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Abstract
In all dimensions k = 1, ..., n − 1, we show that mappings f in Rn with finite distortion

of hyperarea satisfy certain modulus inequalities in terms of inner and outer dilatation of the
mappings.

1 Introduction

Quasiconformal and quasiregular mappings have been recently generalized to sev-
eral directions, see e.g. [AIKM], [GI], [HK], [IKO1], [IKO2], [IM], [IR], [IS],
[KKM1], [KKM2], [KO], [MRSY1], [MRSY2], [MV1], [MV2], [RSY1] - [RSY3].
In all those generalizations the modulus techniques play a key role. The following
concept was proposed in [MRSY1]. Let D be a domain in Rn, n ≥ 2, and let
Q : D → [1,∞] be a measurable function. A homeomorphism f : D → Rn =
Rn ⋃{∞} is called a Q−homeomorphism if

M(fΓ) ≤
∫

D

Q(x) · ρn(x) dm(x)(1.1)

for every family Γ of paths in D and every admissible function ρ for Γ.
Recall that, given a family of paths Γ in Rn, a Borel function ρ : Rn → [0,∞]

is called admissible for Γ, abbr. ρ ∈ adm Γ, if
∫

γ

ρ ds ≥ 1(1.2)

for each γ ∈ Γ. The (conformal) modulus of Γ is the quantity

M(Γ) = inf
ρ∈adm Γ

∫

D

ρn(x) dm(x)(1.3)

with the measure and the integral by Lebesgue.

In the work [MRSY2], the concept has been extended to mappings with branch-
ing. Note that the modulus inequality (1.1) in the definition of a Q−homeo-
morphism has first appeared for n = 2 in connection with the so-called BMO−qua-
siconformal mappings, see [RSY1] - [RSY3], cf. also V (6.6) in [LV] in the the-
ory of quasiconformal mappings. In this paper, we consider the modulus of
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families of surfaces of various dimensions in Rn and introduce the notation of
(k,Q)−mappings.

Below we assume that Ω is an open set in Rn, n ≥ 2, and that all mappings f :
Ω → Rn are continuous. Similarly [MRSY2], given a pair Q(x, y) = (Q1(x), Q2(y))
of measurable functions Q1 : Ω → [1,∞] and Q2 : Ω∗ → [1,∞] and k = 1, ..., n−1,
we say that a mapping f : Ω → Rn, f(Ω) = Ω∗, is a (k,Q)−mapping if

M(fΓ) ≤
∫

Ω

Q1(x) · ρn(x) dm(x)(1.4)

and

M(Γ) ≤
∫

Ω∗

Q2(y) · ρn
∗ (y) dm(y)(1.5)

for every family Γ of k−dimensional surfaces S in Ω and all ρ ∈ adm Γ and
ρ∗ ∈ adm fΓ.

Given a mapping ϕ : E → Rn and a point x ∈ E ⊆ Rn, let

L(x, ϕ) = lim sup
y→x y∈E

|ϕ(y)− ϕ(x)|
|y − x| ,(1.6)

and

l(x, ϕ) = lim inf
y→x y∈E

|ϕ(y)− ϕ(x)|
|y − x| .(1.7)

A mapping f : Ω → Rn is said to be of finite metric distortion, abbr. f ∈
FMD, if f has (N)−property and

0 < l(x, f) ≤ L(x, f) < ∞ a.e.(1.8)

Note that a mapping f : Ω → Rn is of FMD if and only if f is differentiable
a.e. and has (N)− and (N−1)−properties, see Corollary 3.4 in [MRSY2]. Recall
that a mapping f : X → Y between measurable spaces (X, Σ, µ) and (X ′, Σ′, µ′)
is said to have (N)−property if µ′(f(E)) = 0 whenever µ(E) = 0. Similarly, f
has the (N−1)−property if µ(E) = 0 whenever µ′(f(E)) = 0.

We say that a mapping f : Ω → Rn has (Ak)−property if the two conditions
hold:

(A
(1)
k ) : for a.e. k−dimensional surface S in Ω the restriction f |S has (N)−pro-

perty;

(A
(2)
k ) : for a.e. k−dimensional surface S∗ in Ω∗ = f(Ω) the restriction f |S has

(N−1)−property for each lifting S of S∗.
Here a surface S in Ω is a lifting of a surface S∗ in Rn under a mapping f :
Ω → Rn if S∗ = f ◦ S. We also say that a mapping f : Ω → Rn is of finite
distortion of area in dimension k = 1, ..., n−1, abbr. f ∈ FADk, if f ∈ FMD
and has the (Ak)−property. Note that analogues of (Ak)−properties and the
classes FADk have been first formulated in the mentioned work [MRSY2] for

k = 1 where it is additionally requested local rectifiability of S∗ and S in (A
(1)
k )−
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and (A
(2)
k )−properties, respectively. Thus, the mapping class FLD (finite length

distortion) in [MRSY2] is a subclass of FAD1. Finally, we say that a mapping
f : Ω → Rn is of finite area distortion, abbr. f ∈ FAD, if f ∈ FADk for every
k = 1, ..., n− 1.

