
A note on Patterson measures
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Abstract. Conformal measures are measures satisfying the transformation rule
(1) for elements of a Kleinian group G and are normally supported by the limit set of
G. They are usually constructed by a method due to S. J. Patterson as weak limits of
measures supported by a fixed orbit of G in the hyperbolic space, often identified with
the unit ball Bn. We call such limit measures Patterson measures. This has been the
predominant way to obtain conformal measures and one may get the impression that
all conformal measures are Patterson measures. We show in this note that this is not
the case and two concrete examples are given in Section 6.

1. Introduction

If G is a group of Möbius transformation on the closed unit ball Bn, then a
conformal measure of dimension δ for G is a real-valued, non-negative, finite Borel
measure µ on Bn such that

(1) µ(gA) =
∫

A

|g′|δdµ

for measurable A ⊂ Bn and g ∈ G. Usually, G is Kleinian and one is interested in
conformal measures supported by the limit set L(G) of G with δ being the exponent of
convergence δG of G. Patterson [P] constructed such measures if G is a Fuchsian group
and this construction was later generalized by Sullivan [S] to the situation of Kleinian
groups.

Patterson’s method was to construct such measures as weak limits of probability
measures µi supported by an orbit Gz of G in Bn. The measures µi are constructed so
that, given any neighborhood U in Bn of the limit set, the µi-mass of the complement
of U tends to 0 as i →∞. The measures µi are constructed using the Poincaré series
of G defined as

(2) Pδ(z, y) =
∑

g∈G

e−δd(z,g(y)).

This series converges if δ > δG and diverges if δ < δG. If δ = δG, then the series
may diverge or converge; if it diverges, G is of divergence type (at the exponent of
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convergence). In the divergence case, the construction of µi is very simple: One lets
µi be a weighted sum of atomic measures µg(z) with total mass 1 concentrated at g(z).
One sets

(3) µi = ci

∑

g∈G

e−δid(z,g(y))µg(y)

where δi > δG and δi → δG as i →∞. The constant ci is Pδi
(z, y)−1, and is chosen so

that the total mass is 1. If the Poincaré series diverges at the exponent of convergence,
a subsequence of µi’s will have a weak limit which is a conformal measure on the
limit set. The reason why the limit measure is conformal is that the ratio of |g′(0)| to
e−d(0,g(0)) tends to 1 as d(0, g(0)) → ∞ which easily implies the conformality of the
limit if z = y = 0.

Unfortunately, this simple strategy does not work if the Poincaré series is of con-
vergence type. Patterson [P] overcame this difficulty by modifying the Poincaré series
so that it still diverges if δ < δg and converges if δ > δG, but if δ = δG it necessarily
diverges. The modified Poincaré series is obtained by using a real function h(t) defined
for non-negative t. We set

(4) Ph,δ(z, y) =
∑

g∈G

h(d(z, g(y))e−δd(z,g(y))

and call Ph,δ the h-modified Poincaré series for G. The function h has the property
that h(t) →∞ as t →∞ in such a way that we obtain divergence for δ = δG but that
otherwise the convergence is as for Pδ. One can choose h so that if one replaces in (3)
e−δid(g(z),y) by h(d(g(z), y)) e−δid(g(z),y), then a subsequence has a weak limit which is
a conformal measure. The map h needs to satisfy certain conditions in order for this
process to work; these are the conditions 1◦ - 3◦ to be discussed later.

If the group is of the first kind, then the Lebesgue measure on the boundary sphere
of hyperbolic space is a conformal measure. If the group is of the second kind, giving a
conformal measure on the limit set is a non-trivial problem. Patterson’s construction
seems to have been the only one to give measures on the limit set at the exponent
of convergence. For instance, Nicholls’ book [N] discusses only Patterson’s method to
construct conformal measures and one easily gets the impression that all conformal
measures on the limit set can be obtained by this construction.

