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Abstract

In all dimensions k = 1,...,n — 1, we show that mappings f in R™ with finite distortion
of hyperarea satisfy certain modulus inequalities in terms of inner and outer dilatation of the
mappings.

1 Introduction

Quasiconformal and quasiregular mappings have been recently generalized to sev-
eral directions, see e.g. [AIKM], [GI], [HK], [IKO,|, [IKOo], [IM], [IR], [IS],
[KKM;], [KKM;], [KOJ], [MRSY;], [MRSY,], [MVy], [MVs], [RSY,] - [RSYj3].
In all those generalizations the modulus techniques play a key role. The following
concept was proposed in [MRSY;]. Let D be a domain in R”, n > 2, and let
Q : D — [1,00] be a measurable function. A homeomorphism f : D — R" =
R"™ {00} is called a Q—homeomorphism if

(1) M(T) < [ Q@) p"(a) dmia)

for every family I" of paths in D and every admissible function p for I'.
Recall that, given a family of paths I" in R, a Borel function p : R" — [0, o0
is called admissible for I', abbr. p € admT, if

(1.2) / pds > 1

Y
for each v € I'. The (conformal) modulus of I is the quantity
(13) M) = ot [ dme)

with the measure and the integral by Lebesgue.

In the work [MRSY5], the concept has been extended to mappings with branch-
ing. Note that the modulus inequality (1.1) in the definition of a )—homeo-
morphism has first appeared for n = 2 in connection with the so-called BM O—qua-
siconformal mappings, see [RSY;] - [RSY3], cf. also V(6.6) in [LV] in the the-
ory of quasiconformal mappings. In this paper, we consider the modulus of
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families of surfaces of various dimensions in R™ and introduce the notation of
(k, Q)—mappings.

Below we assume that €) is an open set in R, n > 2, and that all mappings f :
() — R" are continuous. Similarly [MRSY5], given a pair Q(z,y) = (Q1(z), @2(y))
of measurable functions 1 : Q@ — [1,00] and Q3 : 2, — [l,00] and k =1,...,n—1,
we say that a mapping f: Q — R™, f(Q2) = Q,, is a (k, Q)—mapping if

(1.4) M(T) < [ Qi) p" () dim(a)
and
(15) M) < [ Quly) - pily) dm(y)

for every family I' of k—dimensional surfaces S in 2 and all p € adm I' and
P« € adm fT.

Given a mapping ¢ : E — R" and a point x € £ C R", let

(1.6) L(z,») = limsup —|g0(y)—<,0($)|7
y—zyekE |y—x|

e oly) — o)
T P\y) — e\

A mapping f : Q — R” is said to be of finite metric distortion, abbr. f €
FMD, if f has (N)—property and

(1.8) 0 < l(z,f) < Lz, f) < o0 ae.

Note that a mapping f : 2 — R"™ is of FFMD if and only if f is differentiable
a.e. and has (N)— and (N~!)—properties, see Corollary 3.4 in [MRSY5]. Recall
that a mapping f : X — Y between measurable spaces (X, %, u) and (X', %/, i)
is said to have (N)—property if i/(f(E)) = 0 whenever u(E) = 0. Similarly, f
has the (N~1)—property if y(E) = 0 whenever p/(f(E)) = 0.

We say that a mapping f : 0 — R™ has (Ax)—property if the two conditions
hold:

(A,(Cl)) : for a.e. k—dimensional surface S in € the restriction f|s has (N)—pro-
perty;

(Al(f)) . for a.e. k—dimensional surface S, in Q, = f(Q) the restriction f|s has
(N~ —property for each lifting S of S,.
Here a surface S in €2 is a lifting of a surface S, in R™ under a mapping f :
Q — R"if S, = foS. We also say that a mapping f : 0 — R" is of finite
distortion of area in dimension k = 1,....n—1, abbr. f € FAD,,if f € FMD
and has the (Aj)—property. Note that analogues of (Aj)—properties and the
classes FAD), have been first formulated in the mentioned work [MRSY5] for

k =1 where it is additionally requested local rectifiability of S, and S in (A,(:))—
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and (A,(f))—properties, respectively. Thus, the mapping class F'LD (finite length
distortion) in [MRSY3] is a subclass of FAD;. Finally, we say that a mapping
f:Q — R"is of finite area distortion, abbr. f € FAD, if f € FADj, for every
k=1,...,n—1.