We show that every mapping f with finite area distortion is a (k, Q)−mapping
for every k = 1, ..., n− 1 with

Q(x, y) =


KI(x),

∑

z∈f−1(y)

KO(z)


(1.9)

where

KI(x) = KI(x, f) =

{ |J(x,f)|
l(f ′(x))n , if J(x, f) 6= 0

1, if f ′(x) = 0
(1.10)

KO(x) = KO(x, f) =

{ ||f ′(x)||n
|J(x,f)| , if J(x, f) 6= 0

1, if f ′(x) = 0
(1.11)

and KI(x, f) = ∞ = KO(x, f) otherwise. As usual, here f ′(x) denotes the Ja-
cobian matrix of f at the point of differentiability x, J(x, f) = det f ′(x) is its
determinant and

l(f ′(x)) = min {|f ′(x)h| : h ∈ Rn, |h| = 1}(1.12)

and
||f ′(x)|| = max {|f ′(x)h| : h ∈ Rn, |h| = 1} .(1.13)

The quantity KI(x, f) is called the inner dilatation and KO(x, f) the outer
dilatation of the mapping f .

2 Preliminaries

Below Hk, k = 1, ..., n− 1 denotes the k−dimensional Hausdorff measure in
Rn, n ≥ 2. More precisely, if A is a set in Rn, then

Hk(A) = sup
ε>0

Hk
ε (A),(2.1)

Hk
ε (A) = Vk inf

∞∑

i=1

(
δi

2

)k

(2.2)

where the infimum is taken over all countable collections of numbers δi ∈ (0, ε)
such that some sets Ai in Rn with diameters δi cover A. Here Vk denotes the vol-
ume of the unit ball in Rk. Hk is an outer measure in the sense of Caratheodory,
i.e.,

1) Hk(X) ≤ Hk(Y ) whenever X ⊆ Y ;

2) Hk(ΣXi) ≤ ΣHk(Xi) for each sequence Xi of sets;

3) Hk(X ∪ Y ) = Hk(X) + Hk(Y ) whenever dist(X, Y ) > 0.
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A set E ⊂ Rn is called measurable with respect to Hk if Hk(X) = Hk(X ∩
E) + Hk(X \ E) for every set X ⊂ Rn. It is well-known that every Borel set is
measurable with respect to any outer measure in the sense of Caratheodory, see
e.g. [Sa], p. 52. Moreover, Hk is Borel regular, i.e., for every set X ⊂ Rn there is
a Borel set B ⊂ Rn such that X ⊂ B and Hk(X) = Hk(B), see e.g. [Sa], p. 53,
and 2.10.1 in [Fe]. The latter implies that, for every measurable set E ⊂ Rn, there
exist Borel sets B∗ and B∗ ⊂ Rn such that B∗ ⊂ E ⊂ B∗ and Hk(B∗ \ B∗) = 0,
see e.g. 2.2.3 in [Fe]. In particular, Hk(B∗) = Hk(E) = Hk(B∗).

Let ω be an open set in Rk, k = 1, ..., n−1. A (continuous) mapping S : ω → Rn

is called a k−dimensional surface S in Rn. Sometimes we call the image S(ω) ⊆ Rn

by the surface S, too. The number of preimages

N(S, y) = N(S, y, ω) = card S−1(y) = card {x ∈ ω : S(x) = y}(2.3)

is said to be a multiplicity function of the surface S at a point y ∈ Rn. In
the other words, N(S, y) means the multiplicity of covering of the point y by the
surface S. It is known that multiplicity function is lower semi-continuous, i.e.,

N(S, y) ≥ lim inf
m→∞ N(S, ym)

for every sequence ym ∈ Rn, m = 1, 2, ... such that ym → y ∈ Rn as m → ∞,
see e.g. [RR], p. 160. Thus, the function N(S, y) is Borel measurable and hence
measurable with respect to every Hausdorff measure Hk, see e.g. [Sa], p. 52.

