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Abstract

We describe sets on which differences of solutions of the gas dynamics equation satisfies
some special conditions.

1 Main Results

Consider the gas dynamics equation

div (σ(| 5 f |) 5 f(x)) = 0,(1.1)

where

σ(t) =
(

1− γ − 1
2

t2
) 1

γ−1

.

Here γ is a constant, −∞ < γ < +∞, characterizing the flow of substance. For different
values γ it can be a flow of gas, fluid, plastic, electric or chemical field in different mediums,
etc. (see, for example, [1, §2], [2, §15, Chapter IV]).

For γ = −1 the equation (1.1) is known as the minimal surfaces equation

div

(
∇f√

1 + |∇f |2
)

= 0

(Chaplygin’s gas).
For γ = 1± 0 we have

div
(

exp
{
−1

2
|∇f |2

}
∇f

)
= 0.

For γ = −∞ the equation (1.1) becomes the Laplace equation.
The solution of the equation (1.1), in which the weight function σ is a function of the

variable (x1, . . . , xn), is called σ-harmonic functions. To learning this kind of functions
devoted a large quantity of works (see., e.g., [3], [4] and quoted there literature).

Let n ≥ 2. We set Ωγ = Rn for γ ≤ 1 and

Ωγ =

{
ξ ∈ Rn : |ξ| <

√
2

γ − 1

}
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for γ > 1.
Let ξ, η ∈ Rn. The following inequalities are very important in work with the equation

(1.1):

c1

n∑

i=1

(ξi − ηi)2 ≤
n∑

i=1

(σ(|ξ|)ξi − σ(|η|)ηi) (ξi − ηi),(1.2)

n∑

i=1

(σ(|ξ|)ξi − σ(|η|)ηi)
2 ≤ c2

n∑

i=1

(σ(|ξ|)ξi − σ(|η|)ηi) (ξi − ηi),(1.3)

where c1, c2 > 0 are some constants.
In the general case the inequalities (1.2) and (1.3) are valid only for the subsets of the

set Ωγ ×Ωγ with constants c1 and c2 depending on these subsets. The purpose of the given
paper is a description of such dependence.

We fix c1 > 0, c2 > 0 and γ. Introduce the sets

Aγ(c1) = {(ξ, η) : ξ, η ∈ Ωγ satisfy (1.2)},

Bγ(c2) = {(ξ, η) : ξ, η ∈ Ωγ satisfy (1.3)}.
We set Σγ = {x ∈ R : x ≥ 0} for γ ≤ 1 and

Σγ =

{
x ∈ R : 0 ≤ x <

√
2

γ − 1

}

for γ > 1.
Further, we will need the functions defined on the set Σγ × Σγ and prescribed by the

relations
I−γ (x, y) =

xσ(x)− y σ(y)
x− y

for x 6= y,

I−γ (x, y) = σ(x) + σ′(x)x for x = y

and
I+
γ (x, y) =

xσ(x) + y σ(y)
x + y

for x2 + y2 > 0,

I+
γ (0, 0) = 1.

Note that the functions I−γ (x, y) and I+
γ (x, y) are continuous in the closing of the set

Σγ × Σγ and they are C∞-differentiable in the each inner points of this set.
Generally, the sets Aγ(c1) and Bγ(c2) have a complicated structure. We shall describe

them by comparing with canonical sets of the ”simplest form”. For arbitrary ε ≥ 0 we put

W−
γ (ε) = {(ξ, η) : ξ, η ∈ Ωγ , I−γ (|ξ|, |η|) ≥ ε},

W+
γ (ε) = {(ξ, η) : ξ, η ∈ Ωγ , I+

γ (|ξ|, |η|) ≥ ε},
V −

γ (ε) = {(ξ, η) : ξ, η ∈ Ωγ , I−γ (|ξ|, |η|) ≤ ε},
V +

γ (ε) = {(ξ, η) : ξ, η ∈ Ωγ , I+
γ (|ξ|, |η|) ≤ ε}.

Also we will need the sets
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Dγ = {(ξ, ξ) : ξ ∈ Ωγ},
Qγ = {(ξ, η) : ξ, η ∈ Ωγ , ξσ(|ξ|) = ησ(|η|)}.

The following assertions are the main result of this paper.

1.4. Theorem. Let γ ∈ R. Then the following relations are true

(
W−

γ (ε) ∪Dγ

)
⊂ Aγ(ε) ⊂

(
W+

γ (ε) ∪Dγ

)
for all ε ∈ (0, 1);(1.5)

Aγ(ε) = Dγ for all ε ∈ [1, +∞).(1.6)

1.7. Theorem. a) If γ ∈ (−∞,−1] then

(
V +

γ (ε) ∪Dγ

)
⊂ Bγ(ε) ⊂

(
V −

γ (ε) ∪Dγ

)
for all ε ∈ (0, 1);(1.8)

Bγ(ε) = R2n for all ε ∈ [1, +∞).(1.9)

b) If γ ∈ (−1, +∞) then

(
V +

γ (ε) ∩W−
γ (0)

)
⊂ Bγ(ε) ⊂

(
V −

γ (ε) ∪Qγ

)
for all ε ∈ (0, 1);(1.10)

W−
γ (0) ⊂ Bγ(ε) for all ε ∈ [1, +∞).(1.11)

First the relation (1.9) was proved for γ = −1 and ε = 1 in [5]. Later it was repeatedly
proved with these γ and ε in [6], [7], [8] and [9].

2 Proofs of main theorems

We will need the following elementary assertion.

2.12. Lemma. The function σ has the following properties:

1) the domain of σ is the set Σγ , moreover, σ(0) = 1, σ(+∞) = 0 for γ ≤ 1 and

σ
(√

2
γ−1

)
= 0 for γ > 1;

2) for all t ∈ Σγ we have
0 ≤ σ(t) < 1;

3) the function σ is decreasing on Σγ moreover

σ′(t) = −t(1− γ − 1
2

t2)
2−γ
γ−1 < 0

for all t > 0, t ∈ Σγ ;

4) the function θ(t) = tσ(t) is increasing on [0, +∞) for all γ ∈ (−∞,−1];

5) for every γ ∈ (−1,+∞), the function θ is increasing on [0,
√

2
γ+1 ] and decreasing on

[
√

2
γ+1 , +∞) ∩ Σγ ;
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6) for every γ ∈ (−∞,−1] ∪ [2, +∞), the derivative θ′ is decreasing on Σγ ;

7) for every γ ∈ (−1, 2), the derivative θ′ is decreasing on [0,
√

6
γ+1 ] and increasing on

[
√

6
γ+1 , +∞) ∩ Σγ .

