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Abstract

We describe sets on which differences of solutions of the gas dynamics equation satisfies
some special conditions.

1 Main Results
Consider the gas dynamics equation

(1.1) div (o(| v f]) v f(z)) =0,

where

Here 7 is a constant, —oo < 7 < +00, characterizing the flow of substance. For different
values -y it can be a flow of gas, fluid, plastic, electric or chemical field in different mediums,
etc. (see, for example, [1, §2], [2, §15, Chapter IV]).

For v = —1 the equation (1.1) is known as the minimal surfaces equation

v 7Vf =0
V1+|Vf]?
(Chaplygin’s gas).
For v =1+ 0 we have

div <exp{—; |Vf|2} Vf> =0.

For v = —oo the equation (1.1) becomes the Laplace equation.

The solution of the equation (1.1), in which the weight function o is a function of the
variable (z1,...,x,), is called o-harmonic functions. To learning this kind of functions
devoted a large quantity of works (see., e.g., [3], [4] and quoted there literature).

Let n > 2. We set 2, = R" for v <1 and

n . 2
Qv:{§€R -|§’<\/7_1}
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for v > 1.
Let &, n € R™. The following inequalities are very important in work with the equation

(1.1):
(1.2) a Y (G—n)? < D (o(Eh& — ollnhm) (& — i),
=1 =1
(1.3) S (o(€De —ollln)? < e (o(eDe — o) & — o).
i=1 i=1

where cq, cg > 0 are some constants.

In the general case the inequalities (1.2) and (1.3) are valid only for the subsets of the
set €0, x €, with constants ¢; and ¢y depending on these subsets. The purpose of the given
paper is a description of such dependence.

We fix ¢; > 0,¢2 > 0 and ~. Introduce the sets

Ay (cr) ={(&n) : &,n e, satisfy (1.2)},

By(c2) = {(&m) : &,m e Q, satisty (1.3)}.
We set ¥y ={r € R:2 >0} for y <1 and

[ 2
sz{xER:0§x< ’)/—1}
for v > 1.

Further, we will need the functions defined on the set ¥, x ¥, and prescribed by the
relations
zo(x) —yo(y)
T—Yy
ID(x,y) =o(x) +o'(x)r  forz=y

I (z,y) = for z # y,

and
ro(z)+yo(y)
r+y

I7(0,0) = 1.

I+(.I',y) -

2, .2
5 for z° + y= > 0,

Note that the functions I (x,y) and If(x,y) are continuous in the closing of the set
¥, x 3, and they are C'*°-differentiable in the each inner points of this set.

Generally, the sets A,(c1) and By(c2) have a complicated structure. We shall describe
them by comparing with canonical sets of the ”simplest form”. For arbitrary € > 0 we put

Wr(e) ={&n): &neQy, L (€], Inl) = e},
W) ={(&n): &meQy, Ll Inl) = €},
Vi(e)={&n): &mey, (€] Inl) < e},
Vi) ={En): &neQy, LTl Inl) < e}

Also we will need the sets



Dy ={(§,6) : £ € Qy},
Qy ={(&mn): &n ey, LollE]) =nolln))}-

The following assertions are the main result of this paper.

1.4. Theorem. Lety € R. Then the following relations are true
(1.5) (Wy(e)uDy) CAe) C (WS (e)uD,) forall c€ (0, 1);

(1.6) A,(e) =D, forall ee€ll, +00).

1.7. Theorem. a) If vy € (—o0, —1] then
(1.8) (Vi (e)uD,) CBy(e) € (Vy ()UD,) forall ec (0, 1);

(1.9) B,(e) =R* forall c€[l, +00).
b) If y € (—1,+00) then

(1.10) (V" () n W5 (0)) € By(e) € (Vi (9)UQ,) forall &€ (0, 1);
(1.11) W (0) C By(e) forall e€ll, +o0).

First the relation (1.9) was proved for v = —1 and € = 1 in [5]. Later it was repeatedly
proved with these v and ¢ in [6], [7], [8] and [9].

2 Proofs of main theorems

We will need the following elementary assertion.

2.12. Lemma. The function o has the following properties:
1) the domain of o is the set 3., moreover, c(0) = 1, o(4+00) = 0 for v < 1 and
2\ _ )
0( ﬁ) =0 for v > 1;
2) for all t € ¥, we have
0<o(t) <1;

3) the function o is decreasing on . moreover

for all't > 0,t € Xy;
4) the function 0(t) = to(t) is increasing on [0, +o0) for all v € (—oo, —1];

5) for every v € (—1,+00), the function 6 is increasing on [0, ,/ %] and decreasing on

[ %7_}'00)“27;



6) for every v € (—oo, —1] U [2, +00), the derivative ' is decreasing on X ;
7) for every v € (—1,2), the derivative ¢ is decreasing on [0, / %] and Increasing on

[ %,—i—oo)ﬂEv.

