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Abstract. The weak compactness of the analytic composition opera-
tor f 7→ f ◦ ϕ is studied on BMOA(X), the space of X-valued analytic
functions of bounded mean oscillation, where X is a complex Banach
space. It is shown that the composition operator is weakly compact on
BMOA(X) if X is reflexive and the corresponding composition oper-
ator is compact on the scalar-valued BMOA. A concrete example is
given which shows that BMOA(X) differs from the weak vector-valued
BMOA for infinite dimensional Banach spaces X.

1. Introduction

Let ϕ be an analytic self-map of the unit disk D = {z ∈ C : |z| < 1} and
X a complex Banach space. The composition operator Cϕ induced by ϕ is
the linear map

Cϕ : f 7→ f ◦ ϕ
defined on the linear space of all analytic functions f : D → X. A fun-
damental problem concerning composition operators is to relate operator
theoretic properties of Cϕ to function theoretic properties of ϕ when re-
stricted to a suitable Banach space of analytic functions. Compactness and
weak compactness of Cϕ have been studied on many classical Banach spaces
such as Hardy spaces (see [27, 12]), Bergman and Bloch spaces, and BMOA
[31, 9, 28, 11]. Recently these studies have been extended by considering
weak compactness of composition operators on spaces of X-valued analytic
functions, where X is an arbitrary complex Banach space. In [24] and [8]
results of this type have been obtained e.g. for vector-valued Hardy spaces
Hp(X) and vector-valued (weighted) Bergman and Bloch spaces. In this
paper we consider composition operators Cϕ on BMOA(X), the space of
X-valued analytic functions of bounded mean oscillation.

The main goal of this paper is to show that if the map ϕ : D → D induces
a compact composition operator on BMOA and X is a reflexive complex
Banach space, then Cϕ is weakly compact on BMOA(X) (see Theorem
4.2). As a consequence we obtain a characterization of the weakly compact
composition operators Cϕ on BMOA(X) under some restrictions on ϕ for
reflexive Banach spaces X. The idea of the main theorem is to generalize the
characterization due to Smith [28] of the compact composition operators on
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BMOA to the vector-valued case. For this aim we apply methods developed
by Liu, Saksman and Tylli [24].

In the final section we consider a weak version of the vector-valued BMOA
denoted by wBMOA(X). By a general result due to Bonet, Domański
and Lindström [8] the counterpart for wBMOA(X) of our main theorem
holds: If Cϕ is compact on BMOA and X is reflexive, then Cϕ is weakly
compact on wBMOA(X). We provide a concrete example demonstrating
that the spaces BMOA(X) and wBMOA(X) are different for any infinite
dimensional Banach space X. Thus our main theorem applies to a different
setting compared to [8]. An example of this type was earlier given in [21] in
the case where X is an infinite dimensional Hilbert space.

2. Preliminaries on vector-valued BMOA

In the sequelX will always be a complex Banach space. LetHp(X) denote
the Hardy space of analytic functions f : D → X such that

‖f‖p
Hp(X) = sup

0<r<1

1
2π

∫ 2π

0
‖f(reiθ)‖p

Xdθ <∞ for 1 ≤ p <∞,

and ‖f‖H∞(X) = supz∈D ‖f(z)‖X <∞ for p = ∞. One useful way to define
the vector-valued BMOA space is to view it as the Möbius invariant version
of H1(X) (cf. [2]): An analytic function f : D → X belongs to BMOA(X)
if and only if

‖f‖∗,X = sup
a∈D

‖f ◦ σa − f(a)‖H1(X) <∞,

where σa is the Möbius transformation σa(z) = (a − z)/(1 − az) for a ∈ D.
The norm in BMOA(X) is given by ‖f‖BMOA(X) = ‖f(0)‖X + ‖f‖∗,X .

An alternative way to consider the vector-valued BMOA is to view it
as the space of Poisson extensions of the vector-valued BMO functions on
the unit circle T = ∂D having vanishing negative Fourier coefficients (cf.
[5, 6]). Let BMOAT(X) denote the space of such functions equipped with
the BMO norm on the boundary. By modifying the scalar arguments one
sees that BMOAT(X) ⊂ BMOA(X), and that the norms of BMOA(X)
and BMOAT(X) are equivalent when restricted to BMOAT(X). Moreover,
BMOAT(X) can be identified (up to equivalent norms) with the closed sub-
space of BMOA(X) consisting precisely of the functions f ∈ BMOA(X)
for which the radial limit function f∗(ζ) = limr→1 f(rζ) exists almost every-
where on T (see e.g. [18, Satz 2.7] for the analogous result for vector-valued
Hardy spaces).