The purpose of this note is to show that there are conformal measures which cannot
be obtained by the Patterson construction even if the dimension of the measure is the
exponent of convergence. Our argument applies if the Poincaré series of G converges
at the exponent of convergence and is based on the analysis of ends and end limit
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points of G; these are defined in the next section. If E is an end of G, then there
is an endgroup GE associated to E as well as a subset of L(G) called the end limit
set of E and denoted by Le(E). If δGE

< δG, then we will show that any Patterson
measure vanishes on the end limit point set of E. On the other hand, we know that if
Le(E) 6= ∅, then the union of g(Le(E)), g ∈ G, supports a conformal measure µE for
G of dimension δG, cf. [AFT, Theorem 4.4]. (We say that a subset of Bn supports a
measure if its complement has measure zero.) Thus µE cannot be a Patterson measure
for G. More generally, this result is still valid even when δGE

= δG, but the h-modified
Poincaré series for GE converges at the exponent δG. This follows from our Theorem
in Section 5.

The method used in [AFT] to construct measures supported by the end limit points
was to take a sequence of points zi contained in the end and exiting to the end in the
sense that if C ⊂ Bn is compact, then the zi eventually escape from GC. If the Poincaré
series of G converges at δ, then there is a conformal measure of total mass 1 supported
by the GE-orbit of zi where GE is the stabilizer of the end. These measures have a
weak limit which is supported by the end limit points of E and this limit measure can
be extended to a conformal measure of G. This is the only alternative construction of
conformal measures, in addition to the Patterson construction, of which we know.

In Section 6 we shall give two examples of conformal measures of dimension equal
to the exponent of convergence which cannot be obtained by the Patterson construction.
The first example of an atomic measure on the orbit of a parabolic fixed point of a
convergence group was one of the main motivations for this work. The second example
is more complex in that it combines a geometrically infinite, topologically tame Kleinian
group of the second kind acting in hyperbolic 3-space with an infinitely generated
group with exponent of convergence strictly less than 2. The latter gives an end with
boundary, as defined below, for the associated hyperbolic manifold. The corresponding
end limit set then supports a conformal measure which, by our main result, cannot be
a Patterson measure.

2. Definitions and notations

In this paper G is a discrete group of Möbius transformations of the closed eu-
clidean unit ball Bn. The limit set is denoted L(G). We let MG = Bn/G and
MG = (Bn \ L(G))/G so that MG ⊂ MG. We denote by ∂A the boundary in MG for
subsets of MG, and by ∂A the boundary in MG for subsets of MG.

An end of MG is an open connected subset E of MG with non-compact closure
in MG and such that ∂E is compact and non-empty. We will also consider ends with
boundary in MG; an open subset E of MG is called an end with boundary if E is
connected, has non-compact closure in MG but ∂E is compact and non-empty.
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We will also consider lifts of ends to the n-ball. Let π : Bn \ L(G) → MG be
the canonical projection. An end [with boundary] of G is a connected component of
π−1(E) where E is an end of MG [or of MG if E is an end with boundary]. Thus an
end of G refers to subsets of Bn or of Bn \L(G) whereas an end of MG or of MG lives
in the quotient.

If E is an end, possibly with boundary, then its set of endpoints is the set of points
z ∈ Sn−1 such that if R is a hyperbolic ray towards z, then R has a subray R′ contained
in the end such that the hyperbolic distance d(u, ∂E ∩Bn)→∞ as u moves towards z

on R′; here ∂ refers to the boundary in Bn. An endpoint z of E is an end limit point
of E if z is also a limit point; note that if z is an endpoint of E, then z ∈ L(GE) as
soon as z ∈ L(G). This follows from Lemma 3.1 of [AFT] which is valid also for ends
with boundary.

The set of end limit points of E is denoted by Le(E). Note that there may be
two ends with the same end group. This happens if G is a finitely generated, doubly
degenerate Kleinian surface group acting on B3 (see for instance [MT] for standard
definitions).

The notion of a bounded end is crucial for one of our examples. Let E be an end
of MG and F be a component of the lift of E to Bn. Let GF be the stabilizer of F in
G. Since gE = E for g ∈ GE , and gE ∩E = ∅ if g ∈ G \GE , we can identify E = F/G

and F/GF . We can say now that the end E (or its lift F ) is a bounded end if MGF
\E

is compact. The definition is similar for ends with boundary, with Bn replaced by
Bn \ L(G).

