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Abstract. We study quasiregular mappings from a punctured
unit ball of the Euclidean n-space into compact manifolds. We
show that a quasiregular mapping has a limit in the point of punc-
tuation whenever the dimension of the cohomology ring of the com-
pact manifold exceeds a bound given in terms of the dimension and
the distortion constant of the mapping.

1. Introduction

In [2], Bonk and Heinonen prove the following theorem.

Theorem 1 ([2, Theorem 1.1]). Let N be a closed, connected, and
oriented Riemannian n-manifold, n ≥ 2. If there exists a non-constant
K-quasiregular mapping f : Rn → N , then

(1) dimH∗(N) ≤ C(n,K),

where dimH∗(N) is the dimension of the de Rham cohomology ring
H∗(N) of N and C(n,K) is a constant depending on n and K.

In this paper, we show that Theorem 1 has a local counterpart.

Theorem 2. Let n ≥ 2 and K ≥ 1. There exists a constant C(n,K)
such that if N is a closed, connected, and oriented Riemannian n-
manifold with dimH∗(N) ≥ C(n,K) and f : Bn \ {0} → N is a K-
quasiregular mapping, then the limit limx→0 f(x) exists.

A continuous mapping f : M → N between connected and oriented
Riemannian n-manifoldsM andN is calledK-quasiregular, if it belongs
to the class W 1,n

loc (M,N), and satisfies an inequality

‖Txf‖n ≤ KJ(x, f)

for almost every x ∈ M . Here ‖Txf‖ is the operator norm of the tan-
gent mapping Txf : TxM → Tf(x)N , and J(x, f) is the Jacobian deter-
minant of f at x ∈M uniquely defined by the equation (f ∗(volN))x =
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J(x, f) (volM)x for almost every x ∈M . It is well known that quasireg-
ular mappings are almost everywhere differentiable, and that non-
constant quasiregular mappings are open and discrete. See e.g. [17]
for thorough exposition of properties and history of quasiregular map-
pings.

The theorem of Bonk and Heinonen can be considered as a Picard
type theorem for quasiregular mappings. In that respect Theorem 2
can be viewed as a big Picard type theorem. In order to justify this
terminology, let us describe how Theorem 2 implies Theorem 1. Let N
be a compact n-manifold with dimH∗(N) ≥ C(n,K), where C(n,K)
is as in Theorem 2, and suppose that there exists a non-constant K-
quasiregular mapping f from Rn into N . By another theorem of Bonk
and Heinonen, [2, Theorem 1.11], the average of the counting function
of f has a lower growth bound of polynomial type, see also Section 5.
In particular, the average of the counting function is unbounded. On
the other hand, f can be extended to a K-quasiregular mapping from
Sn into N by Theorem 2. Hence the average of the counting function
of f is in fact bounded. This is a contradiction and Theorem 1 follows.

The proof of Theorem 2 is divided into three parts: the case of
Riemannian surfaces, a bound for the first cohomology, and bounds
for the higher cohomologies. We consider first the case of Riemannian
surfaces. For Riemannian surfaces the claim of Theorem 2 is settled by
the following theorem.

Theorem 3. Let N be a closed Riemannian surface and let f : B2 \
{0} → N be a K-quasiregular mapping. If dimH1(N) > 2, f has a
limit at the origin.

This theorem is an easy consequence of the big Picard theorem for
Riemannian surfaces and the Measurable Riemann mapping theorem,
see Section 2 for details. Although this result is well known to the
experts, we provide a simple proof.

In the same section we show how the method of [2, Corollary 1.6]
yields a bound for H1(N) when the dimension of N is at least three.

Theorem 4. Let n ≥ 3 and N be a closed, connected, and oriented Rie-
mannian n-manifold such that dimH1(N) > n. Then every quasiregu-
lar mapping f : Bn \ {0} → N has a limit at the origin.

Together with Poincaré duality, Theorem 4 yields the claim of The-
orem 2 for quasiregular mappings from punctured ball into compact
three manifolds. By theorems 3 and 4, we may take C(n,K) = 2n, if
n = 2 or n = 3, in Theorem 2.

Having Theorems 3 and 4 at our disposal, it is sufficient to consider
compact manifolds of dimension n ≥ 4 with non-trivial cohomology in
some of the dimensions ` ∈ {2, . . . , n − 2}. We settle this part of the
claim of Theorem 2 with the following theorem.
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Theorem 5. Let n ≥ 4 and K ≥ 1. There exists a constant C > 0 de-
pending only on n and K such that if N is a closed, connected, and ori-
ented Riemannian n-manifold and f : Rn\B̄n → N is a K-quasiregular
mapping with an essential singularity at infinity, then dimH `(N) ≤ C
for every ` ∈ {2, . . . , n− 2}.

Indeed, we may fix a sense-preserving Möbius mapping σ : Rn → Rn

such that σ(Rn \ B̄n) = Bn \ {0}, and instead of a K-quasiregular
mapping f : Bn \ {0} → N we may consider the mapping f ◦ σ in
Theorem 2.

Although the main idea of the proof of Theorem 5 is the same as in
the proof of Theorem 1, we apply the methods of [2] differently. Let
us briefly describe the method and then differences. Let N be an n-
manifold with H`(N) 6= 0 for some ` ∈ {2, . . . , n− 2}, d = dimH `(N)
and p = n/`. We fix p-harmonic forms ξ1, . . . , ξd whose cohomology
classes span H`(N) and which are uniformly bounded and separated in
the Lp-norm. The value distribution theory of quasiregular mappings
can now be used to show that there exists a quasiregular mapping ψ
from the unit ball Bn of Rn into Rn \ B̄n such that forms ψ∗f ∗(ξi)
are uniformly separated in the Lp-norm over Bn(1/2), and uniformly
bounded in Bn with constants depending only on n and K. Further-
more, the dilatation of ψ depends only on n. The conclusion that d has
a bound depending only on n and K now follows from a Caccioppoli
type inequality and compactness of the Lp-Poincaré homotopy operator
as in [2].

In the proof of Theorem 1, the use of an auxiliary mapping ψ is not
necessary. Since the natural exhaustion of R

n is with balls centered
at the origin, an argument using rescaling and the Mattila-Rickman
theorem [11, 5.11] shows that there exist many balls B in Rn such that
forms f ∗(ξi) are uniformly bounded and separated in the Lp-norm on
each ball B. On the other hand, a natural family of domains exhausting
Rn \ B̄n, from the point of view of the value distribution, is not a
family of Euclidean balls but a family of spherical annuli. In Section
3 we show, using [11, 4.8], that there exists a version of [11, 5.11] for
quasiregular mappings from Rn \ B̄n into a compact manifold with an
essential singularity at infinity.

We find a mapping ψ in three steps. First we show that the assump-
tion on the cohomology yields a lower growth bound for the average of
the counting function of a quasiregular mapping with an essential sin-
gularity at the origin. This theorem corresponds to [2, Theorem 1.11]
in our setting, see Section 5. The second step is to replace the use of
the rescaling argument with a value distribution lemma from [16]. The
last step is to modify a ball decomposition method due to Rickman, see
e.g [16] or [17, V.2.14], into an annulus decomposition method. Using
the obtained decomposition, we find the mapping ψ.
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In the annulus decomposition method we need the average of the
counting function of the mapping to have a polynomial type growth.
In Section 5 we show that mappings considered in Theorem 5 indeed
have this property. Theorem 14 yielding this result is a counterpart of
[2, Theorem 1.11] in our setting. We also give an example indicating
that the more restrictive assumption on cohomology cannot be relaxed.

The notation used in this paper is standard. Given a Riemannian
manifold M , we denote by B(z, r) the open ball centered at z ∈ M
with radius r > 0. In R

n we denote by Bn the open unit ball centered
at the origin, and by Bn(r) open ball of radius r > 0 centered at the
origin.

