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Abstract. Let φ and ψ be analytic self-maps of the unit disc, and denote by

Cφ and Cψ the induced composition operators. The compactness and weak com-

pactness of the difference T = Cφ −Cψ are studied on Hp spaces of the unit disc

and Lp spaces of the unit circle. It is shown that the compactness of T on Hp

is independent of p ∈ [1,∞). The compactness of T on L1 and M (the space

of complex measures) is characterized, and examples of φ and ψ are constructed

such that T is compact on H1 but non-compact on L1. Other given results deal

with L∞, weakly compact counterparts of the previous results, and a conjecture

of J. E. Shapiro.

1. Introduction

Let D be the open unit disc of the complex plane and φ : D → D an analytic
map. It is well known that the composition Cφf = f ◦ φ defines a linear operator
Cφ which acts boundedly on various spaces of analytic or harmonic functions on D,
including the classical Hardy spaces Hp. During the past few decades much effort
has been devoted to the study of these operators with the goal of explaining the
operator-theoretic properties of Cφ, such as compactness and spectra, in terms of
the function-theoretic properties of the symbol φ. We refer to the monographs by
J. H. Shapiro [S2] and Cowen and MacCluer [CoM] for an overview of the field as of
the early 1990s.

The mapping properties of the difference of two composition operators, i.e. an
operator of the form

T = Cφ − Cψ

have also been studied. Primary motivation for this line of research has arisen from
the urge to understand the topological structure of the set of composition operators
in L(H2), the space of bounded linear operators on the Hilbert space H2. Papers
pursuing this theme include [M], [SS2], [Sh], [B] and [MT]. Properties of T acting
on other function spaces have been studied in e.g. [MOZ] and [Go].

In the present paper we investigate the compactness of T on various classical
spaces. In addition to the Hp spaces, we will consider Lp and M , the spaces of
p-integrable functions and complex Borel measures on the unit circle T = ∂D. The
definition of Cφ on these spaces was first given by Sarason [Sa]. The idea is simple:
If µ ∈M , then the Poisson integral

u(z) =
∫

T

1− |z|2

|ζ − z|2
dµ(ζ)
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is a harmonic function on D. Since φ is analytic, the composition v = u ◦ φ is also
harmonic, and by expressing µ as a linear combination of positive measures one sees
that v is the Poisson integral of a unique measure ν ∈M . One sets Cφµ = ν. Then
Cφ : M → M is bounded, and one may further show that the restriction of Cφ to
Lp for 1 ≤ p ≤ ∞ defines a bounded operator Lp → Lp. Let us recall here that the
functions in Hp correspond to those functions in Lp (or measures in M if p = 1)
whose negative Fourier coefficients are all zero.

Some of our results make use of the notion of Aleksandrov measures. For any
analytic map φ : D → D, these are the positive Borel measures µα supported on T
and defined by the Poisson representation

(1.1)
1− |φ(z)|2

|α− φ(z)|2
=

∫
T

1− |z|2

|ζ − z|2
dµα(ζ)

for all α ∈ T. In other words, one has Cφδα = µα if δα is the unit point mass at
α. In [A] A. B. Aleksandrov used these measures to analyse the boundary values of
inner functions.

Let us recall that in the case of a single composition operator, the compactness
on Hp (1 ≤ p < ∞) was first characterized by J. H. Shapiro [S1] in terms of the
Nevanlinna counting function. Sarason’s work [Sa] gave a different-looking compact-
ness criterion for the case of L1 and M , but soon after Shapiro and Sundberg [SS1]
discovered that Shapiro’s and Sarason’s conditions are equivalent. Later Cima and
Matheson [CM1] expressed the condition in terms of the Aleksandrov measures of
φ: the operator Cφ is compact if and only if µα is absolutely continuous for each
α (the correspondence of Nevanlinna counting functions and Aleksandrov measures
was studied in greater detail in [NS]). Thus, interestingly enough, the same criterion
characterizes the compactness of Cφ on each of the spaces mentioned above. One
of the purposes of the present work is to investigate to what extent the same phe-
nomenon exists for the difference of two composition operators, and whether natural
analogues of the absolute continuity criterion still hold true.

We now give a brief description of the results obtained. In Section 2 we show
that the compactness of T on Hp is independent of the exponent p in the range
1 ≤ p < ∞. This generalizes the corresponding result for a single composition
operator. We also provide a counterpart of a result of Sarason [Sa2] as we show that
T ∈W (H1) implies T ∈ K(H1). Here and throughout the paper we use K(X) and
W (X) to denote the spaces of compact and weakly compact linear operators on a
Banach space X.