The proof follows from the equalities:

σ′(t) = −t(1− γ − 1
2

t2)
2−γ
γ−1 for γ 6= 1,

σ′(t) = −t exp{−1
2
t2} for γ = 1,

θ′(t) = (1− γ + 1
2

t2)(1− γ − 1
2

t2)
2−γ
γ−1 for γ 6= 1,

θ′(t) = (1− t2) exp{−1
2
t2} for γ = 1,

θ′′(t) = −t(3− γ + 1
2

t2)(1− γ − 1
2

t2)
3−2γ
γ−1 for γ 6= 1,

θ′′(t) = t(t2 − 3) exp{−1
2
t2} for γ = 1.

2

2.13. Lemma. Let γ ∈ R. Then for all x, y ∈ Σγ , x2 + y2 6= 0 we have

I−γ (x, y) ≤ I+
γ (x, y) < 1.

Proof. Let x, y satisfy the assumptions of Lemma. If x = y then

I−γ (x, y) = σ(x) + xσ′(x) < σ(x) = I+
γ (x, y) < 1.

Suppose that x > y. Since
σ(x) < σ(y),

we obtain
I−γ (x, y) =

xσ(x)− y σ(y)
x− y

≤ xσ(x)− y σ(x)
x− y

= σ(x)

=
xσ(x) + y σ(x)

x + y
≤ xσ(x) + y σ(y)

x + y
= I+

γ (x, y)

<
xσ(y) + y σ(y)

x + y
= σ(y) < 1.

The case x < y is analogous. 2

2.14. Lemma. Let γ ∈ R. The sets W−
γ (ε), W+

γ (ε), V −
γ (ε) and V +

γ (ε) have the
following properties:
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1) W−
γ (ε) = W+

γ (ε) = ∅ for all ε > 1;

2) W−
γ (1) = W+

γ (1) = {0};
3) W−

γ (ε) ⊂ W+
γ (ε) for all ε ∈ (0, 1);

4) V −
γ (ε) = V +

γ (ε) = Ωγ × Ωγ for all ε ≥ 1;

5) V +
γ (ε) ⊂ V −

γ (ε) for all ε ∈ (0, 1);

6) W+
γ (0) = Ωγ × Ωγ , V +

γ (0) = ∅;
7) W−

γ (0) = R2n, V −
γ (0) = ∅ for all γ ≤ −1.

The proof follows from Lemma 2.12 and Lemma 2.13.

Further, we set

Hγ = {(ξ, η) : ξ, η ∈ Ωγ , |ξ| = |η|, ξ 6= η},
Gγ = {(ξ, η) : ξ, η ∈ Ωγ , |ξ| 6= |η|},
U−

γ = {(ξ, η) : ξ, η ∈ Ωγ , I−γ (|ξ|, |η|) < 0},
U+

γ = {(ξ, η) : ξ, η ∈ Ωγ , I−γ (|ξ|, |η|) > 0},
Pγ = {(ξ, η) : ξ, η ∈ Ωγ , |ξ|σ(|ξ|) = |η|σ(|η|), ξ σ(|ξ|) 6= η σ(|η|)},

F+
γ (ε) =

(
V +

γ (ε) ∩ U+
γ

)
∪Qγ ∪

(
V +

γ (ε) ∩ Pγ

)
,

F−
γ (ε) =

(
V −

γ (ε) ∩ U+
γ

)
∪Qγ ∪

(
V +

γ (ε) ∩ Pγ

)
∪

(
V +

γ (ε) ∩ U−
γ

)
.

For every ξ, η ∈ Rn, their inner product is denoted by 〈ξ, η〉. Obviously, the inequalities
(1.2), (1.3) with some constant ε > 0 can be written as

ε|ξ − η|2 ≤ 〈σ(|ξ|)ξ − σ(|η|)η, ξ − η〉,(2.15)

|σ(|ξ|)ξ − σ(|η|)η|2 ≤ ε〈σ(|ξ|)ξ − σ(|η|)η, ξ − η〉,(2.16)

respectively.
Let ϕ be the angle between the vectors ξ and η. We have

|ξ − η|2 = |ξ|2 + |η|2 − 2|ξ||η| cosϕ,

〈σ(|ξ|)ξ − σ(|η|)η, ξ − η〉 = σ(|ξ|)|ξ|2 + σ(|η|)|η|2 − (σ(|ξ|) + σ(|η|))|ξ||η| cosϕ,

|σ(|ξ|)ξ − σ(|η|)η|2 = σ2(|ξ|)|ξ|2 + σ2(|η|)|η|2 − 2σ(|ξ|)σ(|η|)|ξ||η| cosϕ.

We set

Υ(ϕ) = |ξ|2 + |η|2 − 2|ξ||η| cosϕ,

Φ(ϕ) = σ(|ξ|)|ξ|2 + σ(|η|)|η|2 − (σ(|ξ|) + σ(|η|))|ξ||η| cosϕ,

Ψ(ϕ) = σ2(|ξ|)|ξ|2 + σ2(|η|)|η|2 − 2σ(|ξ|)σ(|η|)|ξ||η| cosϕ.
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Proof of Theorem 1.4. It is clear that the inequality (2.15) holds for all (ξ, η) ∈ Dγ .
Let (ξ, η) ∈ Aγ(ε) ∩Hγ . In this case the inequality (2.15) is rewritten in the form

ε ≤ σ(|ξ|) = σ(|η|).

Hence,
Aγ(ε) ∩Hγ = W+

γ (ε) ∩Hγ .

Using Lemma 2.14, we see that
(
W−

γ (ε) ∩Hγ

)
⊂ (Aγ(ε) ∩Hγ) ⊂

(
W+

γ (ε) ∩Hγ

)
.(2.17)

Now we assume that (ξ, η) ∈ Gγ . Then Υ(ϕ) > 0 and after simple calculations we find

∂

∂ϕ

(
Φ(ϕ)
Υ(ϕ)

)
=

(σ(|η|)− σ(|ξ|))(|ξ|2 − |η|2)|ξ||η| sinϕ

Υ2(ϕ)
.

By the property 3) of Lemma 2.12 we have

(σ(|η|)− σ(|ξ|))(|ξ|2 − |η|2) > 0.

Therefore,

min
ϕ∈[0,π]

(
Φ(ϕ)
Υ(ϕ)

)
=

Φ(0)
Υ(0)

=
σ(|ξ|)|ξ|2 + σ(|η|)|η|2 − (σ(|ξ|) + σ(|η|))|ξ||η|

(|ξ| − |η|)2 = I−γ (|ξ|, |η|)

and

max
ϕ∈[0,π]

(
Φ(ϕ)
Υ(ϕ)

)
=

Φ(π)
Υ(π)

=
σ(|ξ|)|ξ|2 + σ(|η|)|η|2 + (σ(|ξ|) + σ(|η|))|ξ||η|

(|ξ|+ |η|)2 = I+
γ (|ξ|, |η|).