Acknowledgments. We thank Ilkka Holopainen for many valuable
comments and numerous advice during the preparation of this manu-
script. We also thank Seppo Rickman for reading the manuscript and
many discussions on the topics of the manuscript. We would also like to
thank Juha Heinonen and Kirsi Peltonen for many valuable comments
and Mario Bonk for the reference [14].

2. Bounds for dimH1(N)

In this section we first consider the proof of Theorem 3 and then the
proof of Theorem 4.

In two dimensions we have two well known theorems at our disposal:
the big Picard theorem for Riemannian surfaces and the measurable
Riemann mapping theorem. Although Theorem 3 is almost a direct
consequence of these two theorems, we give a short proof. The big
Picard theorem for Riemann surfaces goes back to Picard [14]; see
also Ohtsuka ([12] and [13]), Renggli [15], and Royden [18]. For the
Measurable Riemann mapping theorem and for notation in the proof,
see e.g. [1].

Proof of Theorem 3. Let us first factorize f into a quasiconformal and
an analytic mapping. We denote by D∗ the punctured disk B2\{0}. Let
µ : C → C be a measurable mapping such that µ(z) = µf(z) whenever
defined in D

∗ and µ(z) = 0 otherwise. Since ‖µ‖∞ ≤ (K−1)/(K+1) <
1, there exists, by the measurable Riemann mapping theorem, a K-
quasiconformal mapping h : C → C such that hz̄ = µhz and h(0) = 0.
Moreover, f ◦ h−1 is 1-quasiregular, and hence analytic, in h(D∗).

Since the Riemann surface N is not a sphere or a torus, the mapping
f ◦ h−1|h(D∗) has a limit at the origin by the big Picard theorem for
Riemann surfaces. �

In dimensions n ≥ 3, the measurable Riemann mapping theorem is
not at our disposal. In this case, the simply connectedness of Bn \
{0} allows us to consider a lift of a mapping f : Bn \ {0} → N into
the universal cover of N . The proof of Theorem 4 is essentially a
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recombination of the arguments given in [2, Corollary 1.6] and [22,
Theorem X.1.5]. In the proof we denote by |E| the Lebesgue measure
of a measurable set E. We also employ the conformal capacity of a
condenser. Let F be a compact set and Ω an open set on manifold N
such that F ⊂ Ω. Then

capn(Ω, F ) = inf
u

∫

N

|∇u|n dx,

where the infimum is taken over all functions u ∈ C∞
0 (Ω) such that

u|F ≥ 1, see e.g. [17, II.10]. Furthermore, we say that N is n-parabolic
if capn(N,F ) = 0 for every compact set F ⊂ N . Otherwise, we say
that N is n-hyperbolic.

Proof of Theorem 4. Suppose d = dimH1(N) > n. Let Ñ be the
universal cover of N with the induced Riemannian metric, and let
f̃ : Bn \ {0} → Ñ be the lifting of f to Ñ . Then f̃ is K-quasiregular.
Fix a point o ∈ Ñ . The proof of [2, Corollary 1.6] shows that there
exist a constant C > 0 such that for every positive integer R we have

C|B(o, CR)| ≥ (2R + 1)d.

By the proof of [22, Theorem X.1.5], Ñ is n-hyperbolic.
Suppose that f has an essential singularity at the origin. Let us

fix a sequence 1 > r1 > r2 > · · · such that rk → 0 as k → ∞ and
|fCk| ≥ |N |/2 for every k, where Ck = B̄n(rk) \ Bn(rk+1) for every k.
Such a sequence can be fixed, since N \ fBn(r) has zero measure for
every r ∈ (0, 1), see e.g. [5, Lemma 7].

Since the Riemannian metric of Ñ is inherited from N , |f̃Ck| ≥ |fCk|
for every k. Hence, by [3, Theorem 3.5], there exists δ > 0 such that

capn(Ñ , f̃Ck) ≥ δ for every k. On the other hand, we obtain from the
KI-inequality that

capn(Ñ , f̃Ck) ≤ capn(f̃(Bn \ {0}), f̃Ck)

≤ KI(f)capn(Bn \ {0}, Ck) → 0

as k → ∞, see e.g. [17, II.10.10]. Here KI(f) is the inner dilatation of
f , see e.g. [17, I.2]. Since this is a contradiction, f has a limit at the
origin. �

3. A value distribution result of Mattila-Rickman type

In this section, our objective is to prove a version of [11, 5.11] that is
suitable for our purposes. Let us first introduce some notation and ter-
minology. Although it is sufficient for us to consider only quasiregular
mappings from Euclidean domains into compact manifolds, we follow
here [11, Section 2] in full generality.

Let M and N be connected and oriented Riemannian n-manifolds
such that M is non-compact and N is compact. Furthermore, let
f : M → N be a non-constant quasiregular mapping.
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We say that a family of domains D = {D(s) ⊂ M : s ∈ [a, b)}, where
a > 0 and b ∈ (a,∞], is an exhaustion of M if every domain D(s)

is relatively compact, D(s) ⊂ D(t) for a ≤ s < t < b, and M is a
union of the domains in D. We may assume that domains in D are
parameterized by an equation

Mn(Γta) = ωn−1

(

log
t

a

)1−n

,

where Γts is the family of paths joining ∂D(t) and ∂D(s), i.e,

Γts = ∆(∂D(t), ∂D(s);M)

for every a ≤ s < t < b, and ωn−1 is the Hausdorff (n− 1)-measure of
the unit sphere in Rn. The conformal modulus Mn(Γ) of a path family
Γ is defined by

Mn(Γ) = inf
ρ

∫

M

ρn dx,

where infimum is taken over all non-negative Borel functions ρ on M
such that

∫

γ

ρ ds ≥ 1

for every locally rectifiable path γ ∈ Γ, see e.g. [17, II.1].
We say that an exhaustion D of M is a (κ, λ, θ0)-admissible if there

exist constants a0 ∈ [a, b), θ0 > 1, κ > 0, and λ ≥ n− 1 such that

Mn(Γts) ≤ κωn−1

(

log
t

s

)−λ

for every a0 ≤ s < t < b satisfying t ≤ θ0s.
For every relatively compact set F ⊂ M we define the counting

function of f with respect to F by

n(F, y; f) =
∑

x∈f−1(y)∩F

i(x; f).

Since the image of the branch set of f , i.e. the image of the set
where f fails to be a local homeomorphism, has zero Lebesgue mea-
sure, n(F, y; f) = card (f−1(y) ∩ F ) for almost every y ∈ N and every
relatively compact set F ⊂ N . Moreover, for every relatively compact
set F the function y 7→ n(F, y; f) is upper semicontinuous.

Let µ be a finite non-trivial Borel measure on N . We say that
h : [0,∞) → [0,∞) is a calibration function (with constant p > 2)
if h is increasing, continuous, h(0) = 0, h(r) > 0 for every r > 0, and

∫ 1

0

h(r)1/(pn)

r
dr <∞.
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Furthermore, we say that µ is h-calibrated (with constant p) if there
exists p > 2 and a calibration function h (with constant p) such that

µ(B(x, r)) ≤ h(r)

for every ball B(x, r) ⊂ N .
For every relatively compact set F ⊂M we define the average of the

counting function of f with respect to measure µ by

νµ(F ; f) =
1

µ(N)

∫

N

n(F, y; f) dµ(y).

For the Lebesgue measure dx on N we abbreviate A(F ; f) = νdx(F ; f),
and for a fixed exhaustion D ofM we let A(s) = A(D(s); f) and νµ(s) =
νµ(D(s); f) for s ∈ [a, b), when there is no possibility of confusion.

Let us now state the main theorem of this section which is a version
of a part of [11, 5.11].

Theorem 6. Let N be a closed, connected, and oriented Riemannian
n-manifold and f : Rn \ B̄n → N a K-quasiregular mapping with an es-
sential singularity at the infinity. Let µ be an h-calibrated measure with
p > 2 on N . Then there exists a set E ⊂ [2,∞) of finite logarithmic
measure, i.e.

mlog(E) :=

∫

E

dt

t
<∞,

such that

(2) lim
t→∞
t6∈E

νµ(Bn(t) \ B̄n(2); f)

A(Bn(t) \ B̄n(2); f)
= 1.