In Section 3 we characterize in a relatively simple manner the compactness of T
on L1 and M . Let us denote by µα and να the Aleksandrov measures of φ and ψ
at α, respectively. Also let µα = µaα + µsα be the Lebesgue decomposition of µα into
absolutely continuous and singular parts with the analogous notation used for να.
We prove that

T ∈ K(L1), K(M) iff

{
(1) µsα = νsα for all α ∈ T,

(2) {µaα − νaα : α ∈ T} is uniformly integrable.

We also show that this condition is equivalent both to T ∈W (L1) and to T ∈W (M).
The above characterization leads to an interesting question: is T ∈ K(L1) equiv-

alent to T ∈ K(H1) as it is in the case of a single composition operator? If the
answer were affirmative, conditions (1) and (2) would yield a characterization for
the compactness of T on H1 and hence on all Hp for 1 ≤ p < ∞. In Section 4 we
answer the question negatively, which is a main result of this paper. The required
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counter-example is fairly complicated and relies, among other things, on rather del-
icate estimates involving the harmonic measure. However, we will find that the
construction sheds some light on the different nature of T on H1 and L1.

The necessity of condition (1) above, which requires that the singular parts of the
Aleksandrov measures agree at every point, may actually be deduced from the work
of J. E. Shapiro [Sh]. In fact, Shapiro showed that (1) is necessary for T ∈ K(H2),
and then he conjectured that it would also be sufficient. In Section 5 we provide
a counter-example to this conjecture. Thus we also see that condition (2) above
cannot be dispensed with.

Finally, in Section 6 we extend a result of MacCluer et al. [MOZ] by characterizing
the compactness and weak compactness of T on L∞.

A word about notation. The unit circle T is equipped with the one-dimensional
Lebesgue measure, normalized to have total mass one and denoted by m. The Lp

norms of functions on T will be computed in terms of m. The symbol λ is used to
denote the planar Lebesgue measure, normalized so that the area of the unit disc D
is one.

2. Compactness on Hp, 1 ≤ p <∞

In the present section we consider compactness of the difference two composition
operators on the scale of Hp spaces for 1 ≤ p <∞. We show that the compactness
of the difference is independent of the exponent p in the indicated range. For a single
composition operator the analogous result was known already in the 1970s [ST]. In
our case the classical proof does not work, and the argument below combines an
algebraic trick with interpolation. We also show that the weak compactness on H1

is equivalent to compactness. For a single composition operator this fact was proved
by Sarason [Sa2].

Theorem 2.1. Let φ, ψ : D → D be analytic and put T = Cφ − Cψ. Then the
following three conditions are equivalent:

(1) T ∈ K(Hp) for all 1 ≤ p <∞,
(2) T ∈ K(Hp) for some 1 ≤ p <∞,
(3) T ∈W (H1).

Proof. Propositions 2.2 and 2.3 below isolate the two major steps of the proof. As-
suming these results, the proof boils down to a standard interpolation argument.
Namely, it is known that in the real interpolation method (see [BS]) the compact-
ness of the operator on one of the end-point spaces implies its compactness on the
interpolation space as well (the general result is due to Cwikel [Cw]). In addition,
by a result of Fefferman et al. [FRS], for any given 1 ≤ p < q we obtain the spaces
Hs with p < s < q as real interpolation spaces of the couple (Hp,Hq).

In the present situation, as T is bounded on each Hp with 1 ≤ p ≤ ∞, it follows
immediately that T ∈ K(Hp) for some 1 < p < ∞ implies that T ∈ K(Hp) for
all p in this range. In addition, T ∈ K(H1) implies T ∈ K(Hp) for 1 < p < ∞.
Combining these facts with Propositions 2.2 and 2.3 we get the equivalence of the
stated conditions. �

It should be remarked that it is possible to avoid the use of general (and rather
involved) results of interpolation theory and give a more straightforward argument
in the special case considered above.

Proposition 2.2. If T ∈ K(H2), then T ∈ K(H1).



4 PEKKA J. NIEMINEN AND EERO SAKSMAN

Proof. We will employ the de la Vallee–Poussin operators Vn : H1 → H1 defined by
setting

Vnf(z) =
n∑
k=0

f̂kz
k +

2n−1∑
k=n+1

2n− k

n
f̂kz

k

for f ∈ H1 with the Taylor expansion f(z) =
∑∞

k=0 f̂kz
k. Viewed as acting on

boundary values these are the convolutions Vnf = (2K2n−1 − Kn−1) ∗ f , where
Kn denotes the n:th Fejer kernel (see [K, I.2.13]). Thus ‖Vn‖ ≤ 3. Each Vn is a
finite-rank operator and hence compact on H1.