We show that every mapping f with finite area distortion is a (k, Q) —mapping
for every k =1,...,n — 1 with

(1.9) Qr,y) = (Kf(:r), > Ko(Z))

zef~1(y)
where e DL i J(x, f) # 0
/:;: wy 1 Z,
(1.10) Ki(x) = Ki(z,f) = { R
) LW g £y £ 0
(111) Ko(l') = K()(:L‘,f) = { [J( 7f)|1, if f/(m.):()

and K(x, f) = oo = Ko(z, f) otherwise. As usual, here f'(z) denotes the Ja-
cobian matrix of f at the point of differentiability x, J(x, f) = det f'(x) is its
determinant and

(1.12) I(f'(z)) = min{|f'(x)h|: h€R™, |h| =1}
and
(1.13) 1f ()] = max{[f'(x)h|: heR" |h] =1} .

The quantity K;(z, f) is called the inner dilatation and Ko(z, f) the outer
dilatation of the mapping f.

2 Preliminaries

Below H*, k =1,...,n — 1 denotes the k—dimensional Hausdorff measure in
R™, n > 2. More precisely, if A is a set in R”, then

(2.1) HY(A) = sup HE(A),

e>0

(2.2) He(A) = Viinf i @

where the infimum is taken over all countable collections of numbers 6; € (0, ¢)
such that some sets A; in R™ with diameters §; cover A. Here V}, denotes the vol-
ume of the unit ball in R¥. H* is an outer measure in the sense of Caratheodory,
ie.,

1) H¥X) < H*Y) whenever X C Y
2) HH(XX;) < YH*(X;) for each sequence X; of sets;
3) HY(XUY) = H*X)+ H*(Y) whenever dist(X,Y) > 0.
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A set E C R" is called measurable with respect to H* if H*(X) = H*(X N
E) + H*(X \ E) for every set X C R". It is well-known that every Borel set is
measurable with respect to any outer measure in the sense of Caratheodory, see
e.g. [Sa], p. 52. Moreover, H" is Borel regular, i.e., for every set X C R" there is
a Borel set B C R" such that X C B and H*(X) = H*(B), see e.g. [Sa], p. 53,
and 2.10.1 in [Fe]. The latter implies that, for every measurable set E C R, there
exist Borel sets B, and B* C R" such that B, C E C B* and H*(B*\ B,) = 0,
see e.g. 2.2.3 in [Fe|. In particular, H*(B*) = H*(E) = H*(B.).

Let w be an open set in R*, k = 1,...,n—1. A (continuous) mapping S : w — R"

is called a k—dimensional surface S in R". Sometimes we call the image S(w) C R"
by the surface S, too. The number of preimages

(2.3) N(S,y) = N(S,y,w) = card S '(y) = card{r € w: S(z) =y}

is said to be a multiplicity function of the surface S at a point y € R". In
the other words, N(S,y) means the multiplicity of covering of the point y by the
surface S. It is known that multiplicity function is lower semi-continuous, i.e.,

N(S,y) = liminf N(S,ym)

for every sequence y,, € R", m = 1,2,... such that y,, — y € R" as m — o0,
see e.g. [RR], p. 160. Thus, the function N(S,y) is Borel measurable and hence
measurable with respect to every Hausdorff measure H*, see e.g. [Sa], p. 52.