Although Theorem 6 is not a direct corollary of [11, 5.11], the main
part of the proof is [11, 4.8], as in [11, 5.11]. In order to prove Theorem
6, we use [11, 4.8] to obtain Lemma 10 and then use the proof of
[11, 5.11] to obtain Theorem 6. For reader’s convenience, let us first
formulate [11, 4.8]. For the sharp form of this theorem in the Euclidean
setting, see [17, IV.1.7, IV.1.10].

Theorem 7 ([11, 4.8]). Let M be a non-compact, connected, and
oriented Riemannian n-manifold admitting a (κ, λ, θ0)-admissible ex-
haustion. Let N be a closed, connected, and oriented Riemannian n-
manifold, and let µ be an h-calibrated measure with p > 2 on N . Then
for every c > 1 and K ≥ 1 there exists d > 0 such that the following
holds. Let D = {D(s) : s ∈ [a, b)} be a (κ, λ, θ0)-admissible exhaustion
on M and let f : M → N be a K-quasiregular mapping. Then

(3) cA(θs; f) ≥ νµ(s; f) − d(log θ)−pλ

and

(4) A(s; f) ≤ cνµ(θs; f) + d(log θ)−pλ

whenever a0 ≤ s < θs < b and θ ≤ θ0.
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Let us note, that in [11] the formulation of [11, 4.8] does not contain
the dependence of d on the other parameters. However, by the proof d
depends only on c, K, κ, λ, θ0, p, µ, and the Riemannian metric of N .
In particular, d does not depend on f or D in any other way than via
the parameters K, κ, λ, and θ0.

We formulate the following corollary of Theorem 7 as a lemma.

Lemma 8. Let N and µ be as in Theorem 6. Then for every c > 1 and
K ≥ 1 there exists d > 0 such that for every K-quasiregular mapping
f : Rn \ B̄n → N we have

(5) cA(Bn(θr) \ B̄n(2); f) ≥ νµ(Bn(r) \ B̄n(2θ); f) − d(log θ)−p(n−1)

and

(6) A(Bn(r) \ B̄n(2θ); f) ≤ cνµ(Bn(θr) \ B̄n(2); f) + d(log θ)−p(n−1)

whenever θ ∈ (1, 2] and r > 2θ .

Proof. Let θ > 1 and r > 2θ be given. Fix a =
√

2θr and δ = 21/(1−n)

and let
D(s) = Bn((s/a)1/δa) \ B̄n((s/a)−1/δa)

for every s ∈ (a, a1+δ]. Then

Mn(∆(∂D(s), ∂D(t))) = 2ωn−1

(

log(t/s)1/δ
)1−n

= ωn−1 (log(t/s))1−n

for every a < s < t < aδ+1. Furthermore, D(aδ+1) = Bn(2θr) \ B̄n.
Hence, for every a′ ∈ (a, aδ+1), domains D(t), t ∈ [a′, aδ+1), form a
(1, n− 1, 2)-admissible exhaustion of Bn(2θr) \ B̄n.

Since D(θ−δ(a/2)δa) = Bn(r) \ B̄n(2θ) and D((a/2)δa) = Bn(θr) \
B̄n(2), the claim now follows from Theorem 7. �

The following lemma, which is a reformulation of [17, III.2.11], con-
nects the essential singularity of f to the growth of averages of the
counting function, see also [5, Lemma 3.1].

Lemma 9. Let N , µ, and f be as in Theorem 6. Then νµ(Bn(s) \
B̄n(s0); f) → ∞ as s→ ∞ for every s0 ≥ 2.

Proof. Let s0 ≥ 2. By [5, Lemma 3.1], the image of any neighborhood
of the infinity covers N except of a possibly non-empty set of zero n-
capacity. Hence n(Bn(s) \ B̄n(s0), y) → ∞ as s → ∞ for y ∈ N \ C,
where C has zero n-capacity. By [11, 4.3], C has zero µ measure. The
claim now follows from the monotone convergence theorem. �

Using Lemma 9 we enhance inequalities (5) and (6).

Lemma 10. Let N , µ, and f be as in Theorem 6. Then for each c > 1
there exist d > 0 and s0 ≥ 4 such that for every θ ∈ (1, 2] we have

(7) cA(Bn(θs) \ B̄n(2); f) ≥ νµ(B
n(s) \ B̄n(2); f) − d(log θ)−p(n−1)
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and

(8) A(Bn(s) \ B̄n(2); f) ≤ cνµ(Bn(θs) \ B̄n(2); f) + d(log θ)−p(n−1)

whenever s ≥ s0.

Proof. Let θ ∈ (1, 2], and c′ ∈ (1, c). Since, by Lemma 9, νµ(B
n(s) \

B̄n(2θ); f) → ∞ and A(Bn(s) \ B̄n(2θ); f) → ∞ as s → ∞, we may
fix s0 ≥ 4 such that

(c− c′)A(Bn(s) \ B̄n(2θ); f) ≥ νµ(Bn(2θ) \ B̄n(2); f)

and
A(Bn(2θ) \ B̄n(2); f) ≤ (c− c′)νµ(Bn(s) \ B̄n(2θ); f).

for every s ≥ s0. Inequalities (7) and (8) follow by applying Lemma 8
with c′. �

The proof of Theorem 6 now follows from Lemma 10 as the corre-
sponding part of [11, 5.11] from [11, 4.8]. Since we may apply the proof
of [11, 5.11] verbatim, we omit the details.

4. Quasiregular mappings and p-harmonic forms

In this section, we recall some parts of the theory of p-harmonic
forms and their connection to quasiregular mappings and cohomology
of compact manifolds. For details, see e.g. [2], [4], [6], [8], [9], [10], and
[19].

Let M be a connected and oriented Riemannian n-manifold with
n ≥ 2. The Riemannian metric of M induces an inner product to the
exterior bundle

∧` T ∗M for every ` ∈ {1, . . . , n}, see e.g. [9, 9.6] for
details. We denote this inner product by 〈·, ·〉 and the norm given by

this inner product by | · |. As usual, sections of the bundle
∧` T ∗M

are called `-forms. The Lp-space of measurable `-forms is denoted by
Lp(
∧`M) and the Lp-norm is defined by

‖ξ‖p =

(
∫

M

|ξ|p dx

)1/p

.

The local Lp-spaces of `-forms are denoted by Lp
loc(
∧`M). The space

of C∞-smooth `-forms on M is denoted by C∞(
∧`M), and the space

of compactly supported C∞-smooth `-forms by C∞
0 (
∧`M).

In order to define Sobolev spaces, we say that a form ω ∈ L1
loc(
∧`M)

has a weak exterior derivative τ ∈ L1
loc(
∧`+1M) if

∫

M

〈ω, d∗ϕ〉 dx =

∫

M

〈τ, ϕ〉 dx

for every ϕ ∈ C∞
0 (
∧`+1M). Here d∗ is the adjoint of the exterior

derivative d : C∞(
∧`M) → C∞(

∧`+1M), that is, 〈dα, β〉 = 〈α, d∗β〉
for every α ∈ C∞(

∧`M) and β ∈ C∞(
∧`+1M). We denote by dω the
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weak exterior derivative of ω. The weak exterior coderivative d∗ω of ω
is defined similarly by saying that a form θ ∈ L1

loc(
∧`−1M) is the weak

exterior coderivative of ω ∈ L1
loc(
∧`M) if

∫

M

〈ω, dϕ〉 dx =

∫

M

〈θ, ϕ〉 dx

for every ϕ ∈ C∞
0 (
∧`−1M). Weak exterior derivative and coderivative

are studied in detail e.g. in [9, Chapter 10], [10, Section 3], and [19].
In what follows, we consider three types of Sobolev spaces of differ-

ential forms. For most of our considerations we use a partial Sobolev
space W d,p(

∧`M) for p ∈ (1,∞). We say that ω ∈ W d,p(
∧`M) if

ω ∈ Lp(
∧`M) and dω ∈ Lp(

∧`+1M). We equip W d,p(
∧`M) with the

norm ‖ω‖d,p = ‖ω‖p + ‖dω‖p.
Corresponding to the exterior coderivative we define a partial Sobolev

space W d∗,p(
∧`M) by saying that ω ∈ W d∗,p(

∧`M) if ω ∈ Lp(
∧`M)

and d∗ω ∈ Lp(
∧`−1M). We equip this space with the norm ‖ω‖d∗,p =

‖ω‖p + ‖d∗ω‖p.
We also use the Sobolev space

W 1,p(
∧̀

M) = W d,p(
∧̀

M) ∩W d∗,p(
∧̀

M)

and equip it with the norm ‖ω‖1,p = ‖ω‖p + ‖dω‖p + ‖d∗ω‖p. For a
detailed discussion on spaces W 1,p, W d,p, and W d∗,p see e.g. [10] and
[19].