We assume that T ∈ K(H2). Since TV2n ∈ K(H1) for all n, it suffices to prove
that ‖TR2n‖ → 0, where Rn = I−Vn. To this end we fix f ∈ H1 with ‖f‖1 = 1 and
note that we always have R2nf = z2ng where ‖g‖1 = ‖R2nf‖1 ≤ 4‖f‖1 = 4. By a
routine application of the inner-outer factorization theorem of Hp functions we can
further write g = h2

1 + h2
2 where hj ∈ H2 with ‖hj‖2

2 ≤ ‖g‖1, j = 1, 2. Thus, our
claim will follow if we show that

sup{‖T (z2nh2)‖1 : h ∈ H2, ‖h‖2 ≤ 1} → 0 as n→∞.

Now let h ∈ H2 with ‖h‖2 ≤ 1. The main idea is to utilize the identity

T (z2nh2) = (Cφ + Cψ)(znh) · T (znh).

Since ‖znh‖2 = ‖h‖2, an application of Hölder’s inequality to this identity yields the
estimate

‖T (z2nh2)‖1 ≤M‖T (znh)‖2,

where M is the sum of the operator norms of Cφ and Cψ acting on H2. Since zn → 0
in D and since the functions h in the unit ball of H2 are uniformly bounded on
compact subsets of D, the compactness of T on H2 implies by a standard argument
that sup{‖T (znh)‖2 : ‖h‖2 ≤ 1} → 0 as n → ∞. The desired conclusion obtains
immediately. �

Proposition 2.3. If T ∈W (H1), then T ∈ K(H1).

The crux of the proof of this proposition is contained in the following lemma, just
as in the case of a single composition operator. Here we will make use of the well-
known fact that a sequence in L1 that converges both weakly and almost everywhere
converges also in L1 norm (see [DS, IV.8.12] or the remarks at the beginning of
Section 3).

Lemma 2.4. If T ∈W (H1) and φ 6= ψ, then |φ(ζ)| < 1 and |ψ(ζ)| < 1 for a.e. ζ.

Proof. We will show that |φ(ζ)| < 1 for a.e. ζ. Assume to the contrary. Since
φ(ζ) 6= ψ(ζ) for a.e. ζ ∈ T, it follows that there exists a set F ⊂ T of positive measure
such that |φ(ζ)| = 1 and |φ(ζ)−ψ(ζ)| ≥ ε for all ζ ∈ F and some ε > 0. Consequently,
the Borel measure µ on T defined by µ(A) = m(F ∩ φ−1(A)) is positive and non-
vanishing. Thus there exists a point ζ0 ∈ T such that if In = {eiθζ0 : |θ| < 1

n},
then

(2.1) lim
n→∞

µ(In)
m(In)

= lim
n→∞

nπµ(In) = c > 0.

In order to proceed we introduce“test functions”Qn ∈ H1 such that (i) ‖Qn‖1 = 1,
(ii) |Qn| ≥ n on In, and (iii) Qn → 0 locally uniformly on D \{ζ0} as n→∞. These
can be easily realized as outer functions of the form

logQn(z) =
∫

T

ζ + z

ζ − z
log gn(ζ) dm(ζ),
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where gn assumes constant values on In and on T \ In. By (i) it is clear that the
sequence (TQn) is bounded in H1 norm, and (iii) implies that it converges to zero
pointwise on D. On the other hand, since T ∈W (H1), every subsequence of (TQn)
must have a weakly convergent subsequence. But by the preceding observation the
only possible weak limit is zero, so the whole sequence (TQn) converges to zero
weakly in H1 and hence in L1. In addition, property (iii) yields that TQn → 0
almost everywhere on T. Together these two facts imply that TQn → 0 in L1 norm.

To obtain a contradiction we consider the estimate

‖TQn‖1 ≥
∫
F∩φ−1(In)

|CφQn| dm−
∫
F∩φ−1(In)

|CψQn| dm.