For general Banach spaces X the radial limits of f ∈ BMOA(X) need
not exist almost everywhere on T. In fact, the identity BMOA(X) =
BMOAT(X) holds if and only if X has the analytic Radon-Nikodým prop-
erty (ARNP). Recall that X has the ARNP if and only if the radial limits of
every f ∈ Hp(X) exist almost everywhere on T, and this fact is independent
of p ∈ [1,∞] [10, 3]. The same fact holds also for BMOA(X) because of the
inclusions H∞(X) ⊂ BMOA(X) ⊂ H1(X).

We define the space VMOA(X) as the closure in BMOA(X) of the
X-valued analytic polynomials, that is, the functions of the form p(z) =∑N

k=0 xkz
k where xk ∈ X. Clearly VMOA(X) ⊂ BMOAT(X). In fact,

VMOA(X) consists of the extensions of the X-valued VMO functions on
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T having vanishing negative Fourier coefficients. By modifying the scalar
arguments (see for instance [17]) we see that f ∈ VMOA(X) if and only if
f ∈ BMOAT(X) and

lim
|a|→0

‖f ◦ σa − f(a)‖H1(X) = 0.

We denote for simplicity Hp = Hp(C), BMOA = BMOA(C), VMOA =
VMOA(C), and ‖f‖∗ = ‖f‖∗,C in the scalar case X = C.

Various questions about vector-valued BMOA functions have been stud-
ied earlier by O. Blasco (see for instance [5, 6, 7]). The reader is referred to
[2, 16, 17, 32] for the scalar BMOA and VMOA theory.

3. Boundedness of Cϕ on BMOA(X)

It is well-known that for every analytic map ϕ : D → D the composition
operator Cϕ : f 7→ f ◦ ϕ is bounded on BMOA. This fact was first noticed
by Stephenson [30, Thm. 3] (see also [1, Thm. 12]). We include here for
completeness a proof that Cϕ is bounded on BMOA(X) for any complex
Banach space X. It is possible to generalize Stephenson’s argument to the
vector-valued case (this is guaranteed by the boundedness of the composition
operator on H1(X) (see [24, Prop. 1] or [20, Thm. 1])). We give a slightly
different argument, in the scalar case due to Smith [28, p. 2716], which moti-
vates our study of weak compactness in the following section. The argument
is basically Littlewood’s inequality applied to a formula due to Stanton for
subharmonic functions.

We first recall some auxiliary concepts. Let ϕ : D → D be analytic and
0 < r ≤ 1. The partial Nevanlinna counting function Nr(ϕ, ·) : D → R is
defined by

Nr(ϕ, z) =
∑

w∈ϕ−1(z)

log+

(
r

|w|

)

for z ∈ D \ {ϕ(0)}, each point in the preimage ϕ−1(z) of z ∈ D being
repeated according to its multiplicity. Moreover, we put Nr(ϕ,ϕ(0)) = 0.
The standard Nevanlinna counting function is given byN(ϕ, z) = N1(ϕ, z) =∑

w∈ϕ−1(z) log(1/|w|). We refer to e.g. [27, Chapter 10] for the properties
of the (partial) Nevanlinna counting function. For any complex Banach
space X and analytic function f : D → X, the function z 7→ ‖f(z)‖X is
subharmonic on D. Thus we may define the distributional Laplacian 4‖f‖X

of ‖f‖X , which is a positive measure on D, by setting∫
D
ψ(w)d(4‖f‖X)(w) =

1
2π

∫
D
‖f(w)‖X4ψ(w)dA(w)

for every test function ψ ∈ C∞
0 (D), where dA denotes the Lebesgue area

measure on D. The following lemma states a special case of Stanton’s formula
[29, Thm. 2], and it will be needed several times in the sequel.
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Lemma 3.1 ([24, p. 300-301]). Let f : D → X and ϕ : D → D be analytic
functions, 0 < r < 1. Then

1
2π

∫ 2π

0
‖(f ◦ ϕ)(reiθ)‖Xdθ = ‖f(ϕ(0))‖X +

∫
D
Nr(ϕ,w)d(4‖f‖X)(w),

‖f ◦ ϕ‖H1(X) = ‖f(ϕ(0))‖X +
∫

D
N(ϕ,w)d(4‖f‖X)(w).

The special case ϕ(z) ≡ z yields the identities

1
2π

∫ 2π

0
‖f(reiθ)‖Xdθ = ‖f(0)‖X +

1
2π

∫
D

log+

(
r

|w|

)
d(4‖f‖X)(w),

‖f‖H1(X) = ‖f(0)‖X +
1
2π

∫
D

log
(

1
|w|

)
d(4‖f‖X)(w).

The following estimates are not difficult to obtain by using the Cauchy
integral formula (see for instance [17, p. 95]).

Lemma 3.2. Let f : D → X be analytic and z ∈ D. Then

‖f(z)− f(0)‖X ≤ min
{

|z|
1− |z|

‖f‖H1(X),
1
2

log
1 + |z|
1− |z|

‖f‖∗,X
}
.