We also consider Sobolev spaces W d,p, W d∗,p, and W 1,p on manifolds
with boundary. In our applications, all such manifolds are submanifolds
of Rn with smooth boundary and Sobolev spaces W d,p, W d∗,p, and W 1,p

are defined as above. See [10, Section 3] for a detailed discussion.
Having Sobolev spaces at our disposal, we may now consider p-

harmonic forms and their connection to quasiregular mappings.
Let ` ∈ {1, . . . , n − 1} and p > 1. Let A :

∧` T ∗M → ∧` T ∗M be
a measurable bundle map such that there exists positive constants α
and β satisfying

〈A(ξ) −A(ζ), ξ − ζ〉 ≥ α(|ξ| + |ζ|)p−2|ξ − ζ|2,(9)

|A(ξ) −A(ζ)| ≤ β(|ξ|+ |ζ|)p−2|ξ − ζ|, and(10)

A(tξ) = t|t|p−2A(ξ)(11)

for all ξ, ζ ∈ ∧` T ∗
xM , t ∈ R, and for almost every x ∈ M . We also

assume that x 7→ Ax(ω) is a measurable `-form for every measurable

`-form ω : M → ∧` T ∗M .

We say that a closed form ξ ∈ W d,p
loc (
∧`M) is A-harmonic (of type

p) if it satisfies an A-harmonic equation

(12) d∗(A(ξ)) = 0
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weakly, i.e.
∫

M

〈A(ξ), dϕ〉 dx = 0

for every ϕ ∈ C∞
0 (
∧`−1M). If A(ξ) = |ξ|p−2ξ, we say that equa-

tion (12) is a p-harmonic equation and its closed weak solutions in

W d,p
loc (
∧`M) we call p-harmonic forms.

Let f : M → N be a K-quasiregular mapping, ` ∈ {1, . . . , n}, and
p = n/`. Since f is almost everywhere differentiable, we may define

the pull-back f ∗(ω) ∈ Lp
loc(
∧`M) of ω ∈ Lp

loc(
∧`N) under f by

f ∗(ω)x = (Txf)∗ωf(x)

for almost every x ∈ M . The local Lp-integrability of f ∗(ω) follows
from quasiregularity of f . Indeed, by quasiregularity, we have for every
ω ∈ Lp

loc(
∧`N) inequalities

(13)
1

KI(f)

∫

N

N(y,Ω)|ω|p dy ≤
∫

Ω

|f ∗(ω)|p dx ≤ KO(f)

∫

N

N(y,Ω)|ω|p dy

for every relatively compact domain Ω ⊂ M . Here KO(f) is the outer
dilatation of f , andN(·,Ω) is the multiplicity of f defined by N(y,Ω) =
card (f−1(y) ∩ Ω) for every y ∈ N . Note that the conformal exponent
p = n/` has an essential role in (13).

By [8, Lemma 3.6], f ∗(ω) ∈ W d,p
loc (
∧`M) and the commutation rule

d(f ∗(ω)) = f ∗(dω) holds whenever ω ∈ W d,p
loc (
∧`N).

For a given quasiregular mapping f , we may define a measurable
bundle map A :

∧` T ∗M → ∧` T ∗M by

(14) A(ξ) = 〈G∗ξ, ξ〉 p−2

2 G∗ξ,

where

(15) Gx =

{

J(x, f)2/n(Txf)−1 ((Txf)−1)
t
, J(x, f) > 0

Id, otherwise.

Here ((Txf)−1)
t
: TxM → Tf(x)N is the adjoint of the tangent map

(Txf)−1 : Tf(x)N → TxM .
Let ξ be a p-harmonic `-form on N with p = n/`. Then f ∗(ξ) is a

closed form and satisfies an equation

(16) d∗(A(f ∗(ξ)) = 0

weakly. For a detailed discussion, see e.g. [10, Section 7] and [8, Sec-
tion 4]. For reader’s convenience, let us indicate the steps. Direct
computation shows that

〈G∗f ∗(ξ), f ∗(ξ)〉 p−2

2 = J(·, f)(p−2)/p|ξ|p−2 ◦ f
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almost everywhere in M . Furthermore, by [8, pp. 49],

G∗f ∗(ξ) = (−1)`(n−`)G∗f ∗(? ? ξ)

= (−1)`(n−`)G∗
(

J(·, f)(n−2(n−`))/n(G−1)∗ ? f ∗(?ξ)
)

= (−1)`(n−`)J(·, f)(2`−n)/n (?f ∗(?ξ))

almost everywhere in M . Hence

〈G∗f ∗(ξ), f ∗(ξ)〉 p−2

2 G∗f ∗(ξ) = (−1)`(n−`)(|ξ|p−2 ◦ f) ? f ∗(?ξ)

= (−1)`(n−`) ? f ∗(|ξ|p−2(?ξ)),

and

d∗
(

?f ∗((−1)`(n−`)|ξ|p−2(?ξ))
)

= (−1)n`+1 ? f ∗(d(?(|ξ|p−2ξ)))

= (−1)`(n−`)(?f ∗?)d∗(|ξ|p−2ξ)) = 0

weakly.
The following connection between the de Rham cohomology and p-

harmonic forms is crucial for our forthcoming considerations. Let N
be a closed, connected, and oriented Riemannian n-manifold. By [19,
Section 7], for every p ∈ (1,∞) every cohomology class of N weakly
contains a p-harmonic representative, that is, for every closed form
ω ∈ C∞(

∧`N) there exists a p-harmonic form ξ ∈ W 1,p(
∧`N) such

that ξ − ω = dγ for some γ ∈ W 1,p(
∧`−1N). Since the p-harmonic

equation is the Euler equation of the variational integral

(17) ξ 7→
∫

N

|ξ|p dx,

a p-harmonic form minimizes the p-energy within its cohomology class.
The following lemma is a Caccioppoli type inequality for A-harmonic

forms on Bn.

Lemma 11 ([2, Lemma 5.8]). Let ` ∈ {1, . . . , n}, p ≥ 2, r ∈ (0, 1), and

let A be a measurable bundle map
∧` T ∗Bn → ∧` T ∗Bn satisfying (9)-

(11). Let ξ, ζ ∈ W d,p
loc (
∧`−1Bn) be such that dξ and dζ are A-harmonic

`-forms. Then
(18)

‖(dξ − dζ)|Bn(r)‖p
p ≤

C

1 − r

(

‖dξ|D‖p−1
p + ‖dζ|D‖p−1

p

)

‖(ξ − ζ)|D‖p,

where the constant C depends only on n, p, and constants α and β of
A. Here D = Bn \ B̄n(r).