The first integral here equals
∫
In
|Qn| dµ, which is greater than nµ(In) by property

(ii) of Qn. The second integral tends to zero as n → ∞ because for large n the
boundary values of ψ are bounded away from ζ0 in the set F ∩ φ−1(In) and thus
property (iii) ensures that CψQn → 0 uniformly in that set. Hence, in view of (2.1),
we have that lim inf‖TQn‖1 ≥ limnµ(In) = c/π > 0, which is a contradiction. �

Proof of Proposition 2.3. Let (fn) be a bounded sequence in H1. We need to show
that the sequence (Tfn) has a subsequence that converges in H1. Since (fn) is a
normal family we may assume, by passing to a subsequence, that (fn) converges
locally uniformly to some function g on D. It is easy to check that g ∈ H1. Then
T (fn − g) → 0 pointwise on D and almost everywhere on T due to the preceding
lemma. On the other hand, since T ∈W (H1), we may extract a subsequence (fnk)
for which T (fnk − g) → 0 weakly in H1. Together these facts yield that Tfnk → Tg
in H1, and the proof is complete. �

Remark 2.5. For 1 < p < ∞ one of course has that T ∈ K(Lp) if and only if
T ∈ K(Hp) because the Riesz projection is bounded in this case and commutes with
Cφ and Cψ.

3. Compactness on L1 and M

In his important work [Sa], Sarason considered the composition operator Cφ as an
integral operator acting on the spaces L1 and M of integrable functions and complex
Borel measures on T. He showed that the following four compactness conditions are
all equivalent: Cφ ∈ K(M), Cφ ∈W (M), Cφ ∈ K(L1), and Cφ ∈W (L1). Moreover,
he characterized all these by a condition which is easily seen to be equivalent to the
absolute continuity of the Aleksandrov measures of φ (see [CM1]).

In this section we will give a generalization of Sarason’s result to the setting of
differences of composition operators. We recall from (1.1) that the Aleksandrov
measure of φ at α can be defined as µα = Cφδα. Similarly we let να = Cψδα if ψ is
another self-map of the unit disc D. We also recall that a set A ⊂ L1 is uniformly
integrable if

sup
f∈A

∫
{|f |>L}

|f | dm→ 0 as L→∞.

According to the classical Dunford–Pettis theorem (see [W, III.C.12]) a set A ⊂ L1

is relatively weakly compact if and only if it is uniformly integrable. We will also
have an occasion to use Vitali’s convergence theorem (see e.g. [R1, Exercise 6.10]),
which asserts that if (fn) is a uniformly integrable sequence in L1 such that fn → f
almost everywhere, then fn → f in L1 norm.

Our characterization is the following.
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Theorem 3.1. Let µα = µaα + µsα and να = νaα + νsα be the Lebesgue decompositions
of the Aleksanrov measures of φ and ψ, respectively, so that

µaα(ζ) =
1− |φ(ζ)|2

|α− φ(ζ)|2
, νaα(ζ) =

1− |ψ(ζ)|2

|α− ψ(ζ)|2
,

and µsα, ν
s
α are singular. The following conditions are equivalent for T = Cφ − Cψ:

(1) T ∈ K(M),
(2) T ∈W (M),
(3) T ∈ K(L1),
(4) T ∈W (L1),
(5) µsα = νsα for all α ∈ T and {µaα − νaα : α ∈ T} is uniformly integrable.

It should be emphasized that to guarantee the compactness of T on M and L1,
it is not sufficient to require only that µsα = νsα for all α. This issue is discussed in
greater detail in Section 5.

Note that (1) is the strongest and (4) is the weakest of the compactness conditions
in Theorem 3.1. Therefore the proof of the theorem reduces to verifying implica-
tions (4) ⇒ (5) and (5) ⇒ (1). The first of these depends on the fact that every
composition operator (and hence T ) is weak∗-weak∗-continuous as an operator on
M . This fact is a consequence of the following easy observation.

Lemma 3.2. Let (τn) be a bounded sequence in M and let (un) be the sequence of
corresponding Poisson integrals. Then (τn) converges weak∗ to zero if and only if
(un) converges pointwise to zero.

For implication (5)⇒ (1) we require another lemma from functional analysis. This
lemma is basically a consequence of the Krein–Milman theorem (see e.g. [R2, 3.23]),
which ensures that the absolute convex hull of the set {δα : α ∈ T} is weak∗-dense
in the unit ball of M . We omit the details of the argument.

Lemma 3.3. Let S : M → M is a bounded linear operator which is weak∗-weak∗-
continuous. If the set {Sδα : α ∈ T} is relatively compact in M , then S ∈ K(M).

Proof of Theorem 3.1. (4) implies (5): For every α ∈ T and 0 < r < 1, define
fα,r ∈ L1 by setting fα,r(ζ) = (1− r2)/|α− rζ|2. Then ‖fα,r‖1 = 1 and, as r → 1−,
fα,r → δα in the weak∗ topology of M . Since T is weak∗-weak∗-continuous on M ,
it follows that Tfα,r → µα − να weak∗. Furthermore, since T ∈ W (L1), we can
find some rn increasing to 1 such that Tfα,rn converges weakly to an element of
L1 as n → ∞. By the uniqueness of the limit, we conclude that µα − να ∈ L1,
or equivalently, µsα = νsα. Moreover, our argument also shows that the differences
µα − να = µaα − νaα belong to the weak closure of the relatively weakly compact set
{Tfα,r : α ∈ T, 0 < r < 1}. Therefore the set {gα − hα : α ∈ T} is relatively weakly
compact and, by the Dunford–Pettis theorem, uniformly integrable.