We are now ready to prove that every composition operator Cϕ is bounded
on BMOA(X) for any complex Banach space X.

Proposition 3.3. Let ϕ be an analytic self-map of the unit disk. Then
‖f ◦ ϕ‖∗,X ≤ ‖f‖∗,X and Cϕ : BMOA(X) → BMOA(X) is bounded with

‖Cϕ‖L(BMOA(X)) ≤ 1 +
1
2

log
1 + |ϕ(0)|
1− |ϕ(0)|

,

where ‖ · ‖L(BMOA(X)) denotes the operator norm on the space of bounded
linear operators on BMOA(X).

Proof. For any function f ∈ H1(X) and a ∈ D one has

‖f ◦ ϕ ◦ σa − f(ϕ(a))‖H1(X) =
∫

D
N(ϕ ◦ σa, w)d(4‖f − f(ϕ(a))‖X)(w),

by Lemma 3.1. By Littlewood’s inequality [12, Thm. 2.29], it holds that
N(ϕ ◦ σa, w) ≤ log(1/|σϕ(a)(w)|) = N(σϕ(a), w) for w ∈ D \ {ϕ(a)}. Hence,
by applying Lemma 3.1 once more, one obtains

‖f ◦ ϕ ◦ σa − f(ϕ(a))‖H1(X) ≤
∫

D
N(σϕ(a), w)d(4‖f − f(ϕ(a))‖X)(w)

= ‖f ◦ σϕ(a) − f(ϕ(a))‖H1(X)

≤ sup
b∈D

‖f ◦ σb − f(b)‖H1(X),

so that the inequality ‖f ◦ ϕ‖∗,X ≤ ‖f‖∗,X holds for f ∈ BMOA(X). Thus

‖Cϕf‖BMOA(X) = ‖f ◦ ϕ‖∗,X + ‖f(ϕ(0))‖X

≤ ‖f‖∗,X + ‖f(0)‖X + ‖f(ϕ(0))− f(0)‖X

≤
(

1 +
1
2

log
1 + |ϕ(0)|
1− |ϕ(0)|

)
‖f‖BMOA(X),

by Lemma 3.2. �



COMPOSITION OPERATORS ON VECTOR-VALUED BMOA 5

Remark 3.4. The composition operator Cϕ maps the space BMOAT(X) into
itself for any Banach space X. To see this, it is enough to verify that the
radial boundary function (f◦ϕ)∗ exists almost everywhere on T whenever f ∈
H1

T(X), where H1
T(X) is the subspace of H1(X) consisting of the functions

for which the radial limit function exists almost everywhere on T. But this
follows from the known facts that p◦ϕ ∈ H1

T(X) for every analytic X-valued
polynomial p, and these polynomials form a dense subset of H1

T(X) (see for
instance [18, p. 57]).

It is well-known that Cϕ(VMOA) ⊂ VMOA if and only if ϕ ∈ VMOA
[1, Thm. 12]. We include the vector-valued argument for completeness.

Corollary 3.5. Let ϕ : D → D be an analytic self-map of the unit disk. Then
Cϕ(VMOA(X)) ⊂ VMOA(X) if and only if ϕ ∈ VMOA.

Proof. Suppose that Cϕ maps VMOA(X) into itself. In particular, then
Cϕ(x0z) = xoϕ ∈ VMOA(X), where x0 ∈ X is non-zero. Clearly this
implies that ϕ ∈ VMOA. Conversely, suppose that ϕ ∈ VMOA. Then

lim
|a|→0

‖p ◦ ϕ ◦ σa − p(ϕ(a))‖H1(X) = 0

for every analytic X-valued polynomial p (by the proof of [1, Thm. 12]).
By Fatou’s theorem p ◦ ϕ ∈ BMOAT(X), so that p ◦ ϕ ∈ VMOA(X) for
every analytic X-valued polynomial p. Since such polynomials are dense in
VMOA(X) it follows that Cϕ maps VMOA(X) into itself. �

4. Weak compactness of Cϕ on BMOA(X)

Recall that a bounded linear map T : X → X is called compact (respec-
tively weakly compact) if it maps the closed unit ball of X onto a relatively
compact (respectively relatively weakly compact) set in X. It was noted in
[24, p. 296] that Cϕ can be compact on Hp(X) only if X is finite dimensional
and Cϕ is compact on Hp (here 1 ≤ p ≤ ∞). Moreover, if the composition
operator is weakly compact on Hp(X), then X must be reflexive. These
facts actually hold for various spaces of vector-valued analytic functions [8,
Prop. 1] including BMOA(X).

Fact 4.1. Suppose that I is an operator ideal such that the composition
operator Cϕ : BMOA(X) → BMOA(X) belongs to I. Then the identity
operator idX : X → X and Cϕ : BMOA→ BMOA belong to I.