The k−dimensional Hausdorff area in Rn (or simply area) associated with a
surface S : ω → Rn is given by

S(B) =
∫

B

N(S, y) dHky(2.4)

for every Borel set B and, more generally, for an arbitrary set which is measurable
with respect to Hk in Rn. The surface S is rectifiable if S(Rn) < ∞.

If ρ : Rn → [0,∞] is a Borel function, then its integral over S is defined by
the equality ∫

S

ρ dS =
∫

Rn

ρ(y) N(S, y) dHky .(2.5)

Given a family Γ of k−dimensional surfaces S, a Borel function ρ : Rn → [0,∞]
is called admissible for Γ, abbr. ρ ∈ adm Γ, if

∫

S

ρk dS ≥ 1(2.6)

for every S ∈ Γ. Given p ∈ (0,∞), the p−modulus of Γ is the quantity

Mp(Γ) = inf
ρ∈admΓ

∫

Rn

ρp(x) dm(x) .(2.7)

The modulus is itself an outer measure on the set of families of surfaces.
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We say that Γ2 is minorized by Γ1 and write Γ2 > Γ1 if every S ⊂ Γ2 has
a subsurface which belongs to Γ1. It is known that Mp(Γ1) ≥ Mp(Γ2), see [Fu],
p. 176-178. We also say that a property P holds for p−a.e. (almost every)
k−dimensional surface S in a family Γ if a subfamily of all surfaces of Γ for which
P fails has the p−modulus zero. If 0 < q < p, then P also holds for q−a.e. S, see
Theorem 3 in [Fu]. In the case p = n, we write simply a.e.

2.8. Remark. The definition of the modulus immediately implies that, for
every p ∈ (0,∞) and k = 1, ..., n− 1

1) p−a.e. k−dimensional surface in Rn is rectifiable;

2) given a Borel set B in Rn of (Lebesgue) measure zero,

S(B) = 0(2.9)

for p−a.e. k−dimensional surface S in Rn.

2.10. Lemma. Let k = 1, ..., n− 1, p ∈ [k,∞) and let C be an open cube in
Rn, n ≥ 2, whose edges are parallel to coordinate axes. If a property P holds for
p−a.e. k−dimensional surface S in C, then P also holds for a.e. k−dimensional
plane in C which is parallel to a k−dimensional coordinate plane H.

The latter a.e. is related to the Lebesgue measure in the corresponding (n−k)-
dimensional coordinate plane H⊥ which is perpendicular to H.

Proof. Let us assume that the conclusion is not true. Then by regularity of the
Lebesgue measure mn−k in H⊥ there is a Borel set B such that mn−k(B) > 0 and
P fails for a.e. k−dimensional plane S in C which is parallel to H and intersects
B. If a Borel function ρ : Rn → [0,∞] is admissible for the given family Γ of
surfaces S such that ρ ≡ 0 outside of C0 × B where C0 is the projection of C on
H, then by the Hölder inequality

∫

C0×B

ρk(x) dm(x) ≤



∫

C0×B

ρp(x) dm(x)




k
p




∫

C0×B

dm(x)




p−k
p

and hence by the Fubini theorem

∫

Rn

ρp(x) dm(x) ≥

(
∫

C0×B
ρk(x) dm(x)

) p
k

(
∫

C0×B
dm(x)

) p−k
k

≥ (mn−k(B))
p
k

(hk ·mn−k(B))
p−k

k

,

i.e.,

Mp(Γ) ≥ mn−k(B)

hp−k

where h is the length of the edge of the cube C. Thus, Mp(Γ) > 0 that contradicts
the hypothesis of the lemma.
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The following statement is an analogue of the Fubini theorem, cf. e.g. [Sa], p.
77. It extends Theorem 33.1 in [Va], cf. also Theorem 3 in [Fu] and Lemma 2.13
in [MRSY2].

2.11. Theorem. Let k = 1, ..., n − 1, p ∈ [k,∞) and let E be a subset in
open set Ω ⊂ Rn, n ≥ 2. Then E is measurable by Lebesgue in Rn if and only
if E is measurable with respect to area on p−a.e. k−dimensional surface S in Ω.
Moreover, |E| = 0 if and only if

S(E) = 0(2.12)

on p−a.e. k−dimensional surface S in Ω.

Proof. By the Lindelöf property in Rn and the minorant property of Mp, we
may assume without loss of generality that Ω is an open cube C in Rn whose
edges are parallel to the coordinate axes.