(5) implies (1): Observe first that the function α 7→ µaα(ζ) − νaα(ζ) is continuous
for almost all ζ ∈ T. Therefore, since the set {µaα − νaα : α ∈ T} is assumed to be
uniformly integrable, Vitali’s convergence theorem can be applied to show that the
map α 7→ µaα − νaα is continuous with respect to the norm topology of L1. Hence
{µaα − νaα : α ∈ T} is a compact subset of L1. Because Tδα = µα − να = µaα − νaα,
Lemma 3.3 implies that T ∈ K(M). �

Remark 3.4. The weak∗-weak∗ continuity of Cφ on M indicates that Cφ is an adjoint
of some operator acting on C, the space of continuous functions on T. Using the
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identity Cφδα = µα and an approximation argument (see [CM2]) one finds that this
operator is the Aleksandrov operator Aφ defined by the integral formula

Aφf(α) =
∫

T
f dµα, α ∈ T.

The operator Aφ was introduced by Aleksandrov [A], who showed that it defines a
bounded linear operator on many function spaces, including C and Lp for 1 ≤ p ≤ ∞.
Also, one may show that Aφ : Lp → Lp represents the adjoint (or preadjoint) of
Cφ : Lq → Lq when q is the conjugate exponent of p. Since an operator is compact
(resp. weakly compact) if and only if its adjoint is, these observations provide an
alternative approach to the proof of Theorem 3.1.

4. Comparison between the cases of L1 and H1

After Theorems 3.1 and 2.1 it becomes natural to ask whether a complete analogue
of the case of one composition operator holds. That is, whether Cφ − Cψ ∈ K(H1)
implies Cφ − Cψ ∈ K(L1). If it were so, the compactness of the difference on each
of the spaces Hp, Lp (1 ≤ p < ∞) and M would be equivalent and characterized
by condition (5) of Theorem 3.1. Our next theorem, which can be seen as a main
result of the present paper, answers this question negatively. The counter-example
is fairly complicated, but it gives some intuition on the difference between the cases
of L1 and H1 (cf. Remark 4.6 below).

Theorem 4.1. There exist two analytic functions φ, ψ : D → D such that T =
Cφ − Cψ satisfies T ∈ K(H1) but T /∈ K(L1).

Before we turn to the actual proof, we collect a number of auxiliary notions
and lemmas. First we have a useful compactness condition, which reminds [SS2,
Theorem 3.2]. Let us recall that a bounded linear operator T on a (separable)
Hilbert space is Hilbert–Schmidt if its Hilbert–Schmidt norm

‖T‖HS =
( ∞∑
k=0

‖Tek‖2

)1/2

is finite, where (ek) is any orthonormal basis of the underlying Hilbert space. Every
Hilbert–Schmidt operator is compact.

Lemma 4.2. Let φ, ψ : D → D be analytic functions such that |φ| < 1 and |ψ| < 1
almost everywhere on T, and let E ⊂ T be measurable. Then the Hilbert–Schmidt
norm of the operator T : H2 → L2 defined by

Tf(ζ) =
(
Cφf(ζ)− Cψf(ζ)

)
χE(ζ)

satisfies

‖T‖2
HS ≤

∫
E

|φ− ψ|
min(1− |φ|, 1− |ψ|)2

dm.

Proof. We have

‖T‖2
HS =

∞∑
k=0

‖Tzk‖2
2 =

∞∑
k=0

∫
E
|φk − ψk|2 dm.

By writing |a − b|2 = |a|2 + |b|2 − 2 Re ab and summing the appropriate geometric
series we obtain

‖T‖2
HS =

∫
E

(
1

1− |φ|2
+

1
1− |ψ|2

− 2 Re
1

1− φψ

)
dm.
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Fix w,w′ ∈ D and consider the function

g(z) =
1

1− |z|2
+

1
1− |w|2

− 2 Re
1

1− zw

on the line segment connecting w and w′. On this segment we have the estimate
|∇g| ≤ Cmin(1− |w|, 1− |w′|)−2. Moreover, g(w) = 0. The lemma follows immedi-
ately from these observations and the above expression for ‖T‖HS. �

Next we recall the following well-known estimate for the H2 norm of a function
f ∈ H2:

(4.1) ‖f‖2
2 − |f(0)|2 ∼

∫
D
|f ′(z)|2(1− |z|) dλ(z),

where λ denotes the normalized planar Lebesgue measure on D. The symbol ∼
means that the left- and right-hand sides of (4.1) are comparable to each other with
some positive constants. In fact, an exact identity rather than just an equivalent
expression for the H2 norm of f is obtained by replacing the weight 1 − |z| with
2 log(1/|z|). This identity is known as the Littlewood–Paley identity.