We refer to [26] for the definition of an operator ideal. Consequently, if
Cϕ is weakly compact on BMOA(X), then X is reflexive and Cϕ is weakly
compact on BMOA. Our main theorem provides a sufficient condition for
the weak compactness of Cϕ on BMOA(X).

Theorem 4.2. Let X be a reflexive Banach space and suppose that ϕ : D →
D is an analytic map such that Cϕ : BMOA → BMOA is compact. Then
Cϕ : BMOA(X) → BMOA(X) is weakly compact.

We split the proof of Theorem 4.2 into two parts. The main idea is to
approximate Cϕ in the operator norm by suitable weakly compact oper-
ators that are provided by Lemma 4.3 below. For the approximation we
need Smith’s characterization of the compact composition operators Cϕ on
BMOA. The key step is contained in Proposition 4.6.
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Lemma 4.3. There are linear operators (Vn)∞n=0 on BMOA(X) satisfying
the following properties:

(i) ‖Vnf‖BMOA(X) ≤ 3‖f‖BMOA(X) for n ≥ 0.
(ii) For every 0 < r < 1 one has

sup
f∈BBMOA(X)

sup
|z|≤r

‖((I − Vn)f)(z)‖X → 0,

as n→∞, where I is the identity operator on BMOA(X).
(iii) If X is reflexive, then Vn is weakly compact on BMOA(X) for n ≥ 0.

Proof. We use the de la Vallée-Poussin operators Vn defined by setting

Vnf(z) =
n∑

k=0

f̂kz
k +

2n−1∑
k=n+1

2n− k

n
f̂kz

k

for analytic functions f : D → X with the Taylor expansion f(z) =
∑∞

k=0 f̂kz
k

(as in [24, Prop. 2]). Note that Vnf = 2k2n−1(f)− kn−1(f), where

kn(f)(z) =
n∑

k=0

(
1− k

n+ 1

)
f̂kz

k =
1
2π

∫ 2π

0
Kn(θ)f(ze−iθ)dθ

and Kn is the Fejér kernel (cf. [22, I.2.13]).
The fact that the operators Vn satisfy (ii) and (iii) is seen as in [24]. We will

only check here that (i) holds for every Vn. In fact, by the triangle in equality
and the fact (Vnf)(0) = f(0), it is enough to show that ‖kn(f)‖∗,X ≤ ‖f‖∗,X
for n ≥ 0. Let n ≥ 0. Then∫ 2π

0
‖(kn(f)(σa(reit))− kn(f)(a)‖X

dt

2π

=
∫ 2π

0
‖
∫ 2π

0
Kn(θ)[f(e−iθσa(reit))− f(e−iθa)]

dθ

2π
‖X

dt

2π

≤
∫ 2π

0
Kn(θ)

∫ 2π

0
‖f(e−iθσa(reit))− f(e−iθa)‖X

dt

2π
dθ

2π
≤ ‖f‖∗,X ,

since
∫ 2π
0 Kn(θ) dθ

2π = 1 and∫ 2π

0
‖f(e−iθσa(reit))− f(e−iθa)‖X

dt

2π
≤ sup

θ∈[0,2π)
‖f(e−iθ·)‖∗,X = ‖f‖∗,X

by the rotation invariance of the seminorm ‖ · ‖∗,X . We get the inequality
‖kn(f)‖∗,X ≤ ‖f‖∗,X by taking the supremum over r ∈ (0, 1) and a ∈ D. �

Remark 4.4. In the scalar case the uniform boundedness of the operators kn

on BMOA was shown in [19, Thm. 4].

The compact composition operators Cϕ on BMOA were characterized by
Smith [28, Theorem 1.1] as follows. The analytic map ϕ : D → D induces a
compact composition operator on BMOA if and only if ϕ satisfies both of
the following conditions:

(1) lim
r→1

sup
{a : |ϕ(a)|>r}

sup
0<|w|<1

|w|2N(σϕ(a) ◦ ϕ ◦ σa, w) = 0,
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and

(2) lim
t→1

sup
{a:|ϕ(a)|≤R}

m({ζ ∈ T : |(ϕ ◦ σa)∗(ζ)| > t}) = 0

for every R < 1, where m denotes the Lebesgue measure on T. Condition
(2) can actually be replaced by the condition

(3) lim
t→1

sup
{a:|ϕ(a)|≤R}

sup
0<r<1

m({ζ ∈ T : |(ϕ ◦ σa)(rζ)| > t}) = 0

for every R < 1; that is, Cϕ is compact on BMOA if and only if both (1)
and (3) hold. Since (3) is useful later on, we include for the convenience of
the reader a proof of the necessity of (3) (this is a simple modification of the
argument on [28, p. 2720]). In fact, if (3) does not hold, then there exist
R < 1, ε > 0, tn < 1, rn ∈ (0, 1) and an ∈ D such that tnn → 1, |ϕ(an)| ≤ R
and m(En) ≥ ε, where En = {ζ : |(ϕ ◦ σan)(rnζ)| > tn}. Let fn(z) = zn, so
that ‖fn‖BMOA ≤ 1 and (fn) converges to 0 uniformly on compact subsets of
D. It suffices to check that Cϕfn does not converge to 0 in BMOA. Choose
n0 such that tnn ≥ 2