The proof follows from the equalities:
/ ¥—1,522
a(t):—t(1—72 t4)7-1 for v # 1,

1
a(t) = —t exp{—§t2} for v =1,

0(t) = (1- ”T“f?)u - %17:2)3%1 for 4 # 1,

1
0'(t) = (1—1?) exp{f§t2} for vy =1,

1 1, 80
0" (1) = —1(3 — %ﬂ)u = S CRT

0" (t) = t(t* — 3) exp{—%tQ} for v = 1.

O

2.13. Lemma. Let v € R. Then for all z,y € ¥, z? + y* # 0 we have

I (z,y) < I (2,y) < 1.
Proof. Let x,y satisfy the assumptions of Lemma. If x = y then
I (2,y) = o(z) + 20’ (x) < o(a) = [} (2,y) < 1.
Suppose that x > y. Since
o(z) < o(y),
we obtain
I,y_(l’,y) — LI}‘O’(I‘) — yO’(y) < 1130'(93) — yO’(l’) _ O'(JE)
T —y T —y
_ zo(x)+yo(z) - zo(x)+yo(y) ~ IF(ay)

r+y B r+y

< W:G(y)<l.

The case © < y is analogous. O

2.14. Lemma. Lety € R. The sets W, (¢), W (¢), V.7 (¢) and V.}(e) have the
following properties:



1) Wi(e)=WS () =10 for all e > 1;
W (1) = Wi (1) = {0};

W (e) C W (e) for all € € (0, 1);

= W N

Y Y

ot

Vii(e) C V (e) for all e € (0, 1);

D

W (0) =, x Q,,  V5H(0) =

)
)
)
) Vi(e)=Vi(e)=Q,xQ, foralle>1;
)
)
7)

W (0)=R*™, V. (0)=0 for all v < —1.

The proof follows from Lemma 2.12 and Lemma 2.13.

Further, we set

Hy={(&mn): &meQy, [f=nl, £#n},
Gy ={(&m): &ne Q. l]# nl).
U = {(&m): & e, I (el Inl) < 0},

U = {(&m): &€ O, L (el nl) > 0},

Py={(Em): &€y [l = hlo(nl),  €o(le) #no(ln)),
Ef(e) = (V@ nUF) uQyu (V@ Py,

Fy(e) = (Vy (e)nUF)UuQ, U (V) n Py U (ViHe) N Ty ).

For every £, n € R", their inner product is denoted by (£, 7). Obviously, the inequalities

n) :
n)

(1.2), (1.3) with some constant € > 0 can be written as

(2.15) ele —nf* < (o (1€ — allnl)n, € —n),
(2.16) o (1€NE = a(nl)nl* < (o (1€DE = o(lnhn. & =),
respectively.

Let ¢ be the angle between the vectors ¢ and 1. We have

€ = nl* = €] + nl* — 2[¢]In cos ¢,
(o (IgN€ = a(lnl)n, & —n) = a(IEDIE* + a([uD)nl* — (a(€]) + a(|nl))[€]In] cos o,

lo(1€)E = a(Inh)nl* = *(I€DIE1% + o (Inl)Inf* — 20 (1))a(|n])[€]n] cos ¢.
We set
T(p) = [E7+ nl* = 2[¢]In] cos ¢,

®(p) = a(lEDIgl* +a(nDlnl* — (a(€]) + a(In)))Iglnl cos e,

U(p) = a*(IEDIEP + o (InDnf® — 20 (Ig))e(InD)g]Inl cos .
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Proof of Theorem 1.4. It is clear that the inequality (2.15) holds for all (§,7n) € D,,.
Let (&,7m) € A,(e) N H,. In this case the inequality (2.15) is rewritten in the form

e <o(lg]) = a(lnl)-

Hence,
A (€) N Hy = W (e) N H,.

Using Lemma 2.14, we see that
(2.17) (W5 ()N H,) € (Ay(e) N Hy) € (WS (e) N H) .
Now we assume that ({,7) € G,. Then Y(¢) > 0 and after simple calculations we find

9 (‘I’(SD)> _ (a(nh) — o (IED)(IEI* — [nI*)[€]|n| sin ¢
o \Y(p) T2(p) '

By the property 3) of Lemma 2.12 we have

(o(ln)) = (N U&* = nf*) > 0.

Therefore,

([ 2(p)) _ 2(0)
wgé%r] (T((P)) - W
_ a(€DIE? + a(InDInl® — (o (l€]) + o (InD)IElnl _
(€] = In[)?

L5(1&l5 [nl)

_ a(€DIE® + a(lDlnl® + (€] + a(nl))[€]n]
(&1 + Inl)?

Then for all (§,71) € G the following inequalities are valid

(a(I€)€ — a(nD)n,§ —n)
1€ —nl?