3. The Patterson construction

We will now discuss Patterson’s construction to the extent needed in this paper.
We first note that sometimes one replaces h(d(z, g(y)) in the formula (4) by h(ed(z,g(y))),
for instance this is so in Nicholls’ book [N] which we use as our reference. The conditions
1◦ and 2◦ below correspond to Nicholls’ conditions 1 and 2 in Lemma 3.1.1 with this
modification. Thus if hN is as in [N], we need to set h(t) = hN (et) in order to get
our h. The function h used in (4) needs to be continuous and non-decreasing and in
addition it must satisfy

1◦. Ph,δ converges for δ > δG and diverges for δ ≤ δG, and

2◦. For any ε > 0 there exists r0 such that if r > r0, then h(t + r) ≤ eεth(r).

This is all that is needed for the construction of the the conformal measure on
L(G). However, we also need a third condition, which is automatically satisfied (see
below) if h is constructed as in [N].
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3◦. h(r + t) ≤ h(r)h(t) for all positive t and r.

We call a function h satisfying these conditions Patterson function for G. A
measure µ is a Patterson measure if it is a weak limit of measures µi obtained using a
Patterson function, that is a weak limit of measures µi as in (5) below whose dimensions
δi decrease to δG.

If h is constructed as in [N], p. 47, then 3◦ easily follows. Nicholls follows Patterson
[P] when constructing h with the aid of an increasing sequence Xn of positive numbers
and another sequence εn of decreasing positive numbers such that

hN (x) = hN (Xn)(x/Xn)εn

if Xn ≤ x ≤ Xn+1. If h(t) = hN (et), then the derivative of log h(t) is εn on (Xn, Xn+1).
Thus the derivative of log h(t) is non-increasing and 3◦ follows.

We remark that while 3◦ is a critical condition for us, only 1◦ and 2◦ are needed
to show that a weak limit of measures µi in (3) is a conformal measure. Thus it is
still possible that the measures which cannot be limits of Patterson measures, that
is measures defined using h as in 1◦ - 3◦, could still be obtained by the Patterson
construction using h satisfying 1◦ and 2◦ but not 3◦. However, the construction of h

in [P], [S], [N] is very natural and we doubt very much whether removing 3◦ allows one
to obtain every conformal measure as a weak limit of measures µi as in (3).

We remark that 3◦ could be weakened in the sense that there is a constant C not
depending on t and r such that

h(t + r) ≤ C h(t)h(r).

Our arguments would still be valid with this weakened condition.

4. Adapting the Shadow Lemma.

Let G be a Kleinian group of Bn such that the Poincaré series of G converges at
the exponent of convergence δG. Let h be a Patterson function for G. We use Ph,δ as
in (4) to define the atomic measures which, in the weak limit, give a conformal measure
on L(G).

Let δ > δG and define the probability measure µδ on Gz as

(5) µδ =
∑

g∈G

cδ h(d(y, g(z)) e−δ d(y,g(z)µg(z)

where µg(z) is the atomic measure of mass 1 concentrated at g(z) and the normalization
constant cδ = Ph,δ(y, z)−1 is so chosen that the total mass is 1.
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We need estimates for µδ-measures of shadows of hyperbolic balls. If z ∈ Bn and
r > 0, let Sy(z, r) be the shadow from y of the hyperbolic disk D(z, r) of hyperbolic
radius r and set S(z, r) = S0(z, r). Thus w ∈ Bn is in Sy(z, r) if the hyperbolic
line segment or ray with endpoints y and w intersects D(z, r). The following is an
adaptation of Sullivan’s Shadow Lemma.

Lemma. There is a constant M depending on r and z (with G fixed) such that if

δG + 1 > δ > δG and ζ ∈ Gz, then

µδ(Sy(ζ, r)) ≤ M h(d(y, ζ)) e−δGd(y,ζ).

Proof. We can assume that y = 0 by conjugating G with a Möbius transformation
g such that g(y) = 0. We can also assume that z = 0 (changing z to 0 means only
that we may need to multiply by a constant). Thus there is g ∈ G such that g(ζ) = 0.
The map g transforms the shadow S(ζ, r) to the shadow Sg(0)(0, r) = g(S(ζ, r)), that
is w ∈ g(S(ζ, r)) if the hyperbolic line segment or ray with endpoints w and g(0)
intersects D(0, r). Thus if γ(0) ∈ G0 ∩ g(S(ζ, r)), then

d(g(0), γ(0)) ≤ d(g(0), 0) + d(0, γ(0)) ≤ d(g(0), γ(0)) + 2r.