3 and Rn ≤ 1
3ε for n ≥ n0. Then

‖fn ◦ ϕ‖BMOA ≥ 1
2π

∫
T
|(ϕ ◦ σan)n(rnζ)− ϕn(an)|dm(ζ)

≥ 1
2π

∫
En

|(ϕ ◦ σan)(rnζ)|ndm(ζ)−Rn

≥ tnnm(En)− ε/3 ≥ ε/3,

for such n, which proves the necessity of (3).
We note that compact composition operators on BMOA were also charac-

terized in [9] in terms of Carleson measures. Compact composition operators
on VMOA were earlier characterized in [31].

The following lemma refines condition (1). It is a slight modification of
[28, Lemma 2.1].

Lemma 4.5. Let ϕ be an analytic self-map of the unit disk with ϕ(0) = 0.
If

sup
0<|w|<1

|w|2N(ϕ,w) ≤ δ4,

where δ < e−1/2, then

N(ϕ, z) ≤ 2δ2 log(1/|z|)
for δ ≤ |z| < 1.

Proof. For δ ≤ |z| ≤ e−1/2 the estimate N(ϕ, z) ≤ δ2 ≤ 2δ2 log(1/|z|) follows
from the assumption. For r ∈ (0, 1) the subharmonic function Nr(ϕ, z)
is bounded by the harmonic function 2eδ4 log(1/|z|) on the annulus {w ∈
D : e−1/2 < |w| < 1}, by the assumption and the fact that Nr(ϕ, z) ≤
N(ϕ, z). Thus

N(ϕ, z) = lim
r→1

Nr(ϕ, z) ≤ 2eδ4 log(1/|z|) ≤ 2δ2 log(1/|z|)

for e−1/2 < |z| < 1. �

We are now ready to prove the key step of Theorem 4.2.
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Proposition 4.6. Let ϕ be an analytic self-map of the unit disk satisfying
conditions (1) and (3). Then

‖Cϕ − CϕVn‖L(BMOA(X)) → 0

as n→∞, where the operators Vn are those of Lemma 4.3.

Proof. Let ε > 0 and let f ∈ BMOA(X) be arbitrary. We need to show
that there exists n0 ∈ N so that

‖Cϕ(I − Vn)f‖BMOA(X) ≤ ε‖f‖BMOA(X)

for every n ≥ n0. We introduce the following abbreviations:
(i) Sn = I − Vn,
(ii) ϕa = σϕ(a) ◦ ϕ ◦ σa,
(iii) ga,n = (Snf) ◦ σϕ(a) − (Snf)(ϕ(a)),

for n ≥ 0 and a ∈ D. Note that ‖ga,n‖H1(X) ≤ ‖Snf‖∗,X ≤ 4‖f‖BMOA(X)

for n ≥ 0, by Lemma 4.3 (i). By Lemma 4.3 (ii), one has ‖(CϕSnf)(0)‖X =
‖(Snf)(ϕ(0))‖X ≤ ε‖f‖BMOA(X) for n large enough. Hence, according to
the identity (σϕ(a) ◦ σϕ(a))(z) = z, it suffices to show that

(4) sup
a∈D

‖ga,n ◦ ϕa‖H1(X) = ‖CϕSnf‖∗,X ≤ ε‖f‖BMOA(X),

for n ≥ n0. Choose δ = δ(ε) ∈ (0, 1
4) such that max

{
8δ2, 48δ log(1/δ)

}
< ε.

By the assumption that ϕ satisfies conditions (1) and (3) there exist a number
R = R(ε) ∈ (0, 1) such that

(5) sup
0<|w|<1

|w|2N(ϕa, w) < δ4

for every a ∈ D satisfying |ϕ(a)| > R, and a number t0 = t0(ε) ∈ (0, 1) such
that

(6) m({ζ ∈ T : |(ϕ ◦ σa)(rζ)| > t0}) < ε2

for every r ∈ (0, 1) and a ∈ D satisfying |ϕ(a)| ≤ R.
Consider first a ∈ D satisfying |ϕ(a)| > R. From Lemma 3.1 and the fact

that ga,n(ϕa(0)) = 0 we get

‖ga,n ◦ ϕa‖H1(X) =
∫

δ≤|w|<1
N(ϕa, w)d(4‖ga,n‖X)(w)

+
∫
|w|<δ

N(ϕa, w)d(4‖ga,n‖X)(w) =: A+B.