= L (I¢], In])-

L€l Inl) < < L7 (€], Inl)-

This implies
(W5 (6)NGy) € (Ay(e)NGy) € (W (e)NG,) -

From this, by (2.17) and Lemma 2.14 we obtain (1.5) and (1.6). O

Proof of Theorem 1.7. a) It is clear that (2.16) holds for all (£,7n) € D,.
Let (&,7m) € By(e) N Hy. In this case the inequality (2.16) becomes

o(¢]) = a(lnl) <e.
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Then
87(6) NH, = Vj(a) N H,.

Using Lemma 2.14, we see that
(2.18) (Vi ()N Hy) € (By(e) N Hy) € (Vi () N Hy).
Now we assume that (£,7) € G-. Then by the inequality

U(p) > (o (lEDEl = a(lnl)lnl)?

and by the property 4) of Lemma 2.12 we can conclude that U(p) > 0 for all ¢ € [0,7].
Next after simple calculations, we obtain

9 <<I>(s0)> _ (a(l&]) = a(mD)(I€Pa>(1€D — Inl*a>(nl))Ié]Inl sin ¢
o \¥(p) U2(p) ‘

By the properties 3) and 4) of Lemma 2.12 it follows that

(2.19) (o (1)) = a(lnD)(€Pa*(I€]) — o (|n]) < 0.

Therefore

(‘P(@)) O ()

U(p)) ~ U(m)

min
»€[0,7]

_ o(€DIE® + a(uDlnl® + (€D + a(n)IElnl 1
a?(IEDIEP + o> (D nl* + 20 ([N (nD)IglInl - 15 (€], n])”

_ o(EDIEP + a(nDInl® = (o (i€ + o(m)IEllnl _ 1
a(IEDIEP + o> (D nl* — 20 ([N (nDIElInl - Iy (1€], nl)

Thus for all (§,7) € G, the following inequalities are true

L lolehe—olnhme—m 1
(2.20 T = lo(eDe —olnn® = T (&l )’

This implies that

(Vi ()N Gy) € (By(e)NGy) € (Vi (e)NGs).

From this, by (2.18) and Lemma 2.14 we obtain the relations (1.8) and (1.9).

b) It is clear that the inequality (2.16) holds for all ({,n) € Q. Moreover, by the
property 5 of Lemma 2.12 we have Q., # D,.

Let (&,7m) € Py. Similarly, we establish that P, # H,. Next, we have

U(p) = o*(IENIEP + o*([nD)Inf* — 20 (€))o([n])[€lInl cos p = 20 (|€])IE[* (1 — cos )



and
() = o(lEDIEl +a(ln))nl® = (o(€]) + o (|n]))|Ellnl cos ¢

= oD + a(1€DglInl — a(1€DlIn] cos o — o ([g])]€]* cos ¢

o (IENIEICE] + [n) (1 = cos ).

It is easy to see that cosp # 1. Indeed, we suppose that cosp = 1. Then the vectors
¢o(|¢]) and no(|n|) are collinear. It implies that {o(|£]) = no(|n]).

e find We) _ 2lelolé)
® o
e = (il o).
(@) 1€l +nl
Thus, the inequality (2.16) assumes the form
LE(El, Inl) <e
and we establish that
(2.21) B,(e) NPy =V (e) NP,

Let (§,n) € US. By the property 3) of Lemma 2.12 we find that the inequality (2.19)
is valid. Therefore the inequalities (2.20) are true and we obtain

(2.22) (Vf @) nuf) < (Bye)nUf) < (Vy () Uy ).
Now let (&,1m) € U; . Observe that the set U, is not empty. It is easy to see that

(o(l&)) = a(lnD)(I€Po*(I€]) = o (|n])) > 0.

For all (¢,n) € U} the following inequalities are true

1 (o(€DE —ollnhm&—m) . 1

<

Ly (1€l [nl) o (1€DE —allnlnl*  ~ I (gl Inl)

and we obtain
(B,(e)nUy) < (ViHe)nUy).
From here, by (2.21) and (2.22),

Fj(s) C By(e) C F, (e).
It is not hard to establish that

W (0)C (PUuQ,uUy),  (PUQUUFUUT) =0, xQ,
Then, using Lemma 2.14, we find
(Vi@ nwy () cEf (o), Fre)c (Vo (6)uQ,).

From here we obtain the relations (1.10) and (1.11). O



3 Properties of W (¢), W (), V. (¢) and V' (¢)

Here we study the sets W.~(¢), W (¢), V7 (¢) and V(). Consider the equation

(3.23) 0'(t) = e,

where 0(t) = to(t) and € is an arbitrary parameter. It is easy to verify that for v # 1 the
equation (3.23) can be written down in the following form:

2 v+1

——o? (¢ t)+e=0.
() = ot +e
Further, we assume that ¢ € (0,1). We set
2(1 — et
r = 7( e7l) for v # 1
v—1

and

r=+v—2lne for y = 1.
Observe that r € 3, for all v € R.
Fix € € (0,1). Assume that v < —1. It is easy to see that

9'(0) =1, lim ¢'(t) = 0.

t——+o00

From here and by the property 6) of Lemma 2.12 we deduce that the equation (3.23)
has the unique positive solution s and 0 < t < s be the solutions of the inequality 6'(t) > ¢
subject to t > 0.