Since h is increasing, it therefore follows that

µδ(S(ζ, r)) =
∑

γ∈G,γ(0)∈S(ζ,r)

cδ h(d(0, γ(0))) e−δd(0,γ(0)

=
∑

γ∈G,γ(0)∈gS(ζ,r)

cδ h(d(g(0), γ(0))) e−δd(g(0),γ(0))

≤
∑

γ∈G,γ(0)∈gS(ζ,r)

cδ h(d(g(0), 0) + d(0, γ(0)) e−δ(d(g(0),0)+d(0,γ(0))−2r).

If we use 3◦ and sum over all γ ∈ G, we obtain the following upper estimate for the
last sum (recall that cδ = Ph,δ(0, 0)−1):

h(d(g(0), 0)) e−δ(−2r+d(0,g(0))) cδ

∑

γ∈G

h(0, γ(0)) e−δd(0,γ(0))

= h(0, g(0)) e−δd(0,g(0))e2δr = e2δrh(d(0, ζ)) e−δd(0,ζ).

Thus the lemma is true with M = e(2δG+2)r if z = 0.

5. The main Theorem

Using the Shadow Lemma of Section 4, we can now obtain our main theorem.
Recall that the h-modified Poincaré series of G is written

∑
γ∈G h(y, γ(z0)) e−δd(y,γ(z0)).
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Theorem. Let G be a Kleinian group of Bn with exponent of convergence δG. Suppose

that the Poincaré series for G converges at the exponent of convergence and let h be a

Patterson function for G. Let E be an end of G, possibly with boundary, and let GE

be the corresponding end group. Suppose that either δGE
< δG, or that δGE

= δG and

the h-modified Poincaré series of GE converges at the exponent δG = δGE
.

Let µ be a measure obtained by the Patterson-Sullivan construction using this

Patterson function. Then µ(Le(E)) = 0 and if the end is bounded µ(L(GE)) = 0.

Proof. The proof is analogous to that of Theorem 4.4 of [AFT], using the adapted
Shadow Lemma. We assume first that E does not have boundary and indicate in the
end the necessary changes for the case of ends with boundary.

Given δ > δG and the Patterson function h, let µδ be a measure defined by (5).
For each 0 < ρ < 1 we will define a neighbourhood Uρ of Le(E) in Bn so that

µδ(Uρ) ≤ Mρ

for a constant Mρ > 0 with the property that Mρ → 0 when ρ → 1. This in turn will
imply µ(Le(E)) = 0. The details of the argument are given below.

We can assume without loss of generality that 0 /∈ E and that y = 0 (changing
the basepoint y does not change the measure class of µ). Let Uρ be the union of all
rays Ra = {ta : 1− ρ < t ≤ 1}, a ∈ Sn−1, such that there is 1− ρ < t ≤ 1 with ta ∈ E.
Thus Uρ is is an open neighborhood of Le(E) in Bn.

Since ∂E/G is compact, we can fix a number r > 0 such that

(6)
⋃

γ∈G

D(γ(z0), r) ⊃
⋃

γ∈G

γ(∂E).

As before, D(z, r) is the open hyperbolic ball with center z and radius r. Let Sγ be
the shadow of D(γ(z0), r) from 0. Recall that Sγ contains all the points w ∈ Bn such
that the hyperbolic line segment or ray with endpoints 0 and w intersects D(γ(z0), r).
Let now Vρ be the union of all shadows Sγ , γ ∈ G, such that D(γ(z0), r) intersects the
set

Bρ = {x ∈ Bn : |x| > ρ}.

If a ray Ra is contained in Uρ, then either Ra ⊂ E or Ra intersects ∂E. In the latter
case let v be the point in Bn where Ra meets ∂E the first time (seen from ρa), and let
R′a be the subray of Ra which originates at v. Hence R′a is contained in some Sγ such
that D(γ(z0), r) intersects Bρ. It follows that

Gz0 ∩ Uρ ⊂ Vρ.
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Next, we apply the Shadow Lemma of Section 4 to the measure µδ. Thus there exists
a constant M > 0 such that

µδ(Sγ) ≤ M h(d(0, γ(z0))) e−δGd(0,γ(z0)).

if δG + 1 > δ > δG. Therefore we obtain for these δ

∑
µδ(Sγ) ≤

∑
M h(d(0, γ(z0))) e−δGd(0,γ(z0)) =: Mρ,

where both sums are restricted to elements γ ∈ G such that D(γ(z0), r) intersects Bρ.
Since the h-modified Poincaré series for GE converges at the exponent δG, the numbers
Mρ are finite and Mρ → 0 as ρ → 1. The number Mρ is an upper bound for µδ(Vρ) if
δg < δ < δG + 1. Since Gz0 ∩ Uρ ⊂ Vρ, Mρ is an upper bound for µδ(Uρ) as well.