Then for all (ξ, η) ∈ Gγ the following inequalities are valid

I−γ (|ξ|, |η|) ≤ 〈σ(|ξ|)ξ − σ(|η|)η, ξ − η〉
|ξ − η|2 ≤ I+

γ (|ξ|, |η|).

This implies (
W−

γ (ε) ∩Gγ

)
⊂ (Aγ(ε) ∩Gγ) ⊂

(
W+

γ (ε) ∩Gγ

)
.

From this, by (2.17) and Lemma 2.14 we obtain (1.5) and (1.6). 2

Proof of Theorem 1.7. a) It is clear that (2.16) holds for all (ξ, η) ∈ Dγ .
Let (ξ, η) ∈ Bγ(ε) ∩Hγ . In this case the inequality (2.16) becomes

σ(|ξ|) = σ(|η|) ≤ ε.
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Then
Bγ(ε) ∩Hγ = V +

γ (ε) ∩Hγ .

Using Lemma 2.14, we see that
(
V +

γ (ε) ∩Hγ

)
⊂ (Bγ(ε) ∩Hγ) ⊂

(
V −

γ (ε) ∩Hγ

)
.(2.18)

Now we assume that (ξ, η) ∈ Gγ . Then by the inequality

Ψ(ϕ) ≥ (σ(|ξ|)|ξ| − σ(|η|)|η|)2

and by the property 4) of Lemma 2.12 we can conclude that Ψ(ϕ) > 0 for all ϕ ∈ [0, π].
Next after simple calculations, we obtain

∂

∂ϕ

(
Φ(ϕ)
Ψ(ϕ)

)
=

(σ(|ξ|)− σ(|η|))(|ξ|2σ2(|ξ|)− |η|2σ2(|η|))|ξ||η| sinϕ

Ψ2(ϕ)
.

By the properties 3) and 4) of Lemma 2.12 it follows that

(σ(|ξ|)− σ(|η|))(|ξ|2σ2(|ξ|)− |η|2σ2(|η|)) < 0.(2.19)

Therefore

min
ϕ∈[0,π]

(
Φ(ϕ)
Ψ(ϕ)

)
=

Φ(π)
Ψ(π)

=
σ(|ξ|)|ξ|2 + σ(|η|)|η|2 + (σ(|ξ|) + σ(|η|))|ξ||η|
σ2(|ξ|)|ξ|2 + σ2(|η|)|η|2 + 2σ(|ξ|)σ(|η|)|ξ||η| =

1
I+
γ (|ξ|, |η|) .

and

max
ϕ∈[0,π]

(
Φ(ϕ)
Ψ(ϕ)

)
=

Φ(0)
Ψ(0)

=
σ(|ξ|)|ξ|2 + σ(|η|)|η|2 − (σ(|ξ|) + σ(|η|))|ξ||η|
σ2(|ξ|)|ξ|2 + σ2(|η|)|η|2 − 2σ(|ξ|)σ(|η|)|ξ||η| =

1
I−γ (|ξ|, |η|) .

Thus for all (ξ, η) ∈ Gγ , the following inequalities are true

1
I+
γ (|ξ|, |η|) ≤

〈σ(|ξ|)ξ − σ(|η|)η, ξ − η〉
|σ(|ξ|)ξ − σ(|η|)η|2 ≤ 1

I−γ (|ξ|, |η|) .(2.20)

This implies that
(
V +

γ (ε) ∩Gγ

)
⊂ (Bγ(ε) ∩Gγ) ⊂

(
V −

γ (ε) ∩Gγ

)
.

From this, by (2.18) and Lemma 2.14 we obtain the relations (1.8) and (1.9).
b) It is clear that the inequality (2.16) holds for all (ξ, η) ∈ Qγ . Moreover, by the

property 5 of Lemma 2.12 we have Qγ 6= Dγ .
Let (ξ, η) ∈ Pγ . Similarly, we establish that Pγ 6= Hγ . Next, we have

Ψ(ϕ) = σ2(|ξ|)|ξ|2 + σ2(|η|)|η|2 − 2σ(|ξ|)σ(|η|)|ξ||η| cosϕ = 2σ2(|ξ|)|ξ|2(1− cosϕ)
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and
Φ(ϕ) = σ(|ξ|)|ξ|2 + σ(|η|)|η|2 − (σ(|ξ|) + σ(|η|))|ξ||η| cosϕ

= σ(|ξ|)|ξ|2 + σ(|ξ|)|ξ||η| − σ(|ξ|)|ξ||η| cosϕ− σ(|ξ|)|ξ|2 cosϕ

= σ(|ξ|)|ξ|(|ξ|+ |η|)(1− cosϕ).

It is easy to see that cosϕ 6= 1. Indeed, we suppose that cosϕ = 1. Then the vectors
ξσ(|ξ|) and ησ(|η|) are collinear. It implies that ξσ(|ξ|) = ησ(|η|).

We find
Ψ(ϕ)
Φ(ϕ)

=
2|ξ|σ(|ξ|)
|ξ|+ |η| = I+

γ (|ξ|, |η|).

Thus, the inequality (2.16) assumes the form

I+
γ (|ξ|, |η|) ≤ ε

and we establish that
Bγ(ε) ∩ Pγ = V +

γ (ε) ∩ Pγ .(2.21)

Let (ξ, η) ∈ U+
γ . By the property 3) of Lemma 2.12 we find that the inequality (2.19)

is valid. Therefore the inequalities (2.20) are true and we obtain
(
V +

γ (ε) ∩ U+
γ

)
⊂

(
Bγ(ε) ∩ U+

γ

)
⊂

(
V −

γ (ε) ∩ U+
γ

)
.(2.22)

Now let (ξ, η) ∈ U−
γ . Observe that the set U−

γ is not empty. It is easy to see that

(σ(|ξ|)− σ(|η|))(|ξ|2σ2(|ξ|)− |η|2σ2(|η|)) > 0.

For all (ξ, η) ∈ U−
γ the following inequalities are true

1
I−γ (|ξ|, |η|) ≤

〈σ(|ξ|)ξ − σ(|η|)η, ξ − η〉
|σ(|ξ|)ξ − σ(|η|)η|2 ≤ 1

I+
γ (|ξ|, |η|)

and we obtain (
Bγ(ε) ∩ U−

γ

)
⊂

(
V +

γ (ε) ∩ U−
γ

)
.

From here, by (2.21) and (2.22),

F+
γ (ε) ⊂ Bγ(ε) ⊂ F−

γ (ε).

It is not hard to establish that

W−
γ (0) ⊂

(
Pγ ∪Qγ ∪ U+

γ

)
,

(
Pγ ∪Qγ ∪ U+

γ ∪ U−
γ

)
= Ωγ × Ωγ .