Further, we have

o(r)=¢e=0'(s) =o(s) +s0'(s) < o(s).
Then the inequality o(r) < o(s) implies r > s. Hence, s € (0,7).
Assume that v > —1. By the property 5) of Lemma 2.12 we see that

2
0<t<y|——
v+1
be the solutions of the inequality 6’(t) > 0 subject to ¢ > 0. By the properties 6), 7) of
Lemma 2.12 we deduce that the function 6'(¢) is decreasing on {O, \/ % . Moreover,

/ _ / 2 _
o) =1 6 (,/%LJ =0

Therefore the equation (3.23) has the unique positive solution s < % and 0 <t <s
be the solutions of the inequality €'(t) > e subject to t > 0. As above, we can show that
se (0,7).

Thus, we proved the following statement.



3.24. Lemma. Let vy € R, e € (0,1) and s € (0,7) be a positive solution of (3.23)..
Then the following relations hold

(3.25) 0'(t) >e forallte(0,s), 0'(t)<e forallt>s, tex,

3.26. Remark. It is not hard to establish that for v > —1 and € = 0 the relations

(3.25) are true with s = \/%

We say that a set G C R" is an linearly connected if any pair of points =,y € G can be
joined on D by an arc.

The sets W, (¢), W, (¢), V; (¢) and V. () have the following properties.
3.27. Proposition. a) The set W (¢) is linearly connected fory € R and ¢ € (0,1).
b) The set W~ (0) is linearly connected for v > —1.

¢) The set W (¢) is linearly connected for v € R and ¢ € (0,1).

Proof. a) We fix numbers v € R", ¢ € (0,1) and a nonzero point ¢ = (§,7) € W, ().
To prove the statement, it is sufficient to show that the set W, (¢) contains the segment
L ={(&,nt) : 0 <t <1} with the endpoints 0 and (.

Indeed, let ¢',¢" € W () be arbitrary. Let £, £L” be the segments with the endpoints
0, ¢/ and 0, ¢” respectively. Denote by £ U L” the double curve which consists of two
segments £ and £”. Then this double curve will join the points ¢’, (" and it will lie on
W (e).

We prove that the segment L lies in W.~(¢). Assume that [£] < [n|. For ¢t € (0,1) we

have glo(et]) — nlo(lt) _ IElo(ED — [nlo ()
- 7 _ g — no{n g — no{|n
v (18l Itl) TR R 2 gy
_ [glo(l€D) = [nloin) + nlo(inl) = nlo(int)
€= [n]
o et = ot .
- €] — Il -
The case |£] > |n| is analogous. Now we assume that || = |n|. We write

L (Il Inl) = 0'(1€]) = &

Then by Lemma 3.24 for ¢ € (0,1) we deduce |£t| < |¢] < s and
L (It Int]) = 0'(|6t]) = e

Hence, the set W~ () contains the segment L.
b) The proof is analogous.
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¢) We fix numbers v € R", ¢ € (0,1) and a nonzero point ¢ = (§,7) € W (¢). As
above, to prove this statement, it is sufficient to show that the set Wj (e) contains the
segment £ = {({t,nt) : 0 <t < 1}. For ¢t € (0,1) we have

I ([et], nt]) = !£|0(|€|t|§)|1||z||a(lntl) > |£\a(|§||€)|i||zy|a(m|) ..

Thus, the set W.f(¢) contains the segment £. O

3.28. Proposition. a) Let ¢ € (0,1) and v € R. Then

{(&m): &EneR”, €] < s, [n| < s} C Wi (e),

where s € ¥ is the unique positive solution of the equation (3.23).
b) If v > —1 then

n 2 2 _
{n): &meR”, |§\§\/ﬁ, Inlé,/ﬁ}cwy(o).

c) Let € € (0,1) and v € R. Then

V'y_(s) - (Q’Y X Q’Y) \ {(5777) : 6777 € Rna |€| < S, |77| < S}a

where s is the unique positive solution of the equation (3.23).
d) If vy > —1 then

[ 2 2
ny_(o) C (Q’Y X Q’Y) \ {(5777) : 6777 € Rna |§’ < ﬁ? |77| < ﬁ}

Proof. a) Let (§,n) € {(&,n): §&,ne R, €] <s, |n] < s}. Using Lemma 3.24, we see
that
0'(I5) =&, O'(Inl) = =

We assume that || = |n|. Then

L (Il Inl) = 0'(1€) = 6'(Inl) = &

and, hence, (§,1) € W, (¢).
Now we assume that || < |n|. Using the well-known Lagrange mean value theorem, we
obtain

Ll ) =0'(c), Kl <e<nl

By Lemma 3.24,
0'(c) >e.