The k—dimensional Hausdorff area in R™ (or simply area) associated with a
surface S : w — R" is given by

(2.4) S(B) = / N(S,y) dH"y

for every Borel set B and, more generally, for an arbitrary set which is measurable
with respect to H* in R™. The surface S is rectifiable if S(R") < oo.

If p: R™ — [0, 00] is a Borel function, then its integral over S is defined by
the equality

(2.5) /,0 s — /p N(S,y) dH y

Given a family I' of k—dimensional surfaces S, a Borel function p : R™ — [0, 00|
is called admissible for I', abbr. p € adm T, if

(2.6) / prds > 1

S
for every S € I'. Given p € (0,00), the p—modulus of T" is the quantity
(2.7) M,(T) = inf / PP (x) dm(z) .

pEadeRn

The modulus is itself an outer measure on the set of families of surfaces.
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We say that I'y is minorized by I'y and write I'y > I'y if every S C I'y has
a subsurface which belongs to I'y. It is known that M,(I'1) > M,(I'y), see [Fu],
p. 176-178. We also say that a property P holds for p—a.e. (almost every)
k—dimensional surface S in a family I' if a subfamily of all surfaces of I' for which
P fails has the p—modulus zero. If 0 < ¢ < p, then P also holds for g—a.e. S, see
Theorem 3 in [Fu]. In the case p = n, we write simply a.e.

2.8. Remark. The definition of the modulus immediately implies that, for
every p € (0,00) and k=1,...n—1

1) p—a.e. k—dimensional surface in R” is rectifiable;

2) given a Borel set B in R" of (Lebesgue) measure zero,
(2.9) S(B) =0
for p—a.e. k—dimensional surface S in R".

2.10. Lemma. Letk=1,..,n—1,p € [k,00) and let C' be an open cube in
R™, n > 2, whose edges are parallel to coordinate axes. If a property P holds for
p—a.e. k—dimensional surface S in C', then P also holds for a.e. k—dimensional
plane in C which is parallel to a k—dimensional coordinate plane H.

The latter a.e. is related to the Lebesgue measure in the corresponding (n —k)-
dimensional coordinate plane H+ which is perpendicular to H.

Proof. Let us assume that the conclusion is not true. Then by regularity of the
Lebesgue measure m,,_j in H+ there is a Borel set B such that m,,_;(B) > 0 and
P fails for a.e. k—dimensional plane S in C' which is parallel to H and intersects
B. If a Borel function p : R™ — [0, 00| is admissible for the given family I" of
surfaces S such that p = 0 outside of Cy x B where () is the projection of C' on
H | then by the Holder inequality

p—k

[ A@dm@) < | [ pe)ydn@)| | [ dm

CoxB Cox B Cox B

e
=

and hence by the Fubini theorem
P
k

/ p(x) dm(z) > <C°£B o dm(?? > (my_(B))*

" ( J dm(m))k
CoxB

mn_k(B)

hp=F
where h is the length of the edge of the cube C. Thus, M,(I") > 0 that contradicts
the hypothesis of the lemma.

p—k

(W - ma_(B))F

i.e.,

M,(T) >
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The following statement is an analogue of the Fubini theorem, cf. e.g. [Sal, p.
77. It extends Theorem 33.1 in [Val, cf. also Theorem 3 in [Fu] and Lemma 2.13
in [MRSYs].

2.11. Theorem. Let k =1,...n— 1, p € [k,00) and let E be a subset in
open set ) C R", n > 2. Then FE is measurable by Lebesgue in R™ if and only
if E is measurable with respect to area on p—a.e. k—dimensional surface S in ).
Moreover, |E| = 0 if and only if

(2.12) S(E) =0
on p—a.e. k—dimensional surface S in §2.

Proof. By the Lindelof property in R" and the minorant property of M,, we
may assume without loss of generality that 2 is an open cube C' in R™ whose
edges are parallel to the coordinate axes.