Lemma 4.3. Let (zk) be a sequence of points in D and put dk = 1− |zk|. Suppose
dk+1 ≤ adk for all k and some constant 0 < a < 1. Then

∞∑
k=1

|f ′(zk)|2d3
k ≤ C‖f‖2

2, f ∈ H2,

where C depends only on a.

Proof. Let c = 1
2(1−a) andDk = B(zk, cdk). Since the function |f ′|2 is subharmonic,

we have c2d2
k|f ′(zk)|2 ≤

∫
Dk
|f ′|2 dλ for each k. Thus

d3
k|f ′(zk)|2 ≤ 2c−2

∫
Dk

|f ′(z)|2(1− |z|) dλ(z)

because dk ≤ 2(1− |z|) for z ∈ Dk. As the discs Dk are disjoint by the choice of c,
the desired estimate is obtained by summing over k and applying (4.1). �

As a final preparatory step we give a technical lemma that estimates the harmonic
measure in a domain obtained from D by removing a number of small discs. Here
we let

(4.2) β(z, w) =
∣∣∣∣ z − w

1− zw

∣∣∣∣
be the pseudo-hyperbolic distance between any two points z, w ∈ D. The pseudo-
hyperbolic disc with centre z ∈ D and radius r is denoted by D(z, r), whereas B(z, r)
stands for the usual Euclidean disc.

Lemma 4.4. Suppose d1, . . . , dn are positive numbers with d1 <
1
4 and dj ≤ 1

10dj−1

for j = 2, . . . , n. Define Bj = B(1 − dj , dje
−20n) and Ω = D \

⋃n
j=1Bj. Let a be

a complex number with |a| ≤ 1
3 , and let γj be the harmonic measure of ∂Bj with

respect to Ω at a. Then

C1
dj
n
≤ γj ≤ C2

dj
n
, 1 ≤ j ≤ n,

where C1 and C2 are absolute positive constants.
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Proof. It is a consequence of the Harnack inequality that the harmonic measure
for Ω at a is comparable (with absolute constants) to the corresponding harmonic
measure at 0. So it is enough to consider the case a = 0.

For b > 0 define vb(z) = b−1 log(1/|z|) and note that vb is the radially decreasing
harmonic function in C \ {0} that equals 1 on the circle |z| = e−b and vanishes on
T. Let us write rj = 1− dj , fix k with 1 ≤ k ≤ n, and consider the function

u(z) = v30n

( z − rj
1− rjz

)
−

k−1∑
j=1

dk
5ndj

v20n

( z − rj
1− rjz

)
−

n∑
j=k+1

v20n

( z − rj
1− rjz

)
.

It is harmonic in a region containing Ω. We also claim that

(4.3) u|∂Bk ≤ 1 and u|∂Bj ≤ 0 for j 6= k.

To see this, we first note that by a simple estimate D(rj , e−30n) ⊂ Bj ⊂ D(rj , e−20n)
for all j. Then the first claim as well as the case j > k of the second one follow by
inspection. For j < k one just needs to observe that if z ∈ ∂Bj , then |z| ≤ 2

3rj + 1
3

and hence

1− ρ(rk, z) ≤ 1− ρ(rk, 2
3rj + 1

3) ≤ 3dk
dj

.

Consequently,

v30n

( z − rk
1− rkz

)
=

1
30n

log
1

ρ(rk, z)
≤ dk

5ndj
.

Here we applied the right-hand side of the simple estimate 1 − x ≤ log(1/x) ≤
2(1− x), valid for all x ∈ (1

2 , 1). According to (4.3) we now get

γk ≥ u(0) =
1

30n
log

1
rk
−

k−1∑
j=1

dk
5ndj

· 1
20n

log
1
rj
−

n∑
j=k+1

1
20n

log
1
rj

≥ 1
20n

(
2
3
dk −

k−1∑
j=1

dk
5ndj

· 2dj −
n∑

j=k+1

2dj

)
≥ dk

20n

(2
3
− 2

5
− 2

9

)
.