Hence, (§,71) € W5 (g). The case || > |n| is analogous.
b) The proof is analogous.
¢) The proof easy follows from a).

d) The proof easy follows from b). O
11



3.29. Proposition. Ife € (0,1) and v € R, then we have
a) Wi c{(En): &neRY [E < [nf<r},

and

b) (xR \{(&m) : EmeR, €] <r Inl <7} C V7 (e).

Proof. a) Let (§,1) € W (g). Assume that |{| = [n|. We have
e < I (I¢], Inl) = 0'(1¢]) = o (1€]) + [€]o"([¢]) < o (I€]) = a(|n]).

Then the inequalities
o(lgh =& allnl) =¢
imply
&l =Inl <

Hence,
&me{&n): &EmeR [ < nl <r}.
Now we assume that || > |n|. Using the inequality

a([€]) < a(lnl),

we deduce

e < I-(Iel, Inl) = (Elo(€]) = [nlo(nl) _ |Elo(E]) = nlo(€) _

1€l = n] - 1€l = Inl

From here, (§,17) € {(¢,n): &, m e R™, |§] <7, |n] <r}. The case [£| < |n]| is analogous.
b) The proof follows from a). O

o(l¢l) < alnl)-

3.30. Proposition. Ife € (0,1) and v € R, then
W {&n): EneR™ € <r, il <5} C W),
and
b) VS (e) Sy x Q)\{(&m) : EmeRT, €] <r, Iy <7}
Proof. a) Tet (&,1) € {(€,1) : &1 € R™, €] <r, || <r}. Then
o(lf) =e,  o(nl) =&
Assume that || = |n|. We have
L (&l Inl) = o (€]) > .

Hence, (&, 1) € W (e).
Now we assume that [£| > |n|. We deduce

_ [&lo (€D + Inlo(lnl) o [€lo(lE) + [nlo(€) _
€]+ [l B €] + [

From here, (§,7) € W, (¢). The case [£] < |5] is analogous.

L (lgl, Inl)

a([¢]) > e

b) The proof follows from a).O
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4 Properties of z.(¢)
For arbitrary ¢ € (0,1),v € R we set

X, (e) = {xEZW: Jy € X, Lj’(a;,y)Za},
X\(e) = {:EEZ,Y: Jy € ¥, Ij(a:,y)za},

xzy(e) = sup, Xy(e).
If z,(e) < +oo then the following relations are true

Wi(e) C{(&n): &neR, €] < ay(e), Inf < z4(e)}

and
(Qy x Q)\{(&m) : & e R, €] < zy(e), [n] < 24(e)} C VS (o).

We shall study the function z.(g). We have
I7(0,r)=0o(r) =¢ for all e € (0,1),7 € R.

From here, we deduce that r € X, (¢) and r € X,(¢). Then the function . (¢) is defined
everywhere on (0, 1) and r < (). Besides, from the definition of the set ¥, we establish

2
J}'y(E) S ﬁ for all Y > 1.

The function x,(¢) has the following properties:
4.31. Proposition.  The function x(¢) is nonincreasing on (0, 1).

The proof is evident.

4.32. Proposition. Ifvy > 1 then

2
(4.33) xy(e) = po for all € € (0,€']
and
[ 2
(434) .’L'»\/(E) < ﬁ fOl" all € S (5,, 1),
where

2
(4.35) = max I (1 / ,y) .
ye [0,1 /% -1

13



Proof. Let v > 1. We set

2 0

It is easy to see that the function a(y) is positive on (0, %) and it is continuous on
[O, 1/ % . Therefore there exists
= max a(y)>0
e,/ 53]
We have

2
1 for all y € [0, /-=5].

Y
aly) £ —==<
2
Yt/535T
Hence, ¢’ < 1. Therefore for € € (0,€’] the equation

(4.36) aly) =¢

has at the minimum one solution yo € (0, ,/%). Otherwise the equation hasn’t solutions.
We fix arbitrary ¢ € (0,¢'], x € £,. Let yo € ¥, be a solution of (4.36). We have

0(yo) _ _ 0(z) +0(yo)
Yo + % - T+

e =a(y) = = I7 (. y0)-

From here, we deduce that € X, (). Hence, X,(g) = 3 for all € € (0,¢']. It proves
the relation (4.33).

Now we prove the relation (4.34). Fix € € (¢/,1). Suppose that

Then for n € N there exists a number z,, € X,(¢) such that

2 1 <
— — — < Xp.
¥y—1 n "
Moreover,
. 2
lim z, =/ ——
n—o00 v - 1

and for n € N there exists y,, € X, satisfying the inequality

I,;L(xn,yn) > e.

This inequality implies
(4.37) O(xn) —exy > cyn — O(yn)-

14



Further, we have

af g for all n € N.

0(yn)
Yn) = —— == <
Un + /521

From here,

2
(4.38) O(y,) <€ (yn + 7—1) for all n € N.

