for
every q ≥ q1. Fix q ≥ max{q0, q1}. By Fatou’s lemma and Lemma 4.7 we get

∫

Ω
|u − θ|q ≤ lim inf

j→∞

∫

Ωij

|uij − θ|q ≤ (c0q)
q lim inf

j→∞

∫

Ωij

ρq|∇θ|q = (c0q)
q

∫

Ω
ρq|∇θ|q < ∞.

Lemma 4.10 implies

|u(x) − θ(x)| ≤ sup
B(x,1)

|u − θ| ≤ c
(

∫

B(x,2)
|u − θ|q

)1/(q+np)

whenever x ∈ Ω is such that B(x, 2) ⊂ Ω. We showed above that
∫

Ω |u − θ|q < ∞ and hence

|u(x) − θ(x)| → 0

as x → x0, x ∈ M . Thus u(x) → θ(x0) = 0 as x → x0, x ∈ M . This proves the claim (4.14).
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Now we define w : M → R,

w(x) =

{

min(1, 2u)(x), if x ∈ Ω,

1, if x ∈ M \ Ω.

Since the minimum of two A-superharmonic functions is A-superharmonic and (4.13) holds for every
y0 ∈ M ∩∂Ω, we see that w is continuous and A-superharmonic in some neighborhood of each point
in M . Since A-superharmonicity is a local property, w is A-superharmonic. Now

Hf ≤ f(x0) + ε + 2(sup |f |)w

by the definition of Hf . By (4.14) we get lim supx→x0
Hf (x) ≤ f(x0) + ε. Similarly one proves that

lim infx→x0
Hf (x) ≥ f(x0) − ε. Taking into account Hf ≥ Hf and that ε > 0 is arbitrary, we get

limx→x0
Hf (x) = f(x0).

5 Discussion of the condition p < 1 + (n − 1)φ

If A is the p-Laplacian or more generally if α = β, the condition (4.4) in Theorem 4.1 simplifies to
p < 1 + (n − 1)φ. In this section we give an example of a manifold for which this bound is sharp.

A Riemannian manifold N is called p-parabolic, with 1 < p < ∞, if

capp(K,N) = 0

for every compact K ⊂ M . Equivalently, N is p-parabolic if every non-negative supersolution of

− divA(∇u) = 0

on N is constant for all A ∈ Ap(N). It is known that a sufficient condition for p-parabolicity of a
complete connected non-compact Riemannian manifold is the Ahlfors type condition

∫ ∞

1

( t

V (t)

)1/(p−1)
dt = ∞,

where V (·) = mN

(

B(xo, ·)
)

and x0 ∈ N is fixed, see [9, Theorem 5.16]. As an application we get the
following result.

5.1 Proposition. Suppose that there exists a constant φ > 1 and a compact set K ⊂ M such that

KM (P ) ≥ −φ(φ − 1)

ρ(x)2

for every x ∈ M \ K and every 2-dimensional subspace P ⊂ TxM that contains the radial vector
∇ρ(x). Suppose that

p ≥ 1 + (n − 1)φ.

Then M is p-parabolic.

Proof. Let R > 1 be so large that K ⊂ B(o,R − 1) and let

B = inf
{

KM (P ) : P ⊂ TxM is a 2-dimensional subspace and x ∈ B̄(o,R − 1)
}

.

Then B > −∞ by compactness. Let k : [0,∞) → (−∞, 0] be a smooth function such that k is
constant in some neighborhood of 0, k(t) ≤ B for every t ∈ [0, R − 1], k(t) ≤ −φ(φ− 1)/t2 for every
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t ∈ [R − 1, R], and k(t) = −φ(φ − 1)/t2 for every t ≥ R. Then all the radial curvatures on M \ {o}
are bounded from below by k ◦ ρ. By (3.4) we have

λM (r, ξ) ≤ Fk(r)
n−1.

for all r > 0 and ξ ∈ SoM . By Example 3.1 there exist constants c1 > 0 and c2 ∈ R such that

Fk(t) = c1t
φ + c2t

1−φ

for all t ≥ R. Thus the function V (·) = mM

(

B(o, ·)
)

satisfies

V (r) =

∫ r

0

∫

SoM
λM (t, ξ) dξ dt ≤ c

∫ r

0
(1 + t)(n−1)φ dt ≤ c r1+(n−1)φ

for all r ≥ 1. It follows that
∫ ∞

1

( t

V (t)

)1/(p−1)
dt ≥ c

∫ ∞

1
t−(n−1)φ/(p−1) dt = ∞

since (n − 1)φ/(p − 1) ≤ 1. Hence M is p-parabolic.

The following example shows that if α = β, then the condition p < 1 + (n − 1)φ in Theorem 4.1
is sharp in some cases.

5.2 Example. Fix φ > 1 and let K : [0,∞) → (−∞, 0] be a smooth function such that K is constant
in some neighborhood of 0 and there exists t0 > 0 such that K(t) = −φ(φ − 1)/t2 for every t ≥ t0.
Let MK be R

n equipped with the Riemannian metric dr2 + FK(r)2dθ2. Then MK is a rotationally
symmetric manifold with radial curvature function K ≤ 0. A computation shows that the sectional
curvature of a 2-dimensional subspace P ⊂ TxMK , x ∈ MK \ {0}, is

KMK
(P ) = K

(

r(x)
)

cos2 θ +
1 − F ′

K

(

r(x)
)2

FK

(

r(x)
)2 sin2 θ,

where θ is the angle between P and ∇r(x). It follows that MK is a Cartan-Hadamard manifold.
Suppose now that M = MK and α = β. Theorem 4.1 and Proposition 5.1 then imply that the

Dirichlet problem at infinity is solvable for the operator A if and only if p < 1+ (n− 1)φ. Moreover,
M is p-parabolic if p ≥ 1 + (n − 1)φ.

The previous example also shows that at least an additional condition

p < 1 + (n − 1)φ

is needed if we want to generalize Greene-Wu’s conjecture for A-harmonic functions of type p > n.
We are led to the following question, which in the case p = 2 comes back to Greene-Wu’s conjecture.

5.3 Question. Suppose that φ > 1 and

1 < p < 1 + (n − 1)φ.

Assume that the sectional curvatures on M satisfy

KM ≤ −φ(φ − 1)

ρ2

outside a compact set. Does it follow that there exists a non-constant bounded p-harmonic function
on M?

It follows from results in this paper that the answer to this question is yes for n = 2. Indeed,
if n = 2, then Corollary 4.5 states that the Dirichlet problem at infinity is solvable for p-harmonic
functions under the assumptions of Question 5.3. In the case n ≥ 3 and p = 2 the assumptions in
Question 5.3 are not enough to guarantee that the Dirichlet problem at infinity is solvable, see [1].
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