Then, using Lemma 2.14, we find
(
V +

γ (ε) ∩W−
γ (0)

)
⊂ F+

γ (ε), F−
γ (ε) ⊂

(
V −

γ (ε) ∪Qγ

)
.

From here we obtain the relations (1.10) and (1.11). 2
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3 Properties of W−
γ (ε), W+

γ (ε), V −
γ (ε) and V +

γ (ε)

Here we study the sets W−
γ (ε), W+

γ (ε), V −
γ (ε) and V +

γ (ε). Consider the equation

θ′(t) = ε,(3.23)

where θ(t) = tσ(t) and ε is an arbitrary parameter. It is easy to verify that for γ 6= 1 the
equation (3.23) can be written down in the following form:

2
γ − 1

σ2−γ(t)− γ + 1
γ − 1

σ(t) + ε = 0.

Further, we assume that ε ∈ (0, 1). We set

r =

√
2(1− εγ−1)

γ − 1
for γ 6= 1

and
r =

√
−2 ln ε for γ = 1.

Observe that r ∈ Σγ for all γ ∈ R.
Fix ε ∈ (0, 1). Assume that γ ≤ −1. It is easy to see that

θ′(0) = 1, lim
t→+∞ θ′(t) = 0.

From here and by the property 6) of Lemma 2.12 we deduce that the equation (3.23)
has the unique positive solution s and 0 ≤ t ≤ s be the solutions of the inequality θ′(t) ≥ ε
subject to t ≥ 0.

Further, we have
σ(r) = ε = θ′(s) = σ(s) + sσ′(s) < σ(s).

Then the inequality σ(r) < σ(s) implies r > s. Hence, s ∈ (0, r).
Assume that γ > −1. By the property 5) of Lemma 2.12 we see that

0 ≤ t <

√
2

γ + 1

be the solutions of the inequality θ′(t) > 0 subject to t ≥ 0. By the properties 6), 7) of
Lemma 2.12 we deduce that the function θ′(t) is decreasing on

[
0,

√
2

γ+1

]
. Moreover,

θ′(0) = 1, θ′
(√

2
γ + 1

)
= 0.

Therefore the equation (3.23) has the unique positive solution s <
√

2
γ+1 and 0 ≤ t ≤ s

be the solutions of the inequality θ′(t) ≥ ε subject to t ≥ 0. As above, we can show that
s ∈ (0, r).

Thus, we proved the following statement.
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3.24. Lemma. Let γ ∈ R, ε ∈ (0, 1) and s ∈ (0, r) be a positive solution of (3.23)..
Then the following relations hold

θ′(t) > ε for all t ∈ (0, s), θ′(t) < ε for all t > s, t ∈ Σγ(3.25)

3.26. Remark. It is not hard to establish that for γ > −1 and ε = 0 the relations
(3.25) are true with s =

√
2

γ+1 .

We say that a set G ⊂ Rn is an linearly connected if any pair of points x, y ∈ G can be
joined on D by an arc.

The sets W−
γ (ε), W+

γ (ε), V −
γ (ε) and V +

γ (ε) have the following properties.

3.27. Proposition. a) The set W−
γ (ε) is linearly connected for γ ∈ R and ε ∈ (0, 1).

b) The set W−
γ (0) is linearly connected for γ > −1.

c) The set W+
γ (ε) is linearly connected for γ ∈ R and ε ∈ (0, 1).

Proof. a) We fix numbers γ ∈ Rn, ε ∈ (0, 1) and a nonzero point ζ = (ξ, η) ∈ W−
γ (ε).

To prove the statement, it is sufficient to show that the set W−
γ (ε) contains the segment

L = {(ξt, ηt) : 0 ≤ t ≤ 1} with the endpoints 0 and ζ.
Indeed, let ζ ′, ζ ′′ ∈ W−

γ (ε) be arbitrary. Let L′, L′′ be the segments with the endpoints
0, ζ ′ and 0, ζ ′′ respectively. Denote by L′ ∪ L′′ the double curve which consists of two
segments L′ and L′′. Then this double curve will join the points ζ ′, ζ ′′ and it will lie on
W−

γ (ε).
We prove that the segment L lies in W−

γ (ε). Assume that |ξ| < |η|. For t ∈ (0, 1) we
have

I−γ (|ξt|, |ηt|) =
|ξ|σ(|ξt|)− |η|σ(|ηt|)

|ξ| − |η| ≥ |ξ|σ(|ξ|)− |η|σ(|ηt|)
|ξ| − |η|

=
|ξ|σ(|ξ|)− |η|σ(|η|) + |η|σ(|η|)− |η|σ(|ηt|)

|ξ| − |η|

≥ ε +
|η|(σ(|η|)− σ(|ηt|))

|ξ| − |η| ≥ ε.

The case |ξ| > |η| is analogous. Now we assume that |ξ| = |η|. We write

I−γ (|ξ|, |η|) = θ′(|ξ|) ≥ ε

Then by Lemma 3.24 for t ∈ (0, 1) we deduce |ξt| ≤ |ξ| ≤ s and

I−γ (|ξt|, |ηt|) = θ′(|ξt|) ≥ ε.

Hence, the set W−
γ (ε) contains the segment L.

b) The proof is analogous.
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c) We fix numbers γ ∈ Rn, ε ∈ (0, 1) and a nonzero point ζ = (ξ, η) ∈ W+
γ (ε). As

above, to prove this statement, it is sufficient to show that the set W+
γ (ε) contains the

segment L = {(ξt, ηt) : 0 ≤ t ≤ 1}. For t ∈ (0, 1) we have

I+
γ (|ξt|, |ηt|) =

|ξ|σ(|ξt|) + |η|σ(|ηt|)
|ξ|+ |η| ≥ |ξ|σ(|ξ|) + |η|σ(|η|)

|ξ|+ |η| ≥ ε.

Thus, the set W+
γ (ε) contains the segment L. 2

3.28. Proposition. a) Let ε ∈ (0, 1) and γ ∈ R. Then

{(ξ, η) : ξ, η ∈ Rn, |ξ| ≤ s, |η| ≤ s} ⊂ W−
γ (ε),

where s ∈ Σγ is the unique positive solution of the equation (3.23).

b) If γ > −1 then

{(ξ, η) : ξ, η ∈ Rn, |ξ| ≤
√

2
γ + 1

, |η| ≤
√

2
γ + 1

} ⊂ W−
γ (0).

c) Let ε ∈ (0, 1) and γ ∈ R. Then

V −
γ (ε) ⊂ (Ωγ × Ωγ) \ {(ξ, η) : ξ, η ∈ Rn, |ξ| < s, |η| < s},

where s is the unique positive solution of the equation (3.23).
d) If γ > −1 then

V −
γ (0) ⊂ (Ωγ × Ωγ) \ {(ξ, η) : ξ, η ∈ Rn, |ξ| <

√
2

γ + 1
, |η| <

√
2

γ + 1
}.