Using (4.37) and (4.38), we deduce

e(xn) — ETp = EYn — e(yn)

Letting n — oo in the inequality
O(xy) —exy > —€'y | ——,

we see that € < ¢’ and we arrive at a contradiction. O

Prove some auxiliary statements.

4.39. Lemma. Let

(4.40) v € (—o0,1], €€(0,1)
(4.41) v € (1,+00), e€(, 1),

where €' is defined by (4.35). Then the set X, (¢) is compact.

Proof. Introduce the set
Z(e) ={(z,y) € B, x By : [ (x,y) >}

Let 7 : R?> - R, 7(z,y) = z be natural projection. It is clear that 7(Z,()) = X,(e).
Assume that the condition (4.40) holds. The set Z,(¢) is closed since the function
I (x,y) is continuous.
The set Z,(e) is bounded. Indeed, we can find a sequence Zy(¢) 3 (zp,yn) — 00.

Assume that z,, — co. Then for the bounded subsequence of {y,} we have

e < I;'_(:Umyn) = iUnU(ﬁUn) * yng(yn) < $n0<1‘n) + yn‘

T + Yn - Tn

The right part of this inequality tends to zero as n — oo. Thus we obtain a contradiction
to (4.40).
For an unbounded subsequence of {y,} we have

e < I»;r(xnvyn) < U(xn) + U(yn)

15



The right part of this inequality tends to zero as n — oco. Again we obtain a contradiction
to (4.40). Hence, the set Z, () is bounded. Therefore the set Z,(¢) is compact. Because
the mapping 7 is continuous then the set X, (¢) = 7(Z,(¢)) is compact too.

Assume that the condition (4.41) holds. By (4.34) we have that Z,(¢) C ¥, x ¥,. Here
Z,(e) denotes the closure of Z,(¢). Since the function It (z,y) is continuous then Z,(¢) is
compact. Therefore, the set X, (¢) is compact too. The lemma is proved. O

4.42. Corollary. If the condition (4.40) or (4.41) holds then the set X, () is com-
pact.

4.43. Lemma. If the condition (4.40) or (4.41) holds then

sup X (g) = sup X, ().
x x

Proof. We set
a = sup X,(¢), b =sup X, (e).

Obviously, a > b. Show that a < b. By Lemma 4.39 we establish that a € X, (¢). Hence,
there exists a number yo € X, sach that

Lj‘(a,yo) > e.
Assume that
I'—y‘r(aay()) =&

Then a € )_(y(e). By Corollary 4.42 we conclude follows that b is the greatest element of
the set X, (g). Therefore, a < b.
Now we assume that
IF(a,y0) > e.
For v <1 we have
lim I;"(:U,yo) =0.

r——400

Since the function I (z,y) is continuous then there exists a number 2’ > a such that
(4.44) I (2 ) = .

Hence, ' € X, (). Then a < 2/ < b and we obtain a contradiction.
By (4.35) for v > 1, we deduce

2
+ /
I’Y ( H,yo) ég <e.

Then there exists a number 2’ € (a, ,/%) satisfying (4.44). Hence, 2’ € X, (¢). From
here, a < 2’ < b and again we obtain a contradiction. The lemma is proved. O

4.45. Lemma. If the condition (4.40) or (4.41) holds, then there exists a number
y(€) € ¥, such that
(4.46) IH (i (€), (€)= &

16



The proof follows from Corollary 4.42 and Lemma 4.43. O

Continue to study the function z, ().

4.47. Proposition. The function
xy(e) € C*(0,1) forall v<1

and
z(e) € C*((0,e) U (¢,1))NC(0,1) forall ~>1.

Proof. Fix ¢y and v, satisfying (4.40) or (4.41). Then z,(gp) € ¥, and there exists
y(€0) € X, sach that

Ij(xy(ao),yw(ao)) = €o-
We set
F(IL‘,y,Z—:) = I';r(lvvy) —¢&.

Observe that the function F(x,y,¢) is C*-differentiable in some neighborhood U C R? of
the point pg = (2(c0), y(€0), €0) and F'(pp) = 0. We have

8£( ) = 0 (x4 (c0)) — I'Jyr(xv(go)ayv(%)) _ 0’ (z4(0)) — €0
ox Po 5177(80) + 3/7(50) xv(go) + 97(50)‘

In Section 3 we proved that 0 < s < r, where s € X, is the unique positive root of
(3.23). Then the inequality r < x(eo) yields

oF

%(po) # 0.

By the implicit function theorem we deduce that there is an 3-dimensional interval
I =1,x1I,xI. CU and a function f € C*(I, x I.) such that for all (x,y,¢e) € I, x I, x I,

F(xayvg) :O@x:f(yﬂg)

Here
L={reR:le—a o) <al, I={yeR:ly—y0) <b}
and
I.={e€R:|e—gp| <c}.