In [7] Iwaniec and Lutoborski introduce a Lp-version of the Poincaré

homotopy operator T : Lp(
∧`Bn) → Lp(

∧`+1Bn), p ∈ (1,∞), satisfy-
ing

(19) ω = dTω + Tdω
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for every ω ∈ W d,p(
∧`Bn). By [7, Proposition 4.1], the operator T is

compact. We state as a lemma the punch line of the proof of [2, Theo-
rem 1.1], where the compactness of T is combined with the Caccioppoli
type estimate of Lemma 11. For reader’s convenience, we give a sketch
of a proof.

Lemma 12. Let c ∈ (0, 1), p ≥ 2, and let A :
∧` T ∗Bn → ∧` T ∗Bn

be a bundle map satisfying (9) - (11). Let ξ1, . . . , ξk ∈ W d,p(
∧`Bn) be

A-harmonic forms such that ‖ξi‖p ≤ 1 for every i and

‖(ξi − ξj)|Bn(r)‖p ≥ c > 0

for some r ∈ (0, 1) and for every j 6= i. Then k is bounded from above
by a constant depending only on n, p, r, c, and constants α and β of
A.

Sketch of a proof. Since forms ξi are closed, (19) yields ξi = dTξi for
every i. By Lemma 11,

‖Tξi − Tξj‖p ≥
1 − r

2C
‖ξi − ξj‖p ≥ c′

for every i and j, where c′ > 0 depends only on n, p, A, r, and c. Since
forms Tξi are contained in the image of the unit ball of W d,p(

∧`Bn)
under T , and therefore in a relatively compact set, the number of forms
ξi is bounded from above by a constant depending on ‖T‖ and c. By
[7, Proposition 4.1], ‖T‖ depends only on n and p. The claim now
follows. �

Let us end this section with a note on p-harmonic forms and h-
calibrated measures. In sections to come, we use p-harmonic forms
to produce weighted Lebesgue measures. By Ural’tseva’s theorem p-
harmonic forms are locally Hölder continuous for every p ∈ (1,∞) [21,
Theorem 1], see also [20]. Therefore for every compact manifold N
and every p-harmonic form ξ on N the measure dµ = |ξ|p dx satisfies
µ(B(z, r)) ≤ Crn for every ball B(z, r) in N , where C is independent
of the ball B(z, r). If, in addition, ξ 6= 0, the measure µ is h-calibrated
with any exponent q > 2.

5. A lower growth bound for the average of the

counting function

In [2] the following lower growth bound for the average of the count-
ing function of a quasiregular mapping from R

n into a compact mani-
fold is established.

Theorem 13 ([2, Theorem 1.11]). Let f : Rn → N be a non-constant
K-quasiregular mapping into a closed, connected, and oriented Rie-
mannian n-manifold N , n ≥ 2. If the `-th cohomology group H `(N) of
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N is nontrivial for some ` = 1, . . . , n − 1, then there exists a positive
constant α = α(n,K) such that

lim inf
r→∞

A(Bn(r); f)

rα
> 0.

In this section we show that the average of the counting function of
a quasiregular mapping from Bn \ {0} into a compact manifold has a
similar type of growth if the mapping has an essential singularity at
the origin. However, in the case of a punctured ball we have to assume
more on the cohomology of the target manifold as the following example
reveals.

Let N = Sn−1 ×S1, and define f : Rn \ B̄n → N by x 7→ ϕ(x/2k) for
every x ∈ B̄n(2k+1)\B̄n(2k) and every k ∈ N, where ϕ : B̄n(2)\B̄n → N
is defined by x 7→ (x/|x|, ei2π|x|). Then every point in N has exactly
one preimage point in B̄n(2k+1) \ B̄n(2k) for every k ∈ N. Hence
A(Bn(r) \ B̄n(2); f) ∼ log r for large r. In particular,

A(Bn(r) \ B̄n(2); f)

rα
→ 0

as r → ∞ for every α > 0.
Having this example in mind, we formulate a counterpart of Theorem

13 as follows. Here and in the sections to come we abuse the notation
by denoting A(t; f) = A(Bn(t) \ B̄n(2); f) and νµ(t; f) = νµ(B

n(t) \
B̄n(2); f) for every h-calibrated measure µ and every quasiregular map-
ping f : Rn \ B̄n → N even though {Bn(t) \ B̄n(2) : t > 2} is not an
exhaustion of Rn \ B̄n in the sense of the definition given in Section 3.

Theorem 14. Let N be a closed, connected, oriented Riemannian n-
manifold such that H `(N) 6= 0 for some ` ∈ {2, . . . , n − 2}, and let
f : R

n \ B̄n → N be a K-quasiregular mapping having an essential
singularity at infinity. Then there exist constants C0 > 1 and λ > 1
depending only on n, `, and K such that

(20) lim inf
t→∞

A(λt; f)

A(t; f)
≥ C0.

Furthermore, there exists α > 0 depending only on n, `, and K such
that

(21) lim inf
t→∞

A(t; f)

tα
> 0.

The proof of Theorem 14 is based on another Caccioppoli type in-
equality and a Poincaré inequality given in [10]. The Poincaré inequal-
ity is formulated as follows.

Theorem 15 ([10, Theorem 6.4]). Let M be a compact submanifold
with boundary of a closed manifold and let 1 < p < ∞. For every
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ω ∈ W d,p(
∧`M) there exists a closed form ω0 ∈ Lp(

∧`M) such that

ω − ω0 ∈ W 1,p(
∧`M) and

‖ω − ω0‖1,p ≤ Cp(M)‖dω‖p,

where Cp(M) > 0 depends only on p and M .

Before formulating a Caccioppoli type inequality suitable for our
purposes, let us introduce some notations. For every r > 0 we set
Dr = Bn(r) \ B̄n(4), Ωr = Bn(2r) \ B̄n(r), and Ω′

r = Bn(4r) \ B̄n(r/2).

Lemma 16. Let 1 ≤ ` ≤ n, p > 1, R > 4, and let ω be a form in
W d,p(

∧`−1 B̄n(2R) \Bn) such that dω is A-harmonic in Bn(2R) \ B̄n.
Then

‖dω|DR‖p
p ≤ C1‖dω|Ω2‖p−1

p ‖ω|Ω2‖p +
C1

R
‖dω|ΩR‖p−1

p ‖ω|ΩR‖p,

where C1 = 2β/α, and constants α and β are as in (9) and (10).

Proof. Let ϕ ∈ C∞
0 (Bn(2R)\ B̄n(2)) be such that ϕ|DR = 1, |dϕ|Ω2| ≤

2, and |dϕ|ΩR| ≤ 2/R. Then, by (9),
∫

DR

|dω|p dx ≤ 1

α

∫

DR

〈A(dω), dω〉 dx

≤ 1

α

∫

Bn(2R)\B̄n(2)

ϕ〈A(dω), dω〉 dx,

where α is as in (9). The A-harmonicity of dω together with Cauchy-
Schwarz and Hadamard-Schwarz inequalities yield
∫

Bn(2R)\B̄n(2)

ϕ〈A(dω), dω〉 dx =

∫

Bn(2R)\B̄n(2)

〈A(dω), d(ϕω)〉 dx

−
∫

Bn(2R)\B̄n(2)

〈A(dω), dϕ ∧ ω〉 dx

= −
∫

Bn(2R)\B̄n(2)

〈A(dω), dϕ ∧ ω〉 dx

≤
∫

Ω2∪ΩR

|A(dω)||dϕ||ω| dx

By (10) and Hölder’s inequality,
∫

Ω2∪ΩR

|A(dω)||dϕ||ω| dx ≤ 2β

∫

Ω2

|dω|p−1|ω| dx

+
2β

R

∫

ΩR

|dω|p−1|ω| dx

≤ 2β‖dω|Ω2‖p−1
p ‖ω|Ω2‖p

+
2β

R
‖dω|ΩR‖p−1

p ‖ω|ΩR‖p,
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where β as in (10). The claim now follows from these estimates. �

Lemma 17. Let 2 ≤ ` ≤ n − 1, p > 1, R > 8, and let τ ∈
W d,p(

∧`−1 B̄n(4R) \Bn) be such that ‖dτ |ΩR‖p > 0. Then there exists

ω ∈ W d,p(
∧`−1 B̄n(4R) \Bn) such that dω = dτ , ω|Ω2 = τ |Ω2, and

‖ω|ΩR‖p ≤ 2‖ω|ΩR + dβ|ΩR‖p

for every β ∈ W d,p(
∧`−2 Ω′

R).