From (5) and Lemma 4.5 we get the estimate N(ϕa, w) ≤ 2δ2 log(1/|w|) for
δ ≤ |w| < 1. Using Lemma 3.1 once more, and recalling the choice of δ, we
have

A ≤ 2δ2
∫

δ≤|w|<1
log
(

1
|w|

)
d(4‖ga,n‖X)(w)

≤ 2δ2‖ga,n‖H1(X) ≤ ε‖f‖BMOA(X).

To estimate B, note that 2 log(2δ/|w|) ≥ 1 and log(1/δ) ≥ 1 for |w| < δ < 1
4 .

From these estimates and Littlewood’s inequality [12, Theorem 2.29] we get

N(ϕa, w) ≤ log
(

1
|w|

)
≤ log

(
2δ
|w|

)
+ log

(
1
δ

)
≤ 3 log

(
1
δ

)
log
(

2δ
|w|

)
,
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for 0 < |w| < δ. Thus

B ≤ 3 log(1/δ)
∫
|w|<δ

log
(

2δ
|w|

)
d(4‖ga,n‖X)(w)

≤ 3 log(1/δ)
∫

D
log+

(
2δ
|w|

)
d(4‖ga,n‖X)(w).

From Lemmas 3.1 and 3.2 we get that

B ≤ 3 log(1/δ)
2π

∫ 2π

0
‖ga,n(2δeiθ)− ga,n(0)‖Xdθ

≤ 3 log(1/δ)
2δ

1− 2δ
‖ga,n‖H1(X)

≤ 12δ log(1/δ)‖ga,n‖H1(X),

so that B ≤ ε‖f‖BMOA(X) in view of the choice of δ. Consequently,

(7) ‖ga,n ◦ ϕa‖H1(X) ≤ A+B ≤ 2ε‖f‖BMOA(X),

for a ∈ D satisfying |ϕ(a)| > R.
Consider next a ∈ D satisfying |ϕ(a)| ≤ R. By Lemma 4.3 (ii) there is

n0 = n0(ε) ∈ N so that for every n ≥ n0 and |z| ≤ t0 we have

max{‖(Snf)(z)‖X , ‖(Snf)(ϕ(a))‖X} ≤ ε‖f‖BMOA(X).

Let r ∈ (0, 1) and put E = {ζ ∈ T : |(ϕ ◦ σa)(rζ)| > t0}, so that m(E) < ε2

by (6). Then
1
2π

∫
D\E

‖(ga,n ◦ ϕa)(rζ)‖Xdm(ζ)

=
1
2π

∫
D\E

‖((Snf) ◦ ϕ ◦ σa)(rζ)− (Snf)(ϕ(a))‖Xdm(ζ)

≤ sup
|z|≤t0

‖(Snf)(z)‖X + ‖(Snf)(ϕ(a))‖X ≤ 2ε‖f‖BMOA(X),

for n ≥ n0. On the other hand,
1
2π

∫
E
‖(ga,n ◦ ϕa)(rζ)‖Xdm(ζ)

≤ m(E)1/2

(
1
2π

∫
T
‖(ga,n ◦ ϕa)(rζ)‖2

Xdm(ζ)
)1/2

≤ ε‖(Snf) ◦ ϕ ◦ σa − (Snf)(ϕ(a))‖H2(X)

by Hölder’s inequality and (6). By the analytic John-Nirenberg theorem [2,
p. 15], which also holds in the vector-valued setting (with a similar proof as
in the scalar case), there exists a constant C such that

1
2π

∫
E
‖(ga,n ◦ ϕa)(rζ)‖Xdm(ζ)

≤ ε sup
b∈D

‖(Snf) ◦ ϕ ◦ σb − (Snf)(ϕ(b))‖H2(X)

≤ Cε sup
b∈D

‖(Snf) ◦ ϕ ◦ σb − (Snf)(ϕ(b))‖H1(X)

= Cε‖Snf ◦ ϕ‖∗,X ≤ Cε‖Snf‖∗,X ≤ 4Cε‖f‖BMOA(X),
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where the last inequalities followed from Proposition 3.3 and Lemma 4.3 (i).
By combining these estimates and taking the supremum over r ∈ (0, 1), we
obtain

‖ga,n ◦ ϕa‖H1(X) ≤ (2 + 4C)ε‖f‖BMOA(X)

for n ≥ n0 and a ∈ D satisfying |ϕ(a)| ≤ R. Together with (7) this proves
(4). �

It is now easy to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let X and ϕ be as assumed. Then the operators Vn

are weakly compact on BMOA(X) for n ≥ 0, by Lemma 4.3 (iii). Since the
weakly compact operators form a closed operator ideal, it suffices to verify
that

‖Cϕ − CϕVn‖L(BMOA(X)) → 0
as n → ∞. Since by Smith’s result ϕ satisfies conditions (1) and (3), this
follows from Proposition 4.6. �

As a consequence we obtain an analogoue of Theorem 4.2 for VMOA(X).