Proof. a) Let (ξ, η) ∈ {(ξ, η) : ξ, η ∈ Rn, |ξ| ≤ s, |η| ≤ s}. Using Lemma 3.24, we see
that

θ′(|ξ|) ≥ ε, θ′(|η|) ≥ ε.

We assume that |ξ| = |η|. Then

I−γ (|ξ|, |η|) = θ′(|ξ|) = θ′(|η|) ≥ ε

and, hence, (ξ, η) ∈ W−
γ (ε).

Now we assume that |ξ| < |η|. Using the well-known Lagrange mean value theorem, we
obtain

I−γ (|ξ|, |η|) = θ′(c), |ξ| ≤ c ≤ |η|.
By Lemma 3.24,

θ′(c) ≥ ε.

Hence, (ξ, η) ∈ W−
γ (ε). The case |ξ| > |η| is analogous.

b) The proof is analogous.
c) The proof easy follows from a).
d) The proof easy follows from b). 2
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3.29. Proposition. If ε ∈ (0, 1) and γ ∈ R, then we have

a) W−
γ (ε) ⊂ {(ξ, η) : ξ, η ∈ Rn, |ξ| ≤ r, |η| ≤ r} ,

and

b) (Ωγ × Ωγ) \ {(ξ, η) : ξ, η ∈ Rn, |ξ| < r, |η| < r} ⊂ V −
γ (ε).

Proof. a) Let (ξ, η) ∈ W−
γ (ε). Assume that |ξ| = |η|. We have

ε ≤ I−γ (|ξ|, |η|) = θ′(|ξ|) = σ(|ξ|) + |ξ|σ′(|ξ|) ≤ σ(|ξ|) = σ(|η|).
Then the inequalities

σ(|ξ|) ≥ ε, σ(|η|) ≥ ε

imply
|ξ| = |η| ≤ r.

Hence,
(ξ, η) ∈ {(ξ, η) : ξ, η ∈ Rn, |ξ| ≤ r, |η| ≤ r}.

Now we assume that |ξ| > |η|. Using the inequality

σ(|ξ|) < σ(|η|),
we deduce

ε ≤ I−γ (|ξ|, |η|) =
|ξ|σ(|ξ|)− |η|σ(|η|)

|ξ| − |η| ≤ |ξ|σ(|ξ|)− |η|σ(|ξ|)
|ξ| − |η| = σ(|ξ|) < σ(|η|).

From here, (ξ, η) ∈ {(ξ, η) : ξ, η ∈ Rn, |ξ| ≤ r, |η| ≤ r}. The case |ξ| < |η| is analogous.
b) The proof follows from a). 2

3.30. Proposition. If ε ∈ (0, 1) and γ ∈ R, then

a) {(ξ, η) : ξ, η ∈ Rn, |ξ| ≤ r, |η| ≤ r} ⊂ W+
γ (ε),

and

b) V +
γ (ε) ⊂ (Ωγ × Ωγ) \ {(ξ, η) : ξ, η ∈ Rn, |ξ| < r, |η| < r}.

Proof. a) Let (ξ, η) ∈ {(ξ, η) : ξ, η ∈ Rn, |ξ| ≤ r, |η| ≤ r}. Then

σ(|ξ|) ≥ ε, σ(|η|) ≥ ε.

Assume that |ξ| = |η|. We have

I+
γ (|ξ|, |η|) = σ(|ξ|) ≥ ε.

Hence, (ξ, η) ∈ W+
γ (ε).

Now we assume that |ξ| > |η|. We deduce

I+
γ (|ξ|, |η|) =

|ξ|σ(|ξ|) + |η|σ(|η|)
|ξ|+ |η| ≥ |ξ|σ(|ξ|) + |η|σ(|ξ|)

|ξ|+ |η| = σ(|ξ|) ≥ ε.

From here, (ξ, η) ∈ W+
γ (ε). The case |ξ| < |η| is analogous.

b) The proof follows from a).2
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4 Properties of xγ(ε)

For arbitrary ε ∈ (0, 1), γ ∈ R we set

Xγ(ε) =
{
x ∈ Σγ : ∃y ∈ Σγ , I+

γ (x, y) ≥ ε
}

,

X̄γ(ε) =
{
x ∈ Σγ : ∃y ∈ Σγ , I+

γ (x, y) = ε
}

,

xγ(ε) = supx Xγ(ε).

If xγ(ε) < +∞ then the following relations are true

W+
γ (ε) ⊂ {(ξ, η) : ξ, η ∈ Rn, |ξ| ≤ xγ(ε), |η| ≤ xγ(ε)}

and
(Ωγ × Ωγ) \ {(ξ, η) : ξ, η ∈ Rn, |ξ| < xγ(ε), |η| < xγ(ε)} ⊂ V +

γ (ε).

We shall study the function xγ(ε). We have

I+
γ (0, r) = σ(r) = ε for all ε ∈ (0, 1), γ ∈ R.

From here, we deduce that r ∈ Xγ(ε) and r ∈ X̄γ(ε). Then the function xγ(ε) is defined
everywhere on (0, 1) and r ≤ xγ(ε). Besides, from the definition of the set Σγ we establish

xγ(ε) ≤
√

2
γ − 1

for all γ > 1.

The function xγ(ε) has the following properties:

4.31. Proposition. The function xγ(ε) is nonincreasing on (0, 1).

The proof is evident.

4.32. Proposition. If γ > 1 then

xγ(ε) =

√
2

γ − 1
for all ε ∈ (0, ε′](4.33)

and

xγ(ε) <

√
2

γ − 1
for all ε ∈ (ε′, 1),(4.34)

where

ε′ = max
y∈

[
0,

√
2

γ−1

] I+
γ

(√
2

γ − 1
, y

)
.(4.35)
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Proof. Let γ > 1. We set

α(y) ≡ I+
γ

(√
2

γ − 1
, y

)
=

θ(y)

y +
√

2
γ−1

.

It is easy to see that the function α(y) is positive on
(
0,

√
2

γ−1

)
and it is continuous on[

0,
√

2
γ−1

]
. Therefore there exists

ε′ = max
y∈[0,

√
2

γ−1
]

α(y) > 0.

We have
α(y) ≤ y

y +
√

2
γ−1

< 1 for all y ∈ [0,
√

2
γ−1 ].

Hence, ε′ < 1. Therefore for ε ∈ (0, ε′] the equation

α(y) = ε(4.36)

has at the minimum one solution y0 ∈ (0,
√

2
γ−1). Otherwise the equation hasn’t solutions.

We fix arbitrary ε ∈ (0, ε′], x ∈ Σγ . Let y0 ∈ Σγ be a solution of (4.36). We have

ε = α(y0) =
θ(y0)

y0 +
√

2
γ−1

≤ θ(x) + θ(y0)
x + y0

= I+
γ (x, y0).