Proof. Let us first show that

(22) inf
β

∫

ΩR

|τ + dβ|p dx > 0,

where β ∈ W d,p(
∧`−2 Ω′

R). Suppose that this is not the case. Then

there exists a sequence (βk) such that dβk → τ in Lp(
∧`−1 Ω′

R). By the

Poincaré inequality, we may assume that βk → β in W d,p(
∧`−2 Ω′

R) for

some β ∈ W d,p(
∧`−2 Ω′

R). Then dβ|ΩR = τ |ΩR, and hence dτ |ΩR =
d2β|ΩR = 0. This contradicts the assumption ‖dτ |ΩR‖p > 0.

By (22), there exists β ′ ∈ W d,p(
∧`−2 Ω′

R) such that

‖τ |ΩR + dβ ′|ΩR‖p ≤ 2 inf
β
‖τ |ΩR + dβ|ΩR‖p,

where β ∈ W d,p(
∧`−2 Ω′

R). Let ψ ∈ C∞
0 (Ω′

R) be such that ψ|ΩR = 1
and let ω = τ + d(ψβ ′). Then ω satisfies assumptions of the claim. �

Lemma 18. Let 2 ≤ ` ≤ n − 1 and p = n/`. Then for every R > 0

and ω ∈ W d,p(
∧`−1 Ω′

R) there exists a closed form ω0 ∈ W d,p(
∧`−1 Ω′

R)
such that

(23) ‖ω − ω0‖p ≤ Cp(Ω′
2)(R/2)‖dω‖p,

where Cp(Ω′
2) is as in Theorem 15.

Proof. Let R > 0 and ω ∈ W d,p(
∧`−1 Ω′

R). Let us define ψ : Rn → Rn

by x 7→ (R/2)x. Then ψ is conformal. By Theorem 15, we may fix a

closed form ω1 ∈ W d,p(
∧`−1 Ω′

2) such that

‖ψ∗ω − ω1‖1,p ≤ Cp(Ω
′
2)‖dψ∗ω‖p.

We show that ω0 = (ψ−1)∗ω1 satisfies (23). Since

|ψ∗(ω − ω0)|p =
(

|ψ∗(ω − ω0)|n/(`−1)
)(`−1)/`

=
(

|ω − ω0|n/(`−1) ◦ ψJ(·, ψ)
)(`−1)/`

= (|ω − ω0|p ◦ ψ) J(·, ψ)J(·, ψ)−1/`

= (R/2)−p (|ω − ω0|p ◦ ψ)J(·, ψ),

we have that
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(

∫

Ω′

R

|ω − ω0|p dx

)1/p

=

(

∫

Ω′

2

|ω − ω0|p ◦ ψJ(·, ψ) dx

)1/p

= (R/2)

(

∫

Ω′

2

|ψ∗ω − ω1|p dx

)1/p

≤ (R/2)Cp(Ω′
2)‖dψ∗ω‖p

= Cp(Ω′
2)(R/2)‖ψ∗dω‖p

= Cp(Ω′
2)(R/2)‖dω‖p.

�

Proof of Theorem 14. By replacing f with the mapping x 7→ f(2x), we
may assume that f : R

n \ B̄n(1/2) → N . Let 2 ≤ ` ≤ n − 2 be such
that H`(N) 6= 0, and let p = n/`. Fix a p-harmonic `-form ξ on N such
that ‖ξ‖p = 1, and let η = f ∗ξ. Furthermore, let µ be the measure
dµ = |ξ|pdx on N .

Since f has an essential singularity at the infinity,
∫

DR

|η|p dx ≥ 1

KI(f)

∫

N

N(y,DR; f)|ξ|p dy

=
1

KI(f)

∫

N

n(y,DR; f)|ξ|p dy

=
1

KI(f)
(νµ(R; f) − νµ(4; f)) → ∞

as R → ∞. Here we used the fact that n(y,DR; f) = N(y,DR; f) for
all y 6∈ f(∂DR) ∪ fBf , where Bf is the branch set of f , and the fact
that f(∂DR) ∪ fBf has zero measure. Since η is (weakly) closed and

H`(B̄n(5) \Bn) = 0, we may fix τ0 ∈ W d,p(
∧`−1 B̄n(5) \Bn) such that

dτ0 = η, see [10, Theorem 5.7]. We may now choose R0 > 8 such that

‖η|DR0
‖p

p ≥ 2C1‖η|Ω2‖p−1
p ‖τ0|Ω2‖p,

where C1 is as in Lemma 16.
Let R ≥ R0, and τ ∈ W d,p(

∧`−1 B̄n(4R) \ Bn) such that dτ = η in
B̄n(4R) \ Bn. Furthermore, we may assume that τ |Ω2 = τ0|Ω2. By

Lemma 17, we may fix ω ∈ W d,p(
∧`−1 B̄n(4R) \Bn) such that dω = η,

ω|Ω2 = τ |Ω2, and

(24) ‖ω|ΩR‖p ≤ 2‖ω|ΩR + dβ|ΩR‖p

for every β ∈ W d,p(
∧`−2 Ω′

R). Then, by Lemma 16,

‖η|DR‖p
p ≤ C1‖η|Ω2‖p−1

p ‖ω|Ω2‖p +
C1

R
‖η|ΩR‖p−1

p ‖ω|ΩR‖p

≤ 1

2
‖η|DR‖p

p +
C1

R
‖η|ΩR‖p−1

p ‖ω|ΩR‖p.
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Hence

(25) ‖η|DR‖p
p ≤ 2

C1

R
‖η|ΩR‖p−1

p ‖ω|ΩR‖p.

Let ω0 ∈ W d,p(
∧`−1 Ω′

R) be a closed form as in Lemma 18, i.e.

‖ω|Ω′
R − ω0‖p ≤ Cp(Ω

′
2)(R/2)‖dω|Ω′

R‖p.

Since H`−1(Ω′
R) = 0, the form ω0 is exact and (24) yields

‖ω|ΩR‖p ≤ 2‖ω|ΩR − ω0|ΩR‖p ≤ 2‖ω|Ω′
R − ω0‖p

≤ 2Cp(Ω′
2)(R/2)‖dω|Ω′

R‖p = Cp(Ω′
2)R‖η|Ω′

R‖p.
(26)

Inequalities (25) and (26) together yield

‖η|DR‖p
p ≤ 2C1Cp(Ω′

2)‖η|Ω′
R‖p

p = C‖η|Ω′
R‖p

p.

Hence

‖η|D4R‖p
p ≥ ‖η|DR/2‖p

p + (1/C)‖η|DR‖p
p

≥ (1 + 1/C)‖η|DR/2‖p
p.

(27)

for every R ≥ R0. Therefore,

lim inf
R→∞

‖η|D8R‖p
p

‖η|DR‖p
p
≥ 1 + 1/C > 1.

By (13),

(1/KO(f))‖η|DR‖p
p ≤ νµ(R) − νµ(4) ≤ KI(f)‖η|DR‖p

p

for every R ≥ R0. Hence for every k ≥ 1

lim inf
R→∞

νµ(8kR; f)

νµ(R; f)
≥ lim inf

R→∞

νµ(4) + (1/KO(f))‖η|D8kR‖p
p

νµ(4) +KI(f)‖η|DR‖p
p

=
1

KI(f)KO(f)
lim inf
R→∞

‖η|D8kR‖p
p

‖η|DR‖p
p

≥ (1 + 1/C)k

KI(f)KO(f)
.