Suppose first that F is Lebesgue measurable in R". Then by the regularity of
the Lebesgue measure there exist Borel sets B, and B* in R" such that B, C E C
B* and |B*\B,| = 0. Thus, by 2) in Remark 2.8 S(B*\B,) = 0 and hence F is
measurable by area on p—a.e. k—dimensional surface S in C. Conversely, if the
latter is true, then E is measurable by area on a.e. k—dimensional plane H in C'
which is parallel to a k—dimensional coordinate plane, see Lemma 2.10. Thus, E
is measurable by the Fubini theorem.

Now, suppose that |E| = 0. Then there is a Borel set B such that |B| = 0
and £ C B. Then by 2) in Remark 2.8 the relation (2.12) holds for p—a.e.
k—dimensional surface S in C. Conversely, if the latter is true, then, in par-
ticular, S(E) = 0 on a.e. k—dimensional plane H in C which is parallel to a
k—dimensional coordinate plane, see Lemma 2.10. Thus, |E| = 0 again by the
Fubini theorem.

2.13. Remark. Say by the Lusin theorem, see e.g. 2.3.5 in [Fe|, for every
measurable function p : R" — [0, 00|, there is a Borel function p* : R" — [0, o0
such that p* = p a.e. in R". Thus, by Theorem 2.11 p is measurable on p—a.e.
k—dimensional surface S in R” for every p € (0,00) and k =1,....,n — 1.

A Lebesgue measurable function p : R” — [0, oo is said to be p—extensively
admissible for a family I' of k—dimensional surfaces S in R", abbr. p € ext, adml’,
if
(2.14) /pk ds > 1

S

for p—a.e. S € I'. The p—extensive modulus M ,(T") of T is the quantity

(2.15) M,(I) = inf / PP (x) dm(z)

where the infimum is taken over all p € ext, adm I'. In the case p = n, we use
notations M (') and p € ext adm I, respectively.
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2.16. Corollary. Foreveryp € (0,00), k =1,...,n— 1, and every family T’
of k—dimensional surfaces in R",

(2.17) M,(T) = M,(I).

Indeed, M,(T") < M,(T) by definition and M,(T") > M,(I") by Remark 2.13.

3 Modulus inequalities

The following lemma makes possible to extend the so—called Ky—inequality from
the theory of quasiregular mappings to FFAD mappings, see e.g. [MRV], p. 16,
[Ri], p. 31, [Vu], p. 130, cf. also [KO] and [MRSY5].

3.1. Lemma. Leta mapping f:§ — R" be of finite metric distortion with
(A,il)—)property for some k =1,...,n — 1 and let a set £ C €} be measurable by
Lebesgue. Then

(3.2) M(I) < /Kz(y,f‘l,E)wZZ(y) dm(y)
1(B)

for every family I' of k—dimensional surfaces S in E and p, € ext adm fI" where

(3.3) Ky, f7,E) = > Koz [).

zeBENf~1(y)

In particular, here we have in the case £ = ()

(3.4) Ki(y,f~',D) = Ki(y,f™") == > Kol f).

zef~y)

Proof. Let B be a (Borel) set of all points x in Q where f has a differential
f'(x) and J(z, f) = det f'(x) # 0. Then By = 2\ B has the Lebesgue measure
zero in R™ because f € FMD. It is known that B is the union of a countable

collection of Borel sets By, | = 1,2, ... such that f; = f|p, is a homeomorphism
which is bi-Lipschitz, see e.g. 3.2.2 in [Fe|. Setting B} = By, By = By \ B; and

we may assume that B; are mutually disjoint. Note that by 2) in Remark

2.8 S(By) = 0 for a.e. k—dimensional surface S in 2 and by (A,(Cl))—property
S«(f(By)) = 0 where S, = f oS also for a.e. k—dimensional surface S.

Given p, € ext adm fT', set

(3.5) o) = {p*<f<x>>||f'<x>||, for 2 € 0\ By,

0, otherwise.