Suppose first that E is Lebesgue measurable in Rn. Then by the regularity of
the Lebesgue measure there exist Borel sets B∗ and B∗ in Rn such that B∗ ⊂ E ⊂
B∗ and |B∗\B∗| = 0. Thus, by 2) in Remark 2.8 S(B∗\B∗) = 0 and hence E is
measurable by area on p−a.e. k−dimensional surface S in C. Conversely, if the
latter is true, then E is measurable by area on a.e. k−dimensional plane H in C
which is parallel to a k−dimensional coordinate plane, see Lemma 2.10. Thus, E
is measurable by the Fubini theorem.

Now, suppose that |E| = 0. Then there is a Borel set B such that |B| = 0
and E ⊂ B. Then by 2) in Remark 2.8 the relation (2.12) holds for p−a.e.
k−dimensional surface S in C. Conversely, if the latter is true, then, in par-
ticular, S(E) = 0 on a.e. k−dimensional plane H in C which is parallel to a
k−dimensional coordinate plane, see Lemma 2.10. Thus, |E| = 0 again by the
Fubini theorem.

2.13. Remark. Say by the Lusin theorem, see e.g. 2.3.5 in [Fe], for every
measurable function ρ : Rn → [0,∞], there is a Borel function ρ∗ : Rn → [0,∞]
such that ρ∗ = ρ a.e. in Rn. Thus, by Theorem 2.11 ρ is measurable on p−a.e.
k−dimensional surface S in Rn for every p ∈ (0,∞) and k = 1, ..., n− 1.

A Lebesgue measurable function ρ : Rn → [0,∞] is said to be p−extensively
admissible for a family Γ of k−dimensional surfaces S in Rn, abbr. ρ ∈ extp admΓ,
if ∫

S

ρk dS ≥ 1(2.14)

for p−a.e. S ∈ Γ. The p−extensive modulus Mp(Γ) of Γ is the quantity

Mp(Γ) = inf
∫

Rn

ρp(x) dm(x)(2.15)

where the infimum is taken over all ρ ∈ extp adm Γ. In the case p = n, we use
notations M(Γ) and ρ ∈ ext adm Γ, respectively.
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2.16. Corollary. For every p ∈ (0,∞), k = 1, ..., n− 1, and every family Γ
of k−dimensional surfaces in Rn,

Mp(Γ) = Mp(Γ).(2.17)

Indeed, Mp(Γ) ≤ Mp(Γ) by definition and Mp(Γ) ≥ Mp(Γ) by Remark 2.13.

3 Modulus inequalities

The following lemma makes possible to extend the so–called K0–inequality from
the theory of quasiregular mappings to FAD mappings, see e.g. [MRV], p. 16,
[Ri], p. 31, [Vu], p. 130, cf. also [KO] and [MRSY2].

3.1. Lemma. Let a mapping f : Ω → Rn be of finite metric distortion with

(A
(1)
k −)property for some k = 1, ..., n − 1 and let a set E ⊂ Ω be measurable by

Lebesgue. Then

M(Γ) ≤
∫

f(E)

KI(y, f−1, E) · ρn
∗ (y) dm(y)(3.2)

for every family Γ of k−dimensional surfaces S in E and ρ∗ ∈ ext adm fΓ where

KI(y, f−1, E) =
∑

x∈E∩f−1(y)

KO(x, f) .(3.3)

In particular, here we have in the case E = Ω

KI(y, f−1, D) = KI(y, f−1) :=
∑

x∈f−1(y)

KO(x, f) .(3.4)

Proof. Let B be a (Borel) set of all points x in Ω where f has a differential
f ′(x) and J(x, f) = det f ′(x) 6= 0. Then B0 = Ω \ B has the Lebesgue measure
zero in Rn because f ∈ FMD. It is known that B is the union of a countable
collection of Borel sets Bl, l = 1, 2, ... such that fl = f |Bl

is a homeomorphism
which is bi–Lipschitz, see e.g. 3.2.2 in [Fe]. Setting B∗

1 = B1, B∗
2 = B2 \B1 and

B∗
l = Bl \

l−1⋃

m=1

Bm

we may assume that Bl are mutually disjoint. Note that by 2) in Remark

2.8 S(B0) = 0 for a.e. k−dimensional surface S in Ω and by (A
(1)
k )−property

S∗(f(B0)) = 0 where S∗ = f ◦ S also for a.e. k−dimensional surface S.