Corollary 4.7. Let X be a reflexive Banach space and let ϕ be an analytic
self-map of the unit disk such that ϕ ∈ VMOA. If Cϕ is compact on VMOA,
then Cϕ is weakly compact on VMOA(X).

Proof. Let X and ϕ be as assumed. Then Cϕ is compact on BMOA by [28,
Cor. 1.3], and Cϕ is weakly compact on BMOA(X) by Theorem 4.2. If (fn)
is a bounded sequence in VMOA(X), then (fn ◦ϕ) has a weakly converging
subsequence (fnk

◦ ϕ) in BMOA(X). By Corollary 3.5 the subsequence
belongs to VMOA(X), and hence it converges weakly to a function g ∈
VMOA(X). Thus Cϕ is weakly compact on VMOA(X). �

In the light of Fact 4.1 and Theorem 4.2 a complete characterization of the
weakly compact composition operators on BMOA(X) depends on whether
all weakly compact composition operators on BMOA are compact or not.
Unfortunately the answer to this question is not known for arbitrary composi-
tion operators Cϕ (see e.g. [11] for the discussion of this problem). However,
by combining with some partial positive results from the literature we obtain
the following consequence of Theorem 4.2.

Corollary 4.8. Let ϕ be an analytic self-map of the unit disk such that ϕ
satisfies one of the following conditions:

(i) ϕ is univalent, or
(ii) ϕ ∈ VMOA and ϕ(D) lies inside a polygon inscribed in the unit

circle.
Then Cϕ is weakly compact on BMOA(X) if and only if X is reflexive and
Cϕ is compact on BMOA.

Proof. Assume first that ϕ : D → D is univalent and Cϕ is weakly compact
on BMOA(X). Then Cϕ is weakly compact on BMOA and X is reflexive
by Fact 4.1. It is well-known that every bounded univalent map belongs
to VMOA (see for instance [13, Thm. 10]), so that ϕ induces a weakly
compact composition operator on VMOA. By [11, Thm. 1] and [28, Thm.
4.1] the operator Cϕ is actually compact on VMOA. Since Cϕ on BMOA
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is the second adjoint of Cϕ on VMOA (cf. [11, p. 939]), we get that Cϕ is
compact also on BMOA.

The proof is similar in the case where ϕ ∈ VMOAmaps D inside a polygon
inscribed in the unit circle. Here we apply a result by Tjani (see the proof
of [31, Thm. 3.15], or [25, Cor. 5.4]) stating that if such a map induces a
weakly compact composition operator on VMOA, then Cϕ is compact on
VMOA.

In both cases the converse statement follows from Theorem 4.2. �

Remark 4.9. Weakly conditionally compact composition operators were char-
acterized in [24] and [8] on various spaces of vector-valued analytic functions.
Recall that a linear map T : X → X is weakly conditionally compact if for
every bounded sequence (xk) ⊂ X the sequence (Txk) admits a weakly
Cauchy subsequence. Rosenthal’s l1-theorem [23, 2.e.5] implies that T is
weakly conditionally compact on X if and only if T is not an isomorphism
on any isomorphic copy of l1 in X. It is possible to modify the argument of
Theorem 4.2 in the case where none of the subspaces of X are isomorphic
to l1. In fact, if Cϕ is compact on BMOA, then Cϕ is weakly conditionally
compact on BMOA(X) for such X. The details are left for the interested
reader.

5. Weak vector-valued BMOA

In this section we discuss another interesting version of the vector-valued
BMOA, the space wBMOA(X) consisting of the weak X-valued BMOA
functions. The purpose of this section is to demonstrate that wBMOA(X)
differs from the space BMOA(X) considered earlier in this paper. Weak
vector-valued BMO was earlier considered e.g. in [4] and [21], and compo-
sition operators on various weak spaces were studied systematically in [8] by
different methods.

Let wBMOA(X) denote the space of analytic functions f : D → X such
that x∗ ◦ f ∈ BMOA for every x∗ ∈ X∗. The norm of wBMOA(X) is given
by

‖f‖wBMOA(X) = sup
‖x∗‖≤1

‖x∗ ◦ f‖BMOA.

Similarly, for 1 ≤ p <∞, let wHp(X) denote the space of analytic functions
f : D → X such that x∗ ◦f ∈ Hp for every x∗ ∈ X∗, equipped with the norm

‖f‖wHp(X) = sup
‖x∗‖≤1

‖x∗ ◦ f‖Hp .