Suppose now that µ is a Patterson measure obtained using this h, that is, suppose
that µ is a weak limit of measures µi so that µi = µδi as in (5), and with δi decreasing
to δG. To see that µ(Le(GE)) = 0, let Λk be the set of points z ∈ Sn−1 such that
the line segment tz, t ∈ [1 − 1/k, 1), is contained in E ∪ ∂E. By construction, Uρ is
a neighbourhood of Λk for every 0 < ρ < 1. Since all Λk are closed, the inequalities
µi(Uρ) ≤ Mρ imply that µ(Λk) ≤ Mρ for all r and hence µ(Λk) = 0. Finally, since
Le(GE) is contained in the union of the Λk, we conclude that µ(Le(GE)) = 0.

If the end E is bounded, then by [AFT] every x ∈ L(GE) is either an end limit point
of E or a conical limit point of GE . Since the conical limit set has zero measure if the
Poincaré series converges at the dimension of the measure, it follows that µ(L(GE)) = 0.

Finally, if the end E is an end with boundary, then the above argument works if
one replaces Bn with the hyperbolic convex hull HG of the limit set L(G). We assume
that 0 ∈ HG and replace ∂E by ∂E ∩HG on the right hand side of (6). Note that the
G-quotient of ∂E ∩HG is compact and so there is such an r0 as claimed in (6).

We say that E = {E1, ..., Ep} is a complete collection of ends for G if each Ei is an
end of G, the projections p(Ei) of Ei to MG are disjoint, and if MG\(p(E1)∪...∪p(Ep))
is compact.

Corollary. Let E = {E1, ..., Ep} be a complete collection of ends for G and assume

that the Poincaré series of G converges at the exponent of convergence δG. Suppose

h is a Patterson function for G, and hence that the h-modified Poincaré series for G

diverges at δG. Then there is an end E ∈ E such that the h-modified Poincaré series

for GE diverges.

Proof. Let µ be a measure obtained by the Patterson construction. We know (see
[AFT, Theorem 4.6]) that µ is supported by the union of endpoints of gEi where g ∈ G

and i ≤ n. Hence µi(Le(Ei)) > 0 for some i. By the preceding theorem, the h-modified
Poincaré series for GEi must diverge at δG.
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6. Examples

A. The first example was one of the main motivations for this work. Let G be a
Kleinian group acting on the hyperbolic n-space. Let v be a parabolic fixed point of
G. Then Gv contains a free abelian subgroup of rank k where 0 < k < n in which case
we say that v has rank k. It is known that the exponent of convergence of Gv in the
rank k case is k/2 and that the Poincaré series of Gv diverges at exponent k/2.

Assume that v is a parabolic fixpoint of G of rank n−1. Then there exists an open
horoball B at v which is precisely invariant under Gv in G, i.e. γ(B) = B for all g ∈ Gv

and γ(B)∩B = ∅ for all γ ∈ G \Gv. Therefore, the stabilizers GB and Gv of B and v,
respectively, coincide. Let S0 be the boundary of B in Bn. Then S = S0/G = S0/Gv

is compact since Gv has full rank. Thus B is an end of G with end group Gv, and
B/G is an end of MG. As observed above, δGv = (n − 1)/2 and that the Poincaré
series for Gv diverges. Hence, if the Poincaré series for G converges at the exponent of
convergence, then δG > δGv and so our Theorem implies that a Patterson measure for
G gives zero measure to endpoints of B, that is to the point v.

Let ν be an atomic measure with mass concentrated at v. Then ν is a conformal
measure for Gv for any dimension δ, in particular, for δ = δG. Since the Poincaré series
for G converges at the exponent δ, the measure ν can be extended to a conformal
measure for G of dimension δG supported by the orbit Gv, cf. [AFT, Proposition 4.5],
and our Theorem shows that ν is not a Patterson measure.