From here, we deduce that x ∈ Xγ(ε). Hence, Xγ(ε) = Σγ for all ε ∈ (0, ε′]. It proves
the relation (4.33).

Now we prove the relation (4.34). Fix ε ∈ (ε′, 1). Suppose that

xγ(ε) =

√
2

γ − 1
.

Then for n ∈ N there exists a number xn ∈ Xγ(ε) such that
√

2
γ − 1

− 1
n

< xn.

Moreover,

lim
n→∞xn =

√
2

γ − 1

and for n ∈ N there exists yn ∈ Σγ satisfying the inequality

I+
γ (xn, yn) ≥ ε.

This inequality implies
θ(xn)− εxn ≥ εyn − θ(yn).(4.37)
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Further, we have

α(yn) =
θ(yn)

yn +
√

2
γ−1

≤ ε′ for all n ∈ N.

From here,

θ(yn) ≤ ε′
(

yn +

√
2

γ − 1

)
for all n ∈ N.(4.38)

Using (4.37) and (4.38), we deduce

θ(xn)− εxn ≥ εyn − θ(yn)

≥ εyn − ε′
(
yn +

√
2

γ−1

)
≥ −ε′

√
2

γ−1 .

Letting n →∞ in the inequality

θ(xn)− εxn ≥ −ε′
√

2
γ − 1

,

we see that ε ≤ ε′ and we arrive at a contradiction. 2

Prove some auxiliary statements.

4.39. Lemma. Let
γ ∈ (−∞, 1], ε ∈ (0, 1)(4.40)

or
γ ∈ (1, +∞), ε ∈ (ε′, 1),(4.41)

where ε′ is defined by (4.35). Then the set Xγ(ε) is compact.

Proof. Introduce the set

Zγ(ε) = {(x, y) ∈ Σγ × Σγ : I+
γ (x, y) ≥ ε}.

Let π : R2 → R, π(x, y) = x be natural projection. It is clear that π(Zγ(ε)) = Xγ(ε).
Assume that the condition (4.40) holds. The set Zγ(ε) is closed since the function

I+
γ (x, y) is continuous.

The set Zγ(ε) is bounded. Indeed, we can find a sequence Zγ(ε) 3 (xn, yn) → ∞.
Assume that xn →∞. Then for the bounded subsequence of {yn} we have

ε ≤ I+
γ (xn, yn) =

xnσ(xn) + ynσ(yn)
xn + yn

≤ xnσ(xn) + yn

xn
.

The right part of this inequality tends to zero as n →∞. Thus we obtain a contradiction
to (4.40).

For an unbounded subsequence of {yn} we have

ε ≤ I+
γ (xn, yn) ≤ σ(xn) + σ(yn).
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The right part of this inequality tends to zero as n →∞. Again we obtain a contradiction
to (4.40). Hence, the set Zγ(ε) is bounded. Therefore the set Zγ(ε) is compact. Because
the mapping π is continuous then the set Xγ(ε) = π(Zγ(ε)) is compact too.

Assume that the condition (4.41) holds. By (4.34) we have that Zγ(ε) ⊂ Σγ ×Σγ . Here
Zγ(ε) denotes the closure of Zγ(ε). Since the function I+

γ (x, y) is continuous then Zγ(ε) is
compact. Therefore, the set Xγ(ε) is compact too. The lemma is proved. 2

4.42. Corollary. If the condition (4.40) or (4.41) holds then the set X̄γ(ε) is com-
pact.

4.43. Lemma. If the condition (4.40) or (4.41) holds then

sup
x

Xγ(ε) = sup
x

X̄γ(ε).

Proof. We set
a = supXγ(ε), b = sup X̄γ(ε).

Obviously, a ≥ b. Show that a ≤ b. By Lemma 4.39 we establish that a ∈ Xγ(ε). Hence,
there exists a number y0 ∈ Σγ sach that

I+
γ (a, y0) ≥ ε.

Assume that
I+
γ (a, y0) = ε.

Then a ∈ X̄γ(ε). By Corollary 4.42 we conclude follows that b is the greatest element of
the set X̄γ(ε). Therefore, a ≤ b.

Now we assume that
I+
γ (a, y0) > ε.

For γ ≤ 1 we have
lim

x→+∞ I+
γ (x, y0) = 0.

Since the function I+
γ (x, y) is continuous then there exists a number x′ > a such that

I+
γ (x′, y0) = ε.(4.44)

Hence, x′ ∈ X̄γ(ε). Then a < x′ ≤ b and we obtain a contradiction.
By (4.35) for γ > 1, we deduce

I+
γ

(√
2

γ − 1
, y0

)
≤ ε′ < ε.

Then there exists a number x′ ∈
(
a,

√
2

γ−1

)
satisfying (4.44). Hence, x′ ∈ X̄γ(ε). From

here, a < x′ ≤ b and again we obtain a contradiction. The lemma is proved. 2

4.45. Lemma. If the condition (4.40) or (4.41) holds, then there exists a number
yγ(ε) ∈ Σγ such that

I+
γ (xγ(ε), yγ(ε)) = ε.(4.46)
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The proof follows from Corollary 4.42 and Lemma 4.43. 2

Continue to study the function xγ(ε).

4.47. Proposition. The function

xγ(ε) ∈ C∞(0, 1) for all γ ≤ 1

and
xγ(ε) ∈ C∞((0, ε′) ∪ (ε′, 1)) ∩ C(0, 1) for all γ > 1 .

Proof. Fix ε0 and γ, satisfying (4.40) or (4.41). Then xγ(ε0) ∈ Σγ and there exists
yγ(ε0) ∈ Σγ sach that

I+
γ (xγ(ε0), yγ(ε0)) = ε0.

We set
F (x, y, ε) = I+

γ (x, y)− ε.

Observe that the function F (x, y, ε) is C∞-differentiable in some neighborhood U ⊂ R3 of
the point p0 = (xγ(ε0), yγ(ε0), ε0) and F (p0) = 0. We have

∂F

∂x
(p0) =

θ′(xγ(ε0))− I+
γ (xγ(ε0), yγ(ε0))

xγ(ε0) + yγ(ε0)
=

θ′(xγ(ε0))− ε0

xγ(ε0) + yγ(ε0)
.

In Section 3 we proved that 0 < s < r, where s ∈ Σγ is the unique positive root of
(3.23). Then the inequality r ≤ xγ(ε0) yields

∂F

∂x
(p0) 6= 0.

By the implicit function theorem we deduce that there is an 3-dimensional interval
I = Ix× Iy× Iε ⊂ U and a function f ∈ C∞(Iy× Iε) such that for all (x, y, ε) ∈ Ix× Iy× Iε

F (x, y, ε) = 0 ⇔ x = f(y, ε).