Then wBMOA(X) and wHp(X) are Banach spaces for every 1 ≤ p < ∞
(cf. [8, Lemma 10]). Clearly

‖f‖wBMOA(X) ≤ ‖f‖BMOA(X) and ‖f‖wHp(X) ≤ ‖f‖Hp(X),

and the spaces coincide as sets whenever X is finite dimensional.
It is general result due to Bonet, Domański and Lindström [8, Proposition

11] that the counterpart of Theorem 4.2 for wBMOA(X) holds: If X is
a reflexive Banach space and ϕ induces a compact composition operator
on BMOA, then Cϕ is weakly compact on wBMOA(X). This raises the
question whether BMOA(X) is a closed subspace of wBMOA(X) for (some)
infinite dimensional X. Actually it turns out that this is never the case. In
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the case where X is a Hilbert space an example of this type was given in
[21, Lemma 2.3] (see also [4]). We include here a concrete example based on
a known multiplier result (due to Girela) and Dvoretzky’s l2n-theorem, that
applies to any infinite dimensional Banach space. We refer to e.g. [15] for
applications of Dvoretzky’s theorem in parallel situations.

Example 5.1. For any infinite dimensional complex Banach space X there
exists a sequence (fn)∞n=1 of analytic functions fn : D → X such that

‖fn‖wBMOA(X) ≤ 1, n ∈ N,

and
‖fn‖H1(X) →∞, as n→∞.

In particular, the norms ‖ · ‖wBMOA(X) and ‖ · ‖BMOA(X), as well as the
norms ‖ · ‖wHp(X) and ‖ · ‖Hp(X), are not equivalent for any 1 ≤ p <∞.

Proof. We construct the desired example using a known characterization of
multipliers from l2 to BMOA. A sequence (ak)∞k=0 is said to be a multiplier
from l2 to BMOA if

∑∞
k=0 akbkz

k ∈ BMOA for every (bk)∞k=0 ∈ l2. In that
case we say that (ak)∞k=0 belongs to (l2, BMOA). By [17, Theorem 9.7] a
sequence (ak)∞k=0 belongs to (l2, BMOA) if and only if

n∑
k=0

k2|ak|2 = O(n2),

as n → ∞. Thus the sequence (ak)∞k=0 given by setting a0 = 0 and ak =
1/
√
k for k = 1, 2, . . . belongs to (l2, BMOA). In particular, by the closed

graph theorem there is a constant C such that

(8) ‖
∞∑

k=1

bk√
k
zk‖BMOA ≤ C

( ∞∑
k=1

|bk|2
)1/2

,

for (bk)∞k=1 ∈ l2.
Let X be an infinite dimensional complex Banach space and n ∈ N. By

Dvoretzky’s theorem [14, Thm. 19.1] there exists an n-dimensional subspace
En of X and a linear isomorphism Jn : l2n → En so that ‖Jn‖ ≤ 2 and
‖J−1

n ‖ = 1. Let x(n)
k = Jne

(n)
k , where e(n)

k is the kth standard unit vector of
l2n for k = 1, . . . , n. Define the analytic function fn : D → X by

fn(z) =
n∑

k=1

x
(n)
k√
k
zk.

Then

‖fn(reiθ)‖X ≥ ‖
n∑

k=1

e
(n)
k√
k

(reiθ)k‖l2n
=

(
n∑

k=1

r2k

k

)1/2

for 0 < r < 1, so that

‖fn‖2
H1(X) ≥ sup

0<r<1

(
n∑

k=1

r2k

k

)
=

n∑
k=1

1
k
≥ log n.
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Suppose that x∗ ∈ X∗ satisfies ‖x∗‖X∗ ≤ 1. Then y∗n = x∗|En ∈ E∗
n, and

J∗ny
∗
n ∈ (l2n)∗ with ‖J∗ny∗n‖(l2n)∗ ≤ ‖Jn‖‖x∗‖X∗ ≤ 2, where J∗n denotes the

adjoint of Jn. We get from (8) that

‖x∗ ◦ fn‖BMOA = ‖
n∑

k=1

y∗n(x(n)
k )√
k

zk‖BMOA

≤ C

(
n∑

k=1

|y∗n(x(n)
k )|2

)1/2

= C

(
n∑

k=1

|y∗n(Jne
(n)
k )|2

)1/2

= C

(
n∑

k=1

|(J∗ny∗n)(e(n)
k )|2

)1/2

= C‖J∗ny∗n‖(l2n)∗ ≤ 2C.

By taking the supremum over x∗ ∈ X satisfying ‖x∗‖X∗ ≤ 1, we get
‖fn‖wBMOA(X) ≤ 2C, where C is independent of n and X.

The fact that none of the norms are equivalent follows now from the con-
tinuous inclusions wBMOA(X) ⊂ wHp(X) ⊂ wH1(X) and BMOA(X) ⊂
Hp(X) ⊂ H1(X) that hold for every 1 ≤ p <∞. �
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