Note that this also applies to bounded parabolic fixed points of rank k < n − 1,
since corresponding to such a fixed point v there is a so-called cusp neighborhood of V

in Bn \L(G). This means that there is a Möbius transformation h mapping the closed
n-ball to the closed upper half-space of Rn, so that h(v) = ∞, the subspace Rk is
invariant and has compact quotient with respect to the group hGvh−1, and h(V ) is the
complement (in the closed upper half-space of Rn) of a set of the form Rk ×Bn−k. If
we project to the quotient, π being the projection, then the boundary of π(V ) in MG is
compact and hence π(V ) is an end with boundary. We could see as above, applying the
afore-mentioned results of [AFT] to ends with boundary, that Gv supports an atomic
conformal measure which is not a Patterson measure.

Note that our Theorem can be regarded as a generalization and different proof
of the fact that the Patterson construction gives a conformal measure which does not
have atoms at bounded parabolic fixed points (see [N], Theorem 3.5.9). In order to
obtain this property of Patterson measures, we only need to complement the above
argument by the observation that if the Poincaré series of G diverges at δG, then a
Patterson measure for G does not have atoms (see [N], Theorem 3.5.8).

B. The second example is more complex. Let G be a geometrically infinite, topo-
logically tame Kleinian group of the second kind acting on B3, for instance a simply
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degenerate surface group (for the definition see for instance [MT]). Then it is known
that the Poincaré series converges at the exponent of convergence which is equal to 2
(cf. [C]). Let F be a fundamental domain for G acting on the boundary sphere. Let
D, D1, ..., D4 be five closed disks contained in the interior of F such that D1, ..., D4 are
disjoint and contained in the interior of D. Let h and g be two loxodromic elements so
that h(∂D1) = ∂D2 and g(∂D3) = ∂D4, and so that h and g generate a Schottky group
H whose fundamental domain F ′ is the closure of the complement of D1∪D2∪D3∪D4.
(Here, ∂ denotes the topological boundary in the boundary sphere of B3.) Thus H is
geometrically finite and hence δH < 2. Let N be the normalizer of h in H, making N

an infinitely generated Kleinian group such that δN ≤ δH < 2. (In fact, by a result
of M. Rees [R] we even have that δN = δH .) The group N is infinitely generated and
hi = gihg−i are free generators. It has a fundamental domain DN contained in the
closure of the complement of the union of all gi(D1) ∪ gi(D2).

Let now Γ0 be the group generated by H and G. The group Γ0 is Kleinian, its
fundamental domain is F∩F ′ and Γ0 is the free product H∗G. Therefore, the subgroup
Γ = N ∗G of Γ0 is also Kleinian. The group Γ is the example we are seeking.

Let S be a hyperbolic subplane of B3 bounded by ∂D. Then γS, γ ∈ N , are
distinct and it is easy to see that they bound and end with boundary of Γ, denoted
by E, whose end group GE is just N . We note that this end is bounded. To see this,
let F be the component of B3 \ S not intersecting E. Then the intersection of F with
the boundary sphere of B3 is contained in the interior of the fundamental domain DN

of the action of N on the boundary sphere. Hence gF , g ∈ N = GE , is a family
of disjoint sets. This fact implies that F projects homeomorphically onto a subset of
(B3 \L(GE))/GE which is the complement of E/GE . Thus the complement of E/GE

in MGF
is compact and it follows that E is a bounded end. Hence L(GE) is the union

of conical limit points of GE and of the end limit points of E, cf. [AFT, Lemma 3.1].
If L(GE) would consist of conical limit points only, then GE would be a convex

cocompact group and hence finitely generated. Since GE is not finitely generated
we can conclude that the set of end limit points Le(E) is not empty. We have that
2 ≥ δΓ ≥ δG = 2 and hence δΓ = 2. Since Γ is of the second kind, the Poincaré series
of Γ converges at δΓ = 2. Hence there is a conformal measure ν of N supported by
Le(E), cf. Theorem 4.4 of [AFT]; this theorem, like the next one to which we refer, is
formulated for ends without boundary but is valid also for ends with boundary (see the
discussion in the end of Section 5 of [AFT]). We can extend ν to a conformal measure
of Γ supported by

⋃
g∈Γ g(Le(E)), cf. [AFT, Theorem 4.7]. Since δN = δGE

< 2 =δΓ,
our Theorem implies that ν is not a Patterson measure.
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