Moreover,

of _ TR g _ "(yy(e0)) — 0

@(yw(50)7€0) = —[Fx(po)] 1[Fy(p0)] = —W,

Sl = —E)) P — Gt

It is easy to see that at the point y,(eo) the function = = f(y, o) reaches a maximum
on I,,. Therefore

Z(w(eo),so) —o.
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From this,
0'(yy(£0)) = €0
and y,(go) = s.
Further, we set
G(y,E) = el(y) —&.

Observe that the function G(y,¢) is C*-differentiable in some neighborhood V C R? of
the point go = (y,(€0),€0) and G(go) = 0.

We have 50
@(QO) = 9"(3/7(50) = 9”(5)-

Suppose that v < —1. By Lemma 2.12 we see that if 8”(s) = 0 then s = 0. But, s > 0.

Now suppose that v > —1. By Lemma 2.12 we see that if 6”(s) = 0 then s = 0 or
6

5= 1\/741 But, in Section 3 we showed that
0<s< 2 for > —1
v+1 K '
Therefore oG
— 0.
By (90) #

And by the implicit function theorem the function y = y,(e) is C*°-differentiable in the
point €g. Then there is an interval

Il'={eeR:|e—g| <} CL

such that
yy(e) € I for all e€eIl.

Hence, for all (z,e) € I, x I.

F(z,yy(e),6) =0 = 2 = f(y,(e),€).

Fix arbitrary € € I.. Next,

From here,
F(z,s,¢) =0.
Rewrite this equality in the form
90('1‘) = _90(3)7
where
o(t) = p(t,e) = 0(t) — te.
We have



By Lemma 3.24 we conclude that the function ¢(t) is strictly increasing on (0, s) and strictly
decreasing on (s, +00) N X,. Moreover, p(0) = ¢(r) = 0 and by (4.46), p(z~(c)) = —¢(s).
Then it is not hard to check that x = z(e).

Thus, we proved that

zy(e) = fy(e),€) for all € € I..
Therefore, the function x(¢) is C°°-differentiable in the point ¢y and, using (4.47), we
deduce of of of
a’,(e0) = ?y(y’Y(EO)ﬂgo)y;(EO) + 52 (W4 (0), 20) = 5= (yy(<0), €0)-

Fix v > 1. By (4.33) we conclude that the function z-(g) is C*°-differentiable on (0,¢’).
Show that the function z(¢) is not differentiable in the point ¢’. Clearly,

li ! =0.
6*3&5170 567(6) 0

For arbitrary ¢ € (¢/,1) we have

of

L (1n(e), )| = [ L)

0'(24(c)) — ¢

Hence, the function 7 (¢) does not tend to 0 as ¢ — ¢’ 4+ 0. Therefore the function z.(¢) is
not differentiable in the point &’

337(5)> r
T 1l4+e " 1+4¢€

|2/, (e)] =

Prove that function x,(¢) is continuous in the point &’. By (4.33), we have

. 2
i 25(€) =4[ o =7
Show that
. 2
(448) 6_1};}'}’_0 1‘7(5) = ﬁ
Let y,(¢') € 3, is a solution of the equation
a(y) =<,
Here, as above,
2
—_ 7t
a(y)_l'y ( 7_17?/)
Then 0 ,
(4.49) L‘g))z =
Yy (&) + /557
and
0'(yy (") (v (") + /527 ) — Oy ()
ey = LA T ) 00D
() +/5%)
From this,
2
0(y(e") = 0'(yy(€)) (yw(é') + 7—1> ;



and, using (4.49), we conclude that
(4.50) 0 () = <.
Since
0’ (y4(c)) =€ for all e € (¢/,1),
then
(451) lim 0y, (c)) = &' = 0 ("))

e—e'+0

By Lemma 2.12, the function e = 6’(y) is continuous and strictly decreasing on (O, \/%:) :
Moreover, y,(g) € (O, ,/%) for all € € (¢/,1). Then by (4.51), we establish

I = y,(¢).
im oy () = 4 ()

We can rewrite the equality (4.46) in the form
0(z4(e)) = 2y(e)e = =(0(yy(€)) — p4(e)e).
Using (4.49), we obtain

i (62, (£)) = 2,(2)2) = ~(0(0n (&) = 3n()e) = =&y .
From here,
. / 2
(4.52) 8—13£-0 p(zy(e),€) = —¢ A1

Here, as above,
o(t) = p(t,e) = 0(t) — te.

Suppose that (4.48) is not true. That is, for some sequence &; — ¢’ 4+ 0 of numbers, the

inequality
2
zy(gi) < 1/7_1 m

holds with some constant m > 0. By Lemma 3.24, we see that the function ¢(¢) is contin-

uous and strictly decreasing on {r, \/ % . Moreover, z(¢) € {r, \/ % for all € € (¢/,1).
Then

(1), 1) > 2 - 2 2 o g 2
T~ (€4), € — =M, & —— & | = i ——= > —€ | ——.
P\Ty\E5), Eq ® 7_1 y C1 2 7_171 i 7_1 7_1

Letting £; — &’ 4+ 0, we obtain a contradiction to (4.52).
Thus, the function z(g) is continuous in the point ¢’. O

Proving of Proposition 4.47, we established the following statements.