(28)

Let us fix an integer m such that (1 + 1/C)m > 4KI(f)KO(f). Then

(29) lim inf
R→∞

νµ(8mR; f)

νµ(R; f)
> 4.

By Theorem 6 there exists a set E ⊂ (1,∞) of finite logarithmic
measure such that

lim
t→∞
t6∈E

A(t; f)

νµ(t; f)
= 1.
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Let R1 > R0 be such that νµ(t)/2 ≤ A(t) ≤ 2νµ(t) for every t ∈
(R1,∞) \E and mlog(E ∩ [R1,∞)) ≤ (logR0)/2. Then [R, 2R) \E 6= ∅
for every R > R1. By (29),

lim inf
R→∞

A(2 · 8mR; f)

A(R/2; f)
≥ lim inf

R→∞
R,8mR6∈E

A(8mR; f)

A(R; f)

≥ 1

4
lim inf
R→∞

νµ(8mR; f)

νµ(R; f)
> 1.

Inequality (20) now follows.
To show (21), let us fix α = log8(1 + 1/C). Then, by (28),

νµ(8kR0; f)

(8kR0)α
≥ 1

KI(f)KO(f)

(

1 + 1/C

8α

)k
νµ(R0; f)

Rα
0

=
1

KI(f)KO(f)

νµ(R0; f)

Rα
0

> 0

for every k ≥ 1.
Let t > 2R1, and fix r ∈ [t/2, t] \E and k ≥ 0 such that 8kR0 ≤ r <

8k+1R0. Then 8kR0 ≥ r/8 ≥ t/16 and

A(t; f)

tα
≥ νµ(r; f)

2tα
≥ (8kR0)

α

2tα
νµ(8kR0; f)

(8kR0)α
≥ 1

32

νµ(8kR0; f)

(8kR0)α
.

Hence lim inft→∞A(t; f)/tα > 0. �

6. Bounds for dimH`(N) when 2 ≤ ` ≤ n− 2

In this section we show that there exists a constant C depending
only on n and K such that dimH`(N) ≤ C for every ` ∈ {2, . . . , n−2}
whenever there exists a quasiregular mapping from Bn \ {0} into N
with an essential singularity at the origin. The proof is based on a
modification of a ball decomposition method due to Rickman, see [16].
The following lemma is very common in the value distribution theory.
We use here a simplified version of [16, 2.4].

Lemma 19. Let n ≥ 2, α = 2−1(n − 1)−1, N a closed, connected,
and oriented Riemannian n-manifold, and let f : R

n \ B̄n → N be a
quasiregular mapping such that lims→∞A(s; f) = ∞. Then there exists
a set E ⊂ [1,∞) of finite logarithmic measure such that the following
holds. For every ε > 0 there exists sε > 0 such that

(30) 1 ≤ A(s′; f)

A(s; f)
≤ 1 + ε

whenever s′ 6∈ E and s′ ≥ sε, where

s′ = s+
s

A(s; f)α
.
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Proof. Let m ∈ Z+, cm = 1+1/m, and R0 ≥ 1 such that A(R0; f)α/2 ≥
3. Set β(r) = A(r; f)α/2/(2r) for r ≥ R0. By increasing R0, if nec-
essary, we may assume that (r + 1/β(r))′ ≤ r + 2/β(r) for r ≥ R0.
Let

Fm = {r > R0 : A(r + 2/β(r); f) > c1/2
m A(r; f)}

and

Em = {(r + 1/β(r))′ : r ∈ Fm}.
Following [16, 2.4], we obtain mlog(E1) < ∞. We fix an increasing
sequence R0 ≤ d1 < d2 < · · · such that mlog(Em ∩ [dm,∞)) < 2−m.

Let ε > 0 and let m ∈ Z+ be such that (1 + 1/m)1/2 ≤ 1 + ε. Let
s ≥ R0 be such that s′ 6∈ Em and s′ ≥ dm. Fix r ≥ R0 to be the least
t such that s′ = (t+ 1/β(t))′. Then (r + 1/β(r))′ ≤ r + 2/β(r) and

A(s′; f) = A((r + 1/β(r))′; f) ≤ A(r + 2/β(2); f)

≤ c1/2
m A(r; f) ≤ (1 + ε)A(s; f),

since s ≥ r. �

Theorem 20. Let n ≥ 4, N a closed, connected, and oriented Rie-
mannian n-manifold such that H `(N) 6= 0 for some ` ∈ {2, . . . , n− 2},
and let f : Rn \ B̄n → N be a K-quasiregular mapping with an essential
singularity at the infinity. Then there exist a constant K ′ ≥ 1 depend-
ing only on n, and constants C1 > 1 and C2 ∈ (0, 1) depending only
on n, `, and K such that for every R0 ≥ 4 there exists R ≥ R0 and
K ′-quasiconformal mapping ψ : Rn → Rn such that

(31) A(ψ(Bn); f) ≤ C1A(ψ(Bn(1/2)); f)

and

(32) A(ψ(Bn(1/2)); f) ≥ C2A(R; f)1/4.

Moreover, ψ(Bn) ⊂ Bn(R′) \ B̄n(2), where R′ = R + R/A(R; f)α and
α as in Lemma 19.

Proof. Let us first consider a decomposition of a cubical annulus into
rectangles. Here we follow the idea of the ball decomposition method
due to Rickman, see e.g. [16] and [17, V.2.14].

We construct the decomposition in three steps. As the first step,
let us consider two concentric closed n-cubes Q1 and Q2 with side
lengths 0 < r < R, respectively. Let Q1 = [a1, b1] × · · · × [an, bn]
and Q2 = [c1, d1] × · · · × [cn, dn]. For each i ∈ {1, . . . , n} we divide
the interval [ci, di] into closed essentially disjoint subintervals [cij, dij],
j ∈ {1, . . . , mi}, in such a way that ai = cik and bi = dim for some
k and m for every i, and r/16 < dij − cij < r/8. Let C be the col-
lection of rectangles [c1j1 , d1j1] × · · · × [cnjn

, dnjn
] ⊂ Q2 \ intQ1, where

ji ∈ {1, . . . , mi} for every i. Then C is a decomposition of Q2 \ intQ1
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into closed essentially disjoint n-rectangles. Moreover, the number of
elements in C is bounded by

Rn − rn

(r/16)n
= 16nR

n − rn

rn
.

Furthermore, every rectangle in C is quasiconformally equivalent to Bn

with a uniformly bounded dilatation.
As the second step, let us consider three concentric closed n-cubes

Q1, Q2, and Q3 with side lengths 0 < r1 < r2 < r3, respectively, and
assume that 2r1 > r2. We equip both annuli Q3 \ Q2 and Q2 \ Q1

with decompositions as above. Let Q be a closed n-rectangle from the
decomposition of Q3 \ Q2, and denote by 2Q the concentric closed n-
rectangle with double side length. Then the interior of 2Q meets at
most 3n rectangles in the decomposition of Q3 \ Q2 and at most 9n

rectangles in the decomposition of Q2 \ Q1. For a closed n-rectangle
Q′ in the decomposition of Q2 \ Q1 the corresponding numbers are
both 3n. Let us denote by b2 the maximum number of rectangles in
these decompositions any cube 2Q meets. Then b2 has an upper bound
depending only on n.

For the third step, let 0 < r0 < r1 < · · · < rk be a sequence and
let Q0 ⊂ Q1 ⊂ · · · ⊂ Qk be a sequence of closed concentric cubes with
side lengths ri, respectively. Suppose that the sequence (ri) satisfies
the following conditions.

(1) ri − r0 = rk − rk−i for every i,
(2) ri+1 − ri = 2(ri − ri−1) for 1 < i < k/2, and
(3) ri+1 − ri ≤ 2(ri − ri−1) if i satisfies i < k/2 < i+ 1.