Here
Ix = {x ∈ R : |x− xγ(ε0)| < a}, Iy = {y ∈ R : |y − yγ(ε0)| < b}

and
Iε = {ε ∈ R : |ε− ε0| < c} .

Moreover,

∂f

∂y
(yγ(ε0), ε0) = −[F ′

x(p0)]−1[F ′
y(p0)] = − θ′(yγ(ε0))− ε0

θ′(xγ(ε0))− ε0
,

∂f

∂ε
(yγ(ε0), ε0) = −[F ′

x(p0)]−1[F ′
ε(p0)] =

xγ(ε0) + yγ(ε0)
θ′(xγ(ε0))− ε0

.

It is easy to see that at the point yγ(ε0) the function x = f(y, ε0) reaches a maximum
on Iy. Therefore

∂f

∂y
(yγ(ε0), ε0) = 0.
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From this,
θ′(yγ(ε0)) = ε0

and yγ(ε0) = s.
Further, we set

G(y, ε) = θ′(y)− ε.

Observe that the function G(y, ε) is C∞-differentiable in some neighborhood V ⊂ R2 of
the point q0 = (yγ(ε0), ε0) and G(q0) = 0.

We have
∂G

∂y
(q0) = θ′′(yγ(ε0) = θ′′(s).

Suppose that γ ≤ −1. By Lemma 2.12 we see that if θ′′(s) = 0 then s = 0. But, s > 0.
Now suppose that γ > −1. By Lemma 2.12 we see that if θ′′(s) = 0 then s = 0 or

s =
√

6
γ+1 . But, in Section 3 we showed that

0 < s <

√
2

γ + 1
for γ > −1.

Therefore
∂G

∂y
(q0) 6= 0.

And by the implicit function theorem the function y = yγ(ε) is C∞-differentiable in the
point ε0. Then there is an interval

I ′ε = {ε ∈ R : |ε− ε0| < c′} ⊂ Iε

such that
yγ(ε) ∈ Iy for all ε ∈ I ′ε .

Hence, for all (x, ε) ∈ Ix × I ′ε

F (x, yγ(ε), ε) = 0 ⇔ x = f(yγ(ε), ε).

Fix arbitrary ε ∈ I ′ε. Next,

x = f(yγ(ε), ε) = f(s, ε).

From here,
F (x, s, ε) = 0.

Rewrite this equality in the form

ϕ(x) = −ϕ(s),

where
ϕ(t) = ϕ(t, ε) = θ(t)− tε.

We have
ϕ′(t) = θ′(t)− ε.
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By Lemma 3.24 we conclude that the function ϕ(t) is strictly increasing on (0, s) and strictly
decreasing on (s,+∞) ∩ Σγ . Moreover, ϕ(0) = ϕ(r) = 0 and by (4.46), ϕ(xγ(ε)) = −ϕ(s).
Then it is not hard to check that x = xγ(ε).

Thus, we proved that

xγ(ε) = f(yγ(ε), ε) for all ε ∈ I ′ε.

Therefore, the function xγ(ε) is C∞-differentiable in the point ε0 and, using (4.47), we
deduce

x′γ(ε0) =
∂f

∂y
(yγ(ε0), ε0)y′γ(ε0) +

∂f

∂ε
(yγ(ε0), ε0) =

∂f

∂ε
(yγ(ε0), ε0).

Fix γ > 1. By (4.33) we conclude that the function xγ(ε) is C∞-differentiable on (0, ε′).
Show that the function xγ(ε) is not differentiable in the point ε′. Clearly,

lim
ε→ε′−0

x′γ(ε) = 0.

For arbitrary ε ∈ (ε′, 1) we have

|x′γ(ε)| =
∣∣∣∣
∂f

∂ε
(yγ(ε), ε)

∣∣∣∣ =

∣∣∣∣∣
xγ(ε) + yγ(ε)
θ′(xγ(ε))− ε

∣∣∣∣∣ ≥
xγ(ε)
1 + ε

≥ r

1 + ε
.

Hence, the function x′γ(ε) does not tend to 0 as ε → ε′ + 0. Therefore the function xγ(ε) is
not differentiable in the point ε′.

Prove that function xγ(ε) is continuous in the point ε′. By (4.33), we have

lim
ε→ε′−0

xγ(ε) =

√
2

γ − 1
.

Show that

lim
ε→ε′+0

xγ(ε) =

√
2

γ − 1
.(4.48)

Let yγ(ε′) ∈ Σγ is a solution of the equation

α(y) = ε′,

Here, as above,

α(y) = I+
γ

(√
2

γ − 1
, y

)
.

Then
θ(yγ(ε′))

yγ(ε′) +
√

2
γ−1

= ε′(4.49)

and

α′(yγ(ε′)) =
θ′(yγ(ε′))

(
yγ(ε′) +

√
2

γ−1

)
− θ(yγ(ε′))

(
yγ(ε′) +

√
2

γ−1

)2 = 0.

From this,

θ(yγ(ε′)) = θ′(yγ(ε′))

(
yγ(ε′) +

√
2

γ − 1

)
,
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and, using (4.49), we conclude that

θ′(yγ(ε′)) = ε′.(4.50)

Since
θ′(yγ(ε)) = ε for all ε ∈ (ε′, 1),

then
lim

ε→ε′+0
θ′(yγ(ε)) = ε′ = θ′(yγ(ε′)).(4.51)

By Lemma 2.12, the function ε = θ′(y) is continuous and strictly decreasing on
(
0,

√
2

γ+1

)
.

Moreover, yγ(ε) ∈
(
0,

√
2

γ+1

)
for all ε ∈ (ε′, 1). Then by (4.51), we establish

lim
ε→ε′+0

yγ(ε) = yγ(ε′).

We can rewrite the equality (4.46) in the form

θ(xγ(ε))− xγ(ε)ε = −(θ(yγ(ε))− yγ(ε)ε).

Using (4.49), we obtain

lim
ε→ε′+0

(θ(xγ(ε))− xγ(ε)ε) = −(θ(yγ(ε′))− yγ(ε′)ε′) = −ε′
√

2
γ − 1

.

From here,

lim
ε→ε′+0

ϕ(xγ(ε), ε) = −ε′
√

2
γ − 1

.(4.52)

Here, as above,
ϕ(t) = ϕ(t, ε) = θ(t)− tε.

Suppose that (4.48) is not true. That is, for some sequence εi → ε′ + 0 of numbers, the
inequality

xγ(εi) ≤
√

2
γ − 1

−m

holds with some constant m > 0. By Lemma 3.24, we see that the function ϕ(t) is contin-
uous and strictly decreasing on

[
r,

√
2

γ−1

]
. Moreover, xγ(ε) ∈

[
r,

√
2

γ−1

]
for all ε ∈ (ε′, 1).