4.53. Proposition. For all v > 1, we have

li =/ —.
&) =TT
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4.54. Proposition. The function x.(e) is strictly decreasing on (0,1) for v <1
and strictly decreasing on (¢’,1) for v > 1. Moreover,

x;(g)_M<o

T 0(0y(e) — e

for all v and ¢, satisfying (4.40) or (4.41).

4.55. Proposition. For v € R we have

511)11?(10 J}'Y(E) =0

Proof. Let ¢ and ~ satisfy (4.40) or (4.41). Then
0<yy(e)=s<m

Letting ¢ — 1 — 0 we obtain
li = 0.
s—IEIlO Y (8)
Show that
li = 0.
5—1}120 Ty (6)
Indeed, suppose that this is not true, that is, there is a number gy € (0, 1) and a sequence
g; — 1 (g9 < &; < 1) such that the inequality
c < xy(g;) < z4(e0).
holds with some constant ¢ > 0. We can consider that

lim1 xy(ei) = a € [c, z~(g0)].

Ei—

We have
1= lim & = J}Lnl I’;r(xW(Ei)7y7(€i)) = I';r(av 0) = a(a).

€i—

From here, a = 0 < ¢ and we obtain a contradiction. O

4.56. Proposition. For all v <1 we have

51—1%1+ z(e) = 4o00.

Proof. Letting ¢ — 0+ in the inequality z(g) > r, we obtain required . O

4.57. Proposition. a) Ify € (—o0,—1], then

. _ 1
lim z,(e)e @ =0 for ever a < L=,
e—0+ ’y( ) Y 2
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b) If v € (—1,1), then

v+1 2ﬂ/+21

. —<7
- ()
c) If v =1, then

1
lim z(e)e = exp{—i}.

e—0+

Proof. a) Let v < —1. Using the inequalities 0 < y,(g) < 7, we obtain

(4.58) Elirél+ yy(e)e”* =0 for every a< %_1
We set . L
u(t) = <1 - 7;#) (1 - 7;752) .
Obviously,
Jm () = zi

It is easy to see the function p(t) is strictly decreasing on (0, +00). Therefore

1
ut) > 25 foralle > 0.

v—1
Next,
_ =1
=@ = (1-1550) T (1-1500) > ot
From here,
(4.59) 1< 2w o]

5 T+ 1

We notice that the equation If (z,y) = ¢ we can write as

x(@—l)zy(@—l).

Then by (4.58), (4.59) for all @ < 5% we have

(4.60) 0= Elir& yy(e)e™@ (U(%(E)) - 1) = lim z,(g)e™® (1 - W) .

IS e—0+
Assume that there is a < 7771 such that

:—:1—1>I(€l+ xy(e)e”* # 0.

Then for some sequence €; — 0 of positive numbers the inequality
(4.61) zy(gi)e; “ >m

holds with some constant m > 0.
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By (4.60) we obtain

o)
g;—0+ Ei
By (4.61),
- o(zy(ei)) o(me7)
1 < L2 =0.
€z‘i>r8+ E; T gi—0+ Ei

and we obtain a contradiction.
Let v = —1. We have

From here
and

For oo < —1 we have

lim z(e)e™ (1 — 0(5137(5))) = lim y,(e)e™® (J(y,y(e)) — 1)

e—0+ e—0+ 9

= lim e @711 —£%3)32 =0,
e—0+

Assume that there exits @ < —1 such that

61_1)1%5r xy(e)e™ ™ # 0.

Then for some sequence €; — 0 of positive numbers the inequality (4.61) holds with
some constant m > 0. As above we obtain a contradiction.

b) By Proposition 4.56 we deduce

(4.62) lim 6(a, (<)) = 0.

Notice that the function €’(¢) is continuous and the equation

0'(t) =0
has the unique solution s = % Then the equality
9/(97(5)) =€
yields
(4.63) lim s, (¢) =
. im =4 /—.
e—0+ Yrie v+1
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By (4.62), (4.63) we obtain

(5)7 =00/ = im0 () ~ (o) =

= lim (z4(e)e — O(z4(¢))) = lim z(c)e.

e—0+ e—0+

¢) The proof is analogous. O

4.64. Proposition. a) Ify # 1, then

: zy(e) 1
(465) EEEO W = +0 for all o > 5-
b) If v =1, then
im 2y() =+ for all o > %
e—1-0 In%e
Proof. a) Assume that v > 1. Then
2(1 —er71h
ey zr=y\—7—7—
Using L’Hospital rule, we find
11—t 4 - g2
' _ m o = for all 1
ag?io (1 —g)2e 2a all»{rio (1 —g)2a-l oo orata=>s

From thies we obtain (4.65). The case v < 1 is analogous.
b) The proof is analogous. O
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