Given ρ∗ ∈ ext admfΓ, set

ρ(x) =

{
ρ∗(f(x))||f ′(x)|| , for x ∈ Ω \B0,

0 , otherwise.
(3.5)
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We may assume without loss of generality that ρ∗ ≡ 0 outside of f(E). Arguing
piecewise on Bl, we have by 3.2.20 and 1.7.6 in [Fe] and Theorem 2.11, see also
Remark 2.13, that ∫

S

ρk dS ≥
∫

S∗

ρk
∗ dS ≥ 1(3.6)

for a.e. S ∈ Γ, i.e., ρ ∈ ext adm Γ. Hence by (2.17)

M(Γ) ≤
∫

Ω

ρn(x) dm(x) .(3.7)

Now, the change of variables, see e.g. [Mu], p. 31, we obtain that
∫

f(Bl∩E)

KO(f−1
l (y), f) · ρn

∗ (y) dm(y) =
∫

Ω

ρn
l (x) dm(x)(3.8)

where ρl = ρ ·χBl
and every fl = f |Bl

, l = 1, 2, . . . is injective by the construction.

Thus, by the Lebesgue monotone convergence theorem, see e.g. [Sa], p. 27,

∫

f(E)

KI(y, f−1, E) · ρn
∗ (y) dm(y) =

∫

Ω

∞∑

l=1

ρn
l (x) dm(x) ≥ M(Γ) .(3.9)

The next inequality is a generalized form of the KI–inequality which is also
known as Poletskii’s inequality, see [Pol], [Ri], p. 49–51, and [Vu], p. 131, cf.
[MRSY2].

3.10. Lemma. Let f : Ω → Rn be an FMD mapping with (A
(2)
k )−property

for some k = 1, ..., n− 1. Then

M(fΓ) ≤
∫

Ω

KI(x, f) · ρn(x) dm(x)(3.11)

for every family Γ of k−dimensional surface S in Ω and ρ ∈ ext adm Γ.

Proof. Let Bl, l = 0, 1, 2, . . ., be given as above in the proof of Lemma 3.1.
By the construction and (N)–property |f(B0)| = 0. Thus, by Theorem 2.11

S∗(f(B0)) = 0 for a.e. S∗ ∈ fΓ and hence by (A
(2)
k )−property S(B0) = 0 for

a.e. S∗ ∈ fΓ where S is an arbitrary lifting of S∗ under the mapping f , i.e.,
S∗ = f ◦ S.

Let ρ ∈ ext adm Γ and

ρ̃(y) = sup
x∈f−1(y)∩Ω\B0

ρ∗(x)(3.12)

where

ρ∗(x) =

{
ρ(x)/l(f ′(x)), for x ∈ Ω \B0,

0, otherwise.
(3.13)
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Note that ρ̃ = sup ρl where

ρl(y) =

{
ρ∗(f−1

l (y)), for y ∈ f(Bl),
0, otherwise,

(3.14)

and every fl = f |Bl
, l = 1, 2, . . . is injective. Thus, the function ρ̃ is measurable,

see e.g. [Sa], p. 15.

Arguing as in (3.6) we obtain that
∫

S∗

ρ̃ k dS∗ ≥
∫

S

ρk dS ≥ 1(3.15)

for a.e. S∗ = f ◦ S ∈ fΓ and, thus, ρ̃ ∈ ext adm fΓ. Hence (2.17) yields

M(fΓ) ≤
∫

f(Ω)

ρ̃ n(y) dm(y) .(3.16)

Further, by the change of variables we have that
∫

Bl

KI(x, f) · ρn(x) dm(x) =
∫

f(Ω)

ρl(y) dm(y) .(3.17)

Finally, by Lebesgue’s theorem we obtain the desired inequality
∫

Ω

KI(x, f)·ρn(x) dm(x) =
∞∑

l=1

∫

f(Ω)

ρl(y) dm(y) =
∫

f(Ω)

∞∑

l=1

ρl(y) dm(y) ≥ M(fΓ) .

Combining Lemmas 3.1 and 3.10 we come to the main result.

3.18. Theorem. Let a mapping f : Ω → Rn belong to the class FADk for
some k = 1, ..., n− 1. Then f is a (k,Q)−mapping in the dimension k with

Q(x, y) = (KI(x, f), KI(y, f−1)) .(3.19)

3.20. Corollary. Every FAD mapping f is a (k, Q)−mapping for each
k = 1, ..., n− 1 with Q given in (3.19).

3.21. Remark. If KI(f) = ess sup KI(x, f) < ∞, then (3.11) for k = 1
yields the Poletskii inequality:

M(fΓ) ≤ KI(f) M(Γ)(3.22)

for every path family in Ω. If KO(f) = ess sup KO(x, f) < ∞ and E is a Borel set
with N(f, E) < ∞, then we have from (3.2) the usual form of the KO−inequality:

M(Γ) ≤ N(f, E) KO(f) M(fΓ)(3.23)

for every path family in E.
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