Then

ϕ(xγ(εi), εi) > ϕ

(√
2

γ − 1
−m, εi

)
> ϕ

(√
2

γ − 1
, εi

)
= −εi

√
2

γ − 1
> −ε′

√
2

γ − 1
.

Letting εi → ε′ + 0, we obtain a contradiction to (4.52).
Thus, the function xγ(ε) is continuous in the point ε′. 2

Proving of Proposition 4.47, we established the following statements.

4.53. Proposition. For all γ > 1, we have

lim
ε→ε′+0

xγ(ε) =

√
2

γ − 1
.
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4.54. Proposition. The function xγ(ε) is strictly decreasing on (0, 1) for γ ≤ 1
and strictly decreasing on (ε′, 1) for γ > 1. Moreover,

x′γ(ε) =
xγ(ε) + yγ(ε)
θ′(xγ(ε))− ε

< 0

for all γ and ε, satisfying (4.40) or (4.41).

4.55. Proposition. For γ ∈ R we have

lim
ε→1−0

xγ(ε) = 0.

Proof. Let ε and γ satisfy (4.40) or (4.41). Then

0 < yγ(ε) = s ≤ r.

Letting ε → 1− 0 we obtain
lim

ε→1−0
yγ(ε) = 0.

Show that
lim

ε→1−0
xγ(ε) = 0.

Indeed, suppose that this is not true, that is, there is a number ε0 ∈ (0, 1) and a sequence
εi → 1 (ε0 < εi < 1) such that the inequality

c < xγ(εi) ≤ xγ(ε0).

holds with some constant c > 0. We can consider that

lim
εi→1

xγ(εi) = a ∈ [c, xγ(ε0)].

We have
1 = lim

εi→1
εi = lim

εi→1
I+
γ (xγ(εi), yγ(εi)) = I+

γ (a, 0) = σ(a).

From here, a = 0 < c and we obtain a contradiction. 2

4.56. Proposition. For all γ ≤ 1 we have

lim
ε→0+

xγ(ε) = +∞.

Proof. Letting ε → 0+ in the inequality xγ(ε) ≥ r, we obtain required . 2

4.57. Proposition. a) If γ ∈ (−∞,−1], then

lim
ε→0+

xγ(ε)ε−α = 0 for every α < γ−1
2 .
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b) If γ ∈ (−1, 1), then

lim
ε→0+

xγ(ε)ε =
(

γ + 1
2

) γ+1
2−2γ

.

c) If γ = 1, then

lim
ε→0+

xγ(ε)ε = exp{−1
2
}.

Proof. a) Let γ < −1. Using the inequalities 0 < yγ(ε) ≤ r, we obtain

lim
ε→0+

yγ(ε)ε−α = 0 for every α < γ−1
2(4.58)

We set

µ(t) =
(

1− γ + 1
2

t2
) (

1− γ − 1
2

t2
)−1

.

Obviously,

lim
t→+∞µ(t) =

γ + 1
γ − 1

.

It is easy to see the function µ(t) is strictly decreasing on (0, +∞). Therefore

µ(t) >
γ + 1
γ − 1

for all t ≥ 0.

Next,

ε = θ′(yγ(ε)) =
(

1− γ − 1
2

y2
γ(ε)

) 1
γ−1

−1 (
1− γ + 1

2
y2

γ(ε)
)

> σ(yγ(ε))
γ + 1
γ − 1

.

From here,

1 ≤ σ(yγ(ε))
ε

≤ γ − 1
γ + 1

.(4.59)

We notice that the equation I+
γ (x, y) = ε we can write as

x

(
σ(x)

ε
− 1

)
= y

(
σ(y)

ε
− 1

)
.

Then by (4.58), (4.59) for all α < γ−1
2 we have

0 = lim
ε→0+

yγ(ε)ε−α
(

σ(yγ(ε))
ε

− 1
)

= lim
ε→0+

xγ(ε)ε−α
(

1− σ(xγ(ε))
ε

)
.(4.60)

Assume that there is α < γ−1
2 such that

lim
ε→0+

xγ(ε)ε−α 6= 0.

Then for some sequence εi → 0 of positive numbers the inequality

xγ(εi)ε−α
i ≥ m(4.61)

holds with some constant m > 0.
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By (4.60) we obtain

lim
εi→0+

σ(xγ(εi))
εi

= 1.

By (4.61),

lim
εi→0+

σ(xγ(εi))
εi

≤ lim
εi→0+

σ(mεα
i )

εi
= 0.

and we obtain a contradiction.
Let γ = −1. We have

ε = θ′(yγ(ε)) =
(
1 + y2

γ(ε)
)− 3

2 .

From here
yγ(ε) =

√
ε−

2
3 − 1

and
σ(yγ(ε)) = ε

1
3 .

For α < −1 we have

lim
ε→0+

xγ(ε)ε−α
(

1− σ(xγ(ε))
ε

)
= lim

ε→0+
yγ(ε)ε−α

(
σ(yγ(ε))

ε
− 1

)

= lim
ε→0+

ε−α−1(1− ε2/3)3/2 = 0.

Assume that there exits α < −1 such that

lim
ε→0+

xγ(ε)ε−α 6= 0.

Then for some sequence εi → 0 of positive numbers the inequality (4.61) holds with
some constant m > 0. As above we obtain a contradiction.

b) By Proposition 4.56 we deduce

lim
ε→0+

θ(xγ(ε)) = 0.(4.62)

Notice that the function θ′(t) is continuous and the equation

θ′(t) = 0

has the unique solution s =
√

2
γ+1 . Then the equality

θ′(yγ(ε)) = ε

yields

lim
ε→0+

yγ(ε) =

√
2

γ + 1
.(4.63)
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By (4.62), (4.63) we obtain

(
γ + 1

2

) γ+1
2−2γ

= θ(

√
2

γ + 1
) = lim

ε→0+
(θ(yγ(ε))− yγ(ε)ε) =

= lim
ε→0+

(xγ(ε)ε− θ(xγ(ε))) = lim
ε→0+

xγ(ε)ε.

c) The proof is analogous. 2

4.64. Proposition. a) If γ 6= 1, then

lim
ε→1−0

xγ(ε)
(1− ε)α

= +∞ for all α > 1
2 .(4.65)

b) If γ = 1, then

lim
ε→1−0

xγ(ε)
lnα ε

= +∞ for all α > 1
2 .

Proof. a) Assume that γ > 1. Then

xγ(ε) ≥ r =

√
2(1− εγ−1)

γ − 1

Using L’Hospital rule, we find

lim
ε→1−0

1− εγ−1

(1− ε)2α
=

γ − 1
2α

lim
ε→1−0

εγ−2

(1− ε)2α−1
= +∞ for all α > 1

2 .

From thies we obtain (4.65). The case γ < 1 is analogous.
b) The proof is analogous. 2
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