D. KOVITONYUK AND V. RYAZANOV

We may assume without loss of generality that p, = 0 outside of f(F). Arguing
piecewise on Bj, we have by 3.2.20 and 1.7.6 in [Fe] and Theorem 2.11, see also
Remark 2.13, that

(3.6) /pde > /pfds > 1
S 3.
fora.e. S €T, ie., p€ertadm!. Hence by (2.17)
(3.7) M(T) < / P () dm(x
o)
Now, the change of variables, see e.g. [Mu], p. 31, we obtain that

(3.5) [ Kol w).f)- pity) dm(y) = [ pi(a) dm(a

f(BINE) Q
where p; = p- xp, and every f; = f|p,, | = 1,2, ... is injective by the construction.

Thus, by the Lebesgue monotone convergence theorem, see e.g. [Sa], p. 27,

(3.9 /Kfy,f L E) - pli(y) dm(y /Zpl ) dm(z) > M(T).
§(2)

The next inequality is a generalized form of the K;—inequality which is also
known as Poletskii’s inequality, see [Pol], [Ri], p. 49-51, and [Vu], p. 131, cf.
[MRSY5)].

3.10. Lemma. Let f:Q — R" bean F'M D mapping with (A,(f))—property
for some k =1,....,n— 1. Then

(3.11) MUT) < [ Ki(w, f) - p'(@) dm(a)

for every family I' of k—dimensional surface S in €} and p € ext adm I.

Proof. Let B;, Il = 0,1,2,..., be given as above in the proof of Lemma 3.1.
By the construction and (N)-property |f(By)] = 0. Thus, by Theorem 2.11
S«(f(Bo)) = 0 for a.e. S, € fI" and hence by (A,(f))—property S(By) = 0 for

a.e. S, € fI' where S is an arbitrary lifting of S, under the mapping f, i.e.,
S, =foS.

Let p € ext adm I and

(3.12) ply) =  sup  pu(x)
z€ f~1(y)NQ\ Bo

where

(3.13) po(z) = { p(x)/1(f'(x)), forx € Q\ By,

0, otherwise.
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Note that p = sup p; where

_ [ W), fory e f(By),
(3.14) ply) = { 0, otherwise,
and every f; = f|g,, | =1,2,... is injective. Thus, the function p is measurable,

see e.g. [Sal, p. 15.
Arguing as in (3.6) we obtain that

(3.15) /ﬁ'“dS* Z/pk ds > 1
S
for a.e. S, = foS € fI" and, thus, p € ext adm fT'. Hence (2.17) yields
(3.16) MUT) < [ 57(w) dmly) .
J(€)

Further, by the change of variables we have that

(3.17) [ K p)-p(@) dmia) = [ ply) dmiy) -
By F()
Finally, by Lebesgue’s theorem we obtain the desired inequality
/K](x,f)-p" Z / puly) dm(y) = / S uly) dm(y) > M(ST).
Q ) =

Combining Lemmas 3.1 and 3.10 we come to the main result.

3.18. Theorem. Let a mapping f :€§ — R" belong to the class F'AD,, for
some k =1,....,m— 1. Then f is a (k,Q)—mapping in the dimension k with

(3.19) Qz,y) = (Ki(z, f), Kily, f71) .

3.20. Corollary. Every FAD mapping f is a (k,Q)—mapping for each
k=1,..,n—1 with Q given in (3.19).

3.21. Remark. If K;(f) = ess sup K;(z, f) < oo, then (3.11) for k = 1
yields the Poletskii inequality:

(3.22) M(fT) < K;(f)M(T)

for every path family in . If Ko(f) = ess sup Ko(z, f) < oo and E is a Borel set
with N(f, F) < oo, then we have from (3.2) the usual form of the Kp—inequality:

(3.23) M(T) < N(f,E)Ko(f) M(T)
for every path family in E.
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