Since the number in parentheses is positive, the required lower bound is obtained.
To get the upper bound we just observe that γj is less than the harmonic measure

of the pseudo-hyperbolic circle ∂D(rj , e−20n) with respect to D \D(rj , e−20n) at 0.
This yields γj ≤ (1/20n) log(1/rj) ≤ dj/10n. �

Remark 4.5. The above lemma may also be approached from a stochastic point
of view. In this way one obtains a very intuitive explanation for the factor e−20n

in the radii of the discs. In fact, this choice ensures that the harmonic measure
of ∂Bj is of order ∼ 1/n (with respect to the domain D \ Bj). Hence, in the
first approximation the Brownian motion started at zero hits the circle ∂Bj with
probablility ∼ (1 − c/n)j−1(c/n) ∼ c′/n, as is seen by considering the probability
that it has not first hit any of the discs B1, . . . , Bj−1. Here one crudely assumes
that the hits to different discs are independent of each other. This argument can be
made rigorous to provide another proof of the lemma.

We are ready for the details of the proof of Theorem 4.1. We have divided the
argument into three steps. First we define the map φ and investigate some of its
properties. Then we construct the map ψ, and finally establish the compactness
properties of the resulting operator T = Cφ − Cψ.
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Step 1: the map φ. For each k ≥ 1, let Ak = B(1
4e
i/k, 3

4) and put Ω0 =
⋃∞
k=k0

Ak.
Then define the discs

Dk,j = B
(
(1− dk,j)ei/k, dk,je−20·2k), 1 ≤ j ≤ 2k, k ≥ 1,

where dk,j = 10−k−j . One can easily check that these are pairwise disjoint and satisfy
Dk,j ⊂ Ak and Dk,j ∩ Ak′ = ∅ whenever k 6= k′. Now let Ω = Ω0 \

⋃∞
k=1

⋃2k

j=1Dk,j .
Clearly, Ω is a region contained in the unit disc whose boundary intersects the unit
circle only at the points 1 and ei/k, k ≥ k0. The map φ is now defined to be an
analytic covering map from D onto Ω with φ(0) = 0.

We will next obtain some information on the distribution of the boundary values
of φ. Recall that since φ is a covering map, its radial boundary limits (which, by
Fatou’s theorem, exist at almost every boundary point) all lie in ∂Ω. Moreover,
their distribution is given by the harmonic measure for Ω at 0. Let us introduce the
notation

E0 = φ−1(∂Ω0), Ek,j = φ−1(∂Dk,j), 1 ≤ j ≤ 2k, k ≥ 1.

In order to study the boundary value distribution of φ on ∂Ω0 we use the well-
known fact that the boundary values of every analytic self-map of the unit disc
induce a Carleson measure (see e.g. [CoM, Theorem 3.12]). This implies that there
is a constant c > 0 such that

m
(
{ζ ∈ T : φ(ζ) ∈W}

)
≤ cγ

for every “Carleson window”

W = W (eiθ, γ) = {reit : 1− γ ≤ r < 1, |t− θ| ≤ γ}.

A simple geometric reasoning shows that for δ > 0 the union of W (1, 4δ1/4) and
W (ei/k, 2δ1/2), 1 ≤ k ≤ δ−1/4, covers all points z ∈ ∂Ω0 whose distance to the unit
circle is ≤ δ. Therefore

m
(
{ζ ∈ E0 : 1− |φ(ζ)| ≤ δ}

)
≤ c · 4δ1/4 + δ−1/4 · c · 2δ1/2 = 6cδ1/4.

In particular, if we let

E0,j = {ζ ∈ E0 : 2−j < 1− |φ(ζ)| ≤ 21−j}, j ≥ 1,

then

(4.4) m(E0,j) ≤ c′2−j/4, j ≥ 1,

with c′ = 6 · 21/4c. Moreover,
⋃∞
j=1E0,j covers all of E0 apart from a set of measure

zero.
Then we estimate m(Ek,j), the harmonic measure of ∂Dk,j with respect to Ω at

0. An upper bound is obtained as a direct application of Lemma 4.4 by considering
the harmonic measure of ∂Dk,j with respect to the region D\

⋃2k

j=1Dk,j . This yields

(4.5) m(Ek,j) ≤ C22−kdk,j .

To get a lower bound, we estimate the harmonic measure of ∂Dk,j with respect to
the region Ak \

⋃2k

j=1Dk,j . Using Lemma 4.4 plus a scaling argument we find

(4.6) m(Ek,j) ≥ C12−kdk,j .

Step 2: the map ψ. Consider the positive function h defined almost everywhere
on T by setting

h(ζ) =

{
2−2j if ζ ∈ E0,j , j ≥ 1,
1
4dk,j if ζ ∈ Ek,j , 1 ≤ j ≤ 2k, k ≥ 1.
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As a consequence of the definitions one immediately obtains the inequality

(4.7) |h| ≤ 1
2(1− |φ|) a.e. on T.