Then ri = r0+(2i−1)(r1−r0) for i < k/2 and ri = rk−(2k−i−1)(r1−r0)
for i > k/2. Hence ri < 2ri−1 for every i ∈ {1, . . . , k}. Let us fix a
decomposition Ci described above for every cubical annulus Qi\intQi−1

where i ∈ {1, . . . , k}. Then Ci contains at most

16n r
n
i − rn

i−1

rn
i−1

≤ 16n (2n − 1)rn
i−1

rn
i−1

= 16n(2n − 1)

elements for each i ∈ {1, . . . , k}, and if Q is any of the rectangles in
any of the decompositions Ci, rectangle 2Q meets at most b2 rectangles
from

⋃

i Ci. Since rk ≥ 2(2k/2−1 − 1)(r1 − r0), the total amount of
rectangles in

⋃

i Ci is at most

(33) k16n(2n−1) ≤
(

4 log2

rk

r1 − r0
+ 1

)

16n(2n−1) = b1 log2

rk

r1 − r0
,

where the constant b1 depends only on n.
Let us now return to the actual proof. Let R0 ≥ 4 be given. We fix a

radial bilipschitz mapping h : Rn → Rn such that h((−r, r)n) = Bn(r)
for every r > 0.
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By Theorem 14 and Lemma 19, we may fix R > λR0 such that

A(R; f)α ≥ max{2λ, (2b1)4},(34)

A(R; f) ≥ C0A(R/λ; f), and(35)

A(R; f) ≥ A(R′; f)/2,(36)

with b1 as in (33), C0 and λ as in Theorem 14, R′ = R +R/A(R; f)α,
and α as in Lemma 19.

Let d = R′ −R and r0 < · · · < rk be a sequence as in the third step
of the construction above satisfying additional conditions r0 = 2 + d,
r1 − r0 = d, and rk = R. We denote by C the decomposition of
(−R,R)n \ [−r0, r0]n into closed essentially disjoint n-rectangles with
respect to the sequence (ri) as described above.

By (34), d ≤ R/(2λ). Hence, by (35),

A(R; f) − A(r0; f) ≥ A(R; f) − A(R/λ; f) ≥ (1 − 1/C0)A(R; f).

Since h((−R,R)n \ [−r0, r0]n) = Bn(R) \ B̄n(r0), it is sufficient to find
Q ∈ C such that

A(h(2Q); f) ≤ C1A(h(Q); f) and A(h(Q); f) ≥ C2A(R; f)1/4,

where C1 and C2 depend only on n, `, and K. Indeed, given such
a cube Q ∈ C, we may take ψ : Rn → Rn to be the mapping x 7→
h(xQ + `Qh

−1(x)), where xQ is the center and `Q is the side length of
Q. Then ψ(Bn(1/2)) = h(Q), ψ(Bn) = h(2Q), and the dilatation of ψ
depends only on n.

Let

I0 = {Q ∈ C : A(h(2Q); f) ≥ 6b2
1 − 1/C0

A(h(Q); f)}

and

I1 = {Q ∈ C : A(h(Q); f) ≤ (1 − 1/C0)A(R; f)1/4}.
We show that C \ (I0 ∪ I1) 6= ∅.

Since 2Q ⊂ (−R′, R′)n \ [−2, 2]n for every Q ∈ C, we obtain

2 (A(R; f) − A(r0; f)) ≥ (1 − 1/C0)A(R′; f)

≥ 1 − 1/C0

b2

∑

Q∈I0

A(h(2Q); f)

≥ 6
∑

Q∈I0

A(h(Q); f).

By (33) and (34), C has at most

b1 log2

R

d
= b1 log2A(R; f)α ≤ b1A(R; f)1/2.
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elements. Hence
∑

Q∈I1

A(h(Q); f) ≤ (card C)(1 − 1/C0)A(R; f)1/4

≤ b1(1 − 1/C0)A(R; f)3/4 ≤ (1 − 1/C0)A(R; f)/2.

These estimates yield
∑

Q∈I0∪I1

A(h(Q); f) ≤ 5

6
(A(R; f) − A(r0; f)) <

∑

Q∈C

A(h(Q); f).

Therefore there exists Q ∈ C \ (I0 ∪ I1). This concludes the proof. �

Proof of Theorem 5. Let ` ∈ {2, . . . , n − 2}. We may assume that
dimH`(N) > 0 and, by the Poincaré duality, ` ≤ n/2. Let p = n/`,
d = dimH`(N), and ξ1, . . . , ξd be p-harmonic `-forms such that ‖ξi‖p =
1 and 1 ≤ ‖ξi−ξj‖p ≤ 2 for every 1 ≤ i ≤ d and j 6= i. Furthermore, let
µi and µij be measures such that dµi = |ξ|p dx and dµij = |ξi − ξj|p dx
for every 1 ≤ i ≤ d and j 6= i.

Let K ′ ≥ 1 be as in Theorem 20. By Theorem 7, we may fix d1 > 0
such that

(37) 2A(Bn;F ) ≥ νµ∗
(Bn(4/5);F )− d1(log 5/4)−3(n−1)

and

(38) A(Bn(1/2);F ) ≤ 2νµ∗
(Bn(5/8);F ) + d1(log 5/4)−3(n−1),

whenever µ∗ is any of the measures µi and µij, and F : Bn → N is a
K ′K-quasiregular mapping.

Since A(r; f) → ∞ as r → ∞, we may fix r0 > 0 such that
A(r0; f)1/4 ≥ 2d1(log 5/4)−3(n−1). By Theorem 20, there exist r > r0

and a K ′-quasiconformal mapping ψ : Rn → Rn such that

A(ψ(Bn); f) ≤ C1A(ψ(Bn(1/2)); f)

and

A(ψ(Bn(1/2)); f) ≥ C2A(r0; f)1/4,

where C1 > 1 and C2 ∈ (0, 1) depend only on n, `, and K. Let
F = f ◦ ψ : Bn → N . Then F is K ′K-quasiregular. Thus, by (37) and
(38), we have

νµi
(Bn(4/5);F ) ≤ 2A(Bn;F ) + A(r0; f)1/4

≤ 2C1A(Bn(1/2);F ) + A(Bn(1/2);F )/C2

= (2C1 + 1/C2)A(Bn(1/2);F )

and

νµij
(Bn(5/8);F ) ≥ A(Bn(1/2);F )/2− A(r0; f)1/4/4

≥ (2 − 1/C2)A(Bn(1/2);F )/4

for every i and j 6= i.
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For every i we fix a form

ηi =
F ∗(ξi)

(KO(F )(2C1 + 1/C0)A(Bn(1/2);F ))1/p
.

Then forms ηi are A-harmonic. Since
∫

Bn(4/5)

|F ∗(ξi)|p dx ≤ KO(F )

∫

N

n(y;Bn(4/5);F )|ξi|p dy

= KO(F )νµi
(Bn(4/5);F )

for every i and
∫

Bn(5/8)

|F ∗(ξi) − F ∗(ξj)|p dx ≥ 1

KI(F )
νµij

(Bn(5/8);F )

for every j 6= i, we obtain
∫

Bn(4/5)

|ηi|p dx ≤ 1

and
∫

Bn(5/8)

|ηi − ηj|p dx ≥ 2 − 1/C2

4KI(F )KO(F )(2C1 + 1/C2)
.

for every i and j 6= i. By Lemma 12, there exists a constant C depend-
ing on K, C1, C2, and constants α and β of A such that d ≤ C. Since
constants C1 and C2 depend only on n, `, and K, and constants α and
β of A depend only on n and K, this concludes the proof.

�
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Leningrad. Odetl. Mat. Inst. Steklov, 7:184–222, 1968.

[22] N. T. Varopoulos, L. Saloff-Coste, and T. Coulhon. Analysis and geometry on
groups, volume 100 of Cambridge Tracts in Mathematics. Cambridge University
Press, Cambridge, 1992.

Department of Mathematics and Statistics,
P.O. Box 68, FIN-00014 University of Helsinki, Finland.
E-mail: pekka.pankka@helsinki.fi