We also claim that

(4.8)
∫

T
log h dm > −∞,

and

(4.9)
∫
E0

h dm

(1− |φ| − h)2
<∞.

To verify the first claim, we use (4.4) to compute∫
E0

log h dm =
∞∑
j=1

m(E0,j) log 2−2j ≥ 2(log 2)c′
∞∑
j=1

2−j/4j > −∞.

Also, if Ek =
⋃2k

j=1Ek,j , then (4.5) can be used to estimate∫
Ek

log h dm =
2k∑
j=1

m(Ek,j) log 1
4dk,j ≥ C22−k

2k∑
j=1

dk,j log 1
4dk,j ≥ C2dk,1 log 1

4dk,1.

Substituting dk,1 = 10−k−1 and summing over k yields (4.8). For the second claim
we observe that on E0,j one has 1− |φ| − h ≥ 2−j − 2−2j and hence∫

E0,j

h dm

(1− |φ| − h)2
≤ c′2−2j 2−j/4

(2−j − 2−2j)2
≤ 4c′2−j/4.

Inequality (4.9) is obtained by summing over j.
For each k ≥ 1 and 1 ≤ j ≤ 2k we now define a function hk,j on T by setting

hk,j =
(2−k−j

100
+
χEk,j

2

)
h.

We also let Hk,j be an outer function satisfying |Hk,j | = hk,j almost everywhere on
T. Such a function exists due to (4.8). Then we set

H =
∑
k,j

ρk,jHk,j ,

where ρk,j are unimodular constants to be specified in a moment. It is easy to
check that the above series is convergent and defines an analytic function on D. In
addition, our definitions and (4.7) yield that

|H| < h ≤ 1
2(1− |φ|) a.e. on T.

Thus the formula
ψ = φ+H

defines an analytic self-map of D.
What still remains of the definition of ψ is the choice of the phase factors ρk,j .

We claim that these can be chosen in such a way that

(4.10)
∫
Ek,j

∣∣∣∣ 1− |ψ|2

|ei/k − ψ|2
− 1− |φ|2

|ei/k − φ|2

∣∣∣∣ dm ≥ c
m(Ek,j)
dk,j

with c a positive constant independent of k and j. For the verification of this fact
we first observe from the definition of Hk,j that

(4.11) |Hk,j | ≥
dk,j
10

on Ek,j
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and (independently of the choice of the phase factors)

(4.12) |ψ − φ− ρk,jHk,j | ≤
dk,j
100

on Ek,j

for all k ≥ 1 and 1 ≤ j ≤ 2k. A direct computation shows for the norm of the
gradient of the Poisson kernel that

(4.13)
∣∣∣∇1− |z|2

|ζ − z|2
∣∣∣ =

2
|ζ − z|2

.

As a consequence we obtain

|∇u(0)| ≤ 2
∫

T
|u| dm

for any function u harmonic in a neighbourhood of the closed unit disc. Let us apply
this estimate to the function

u(z) =
1− |φ(ζ) + zHk,j(ζ)|2

|ei/k − φ(ζ)− zHk,j(ζ)|2
− 1− |φ(ζ)|2

|ei/k − φ(ζ)|2

with ζ ∈ Ek,j fixed. By (4.11) and (4.13) we get |∇u(0)| ≥ |Hk,j(ζ)|/d2
k,j ≥ 1/10dk,j ,

so an application of Fubini’s theorem shows that∫
T

[∫
Ek,j

∣∣∣∣ 1− |φ+ ρHk,j |2

|ei/k − φ− ρHk,j |2
− 1− |φ|2

|ei/k − φ|2

∣∣∣∣ dm]
dm(ρ) ≥ 1

20
m(Ek,j)
dk,j

.

Therefore ρk,j ∈ T can be chosen such that

(4.14)
∫
Ek,j

∣∣∣∣ 1− |φ+ ρk,jHk,j |2

|ei/k − φ− ρk,jHk,j |2
− 1− |φ|2

|ei/k − φ|2

∣∣∣∣ dm ≥ 1
20
m(Ek,j)
dk,j

.

On the other hand, in view of inequality (4.12) we have the estimate∫
Ek,j

∣∣∣∣ 1− |φ+ ρk,jHk,j |2

|ei/k − φ− ρk,jHk,j |2
− 1− |ψ|2

|ei/k − ψ|2

∣∣∣∣ dm
≤ 4
d2
k,j

·
dk,j
100

m(Ek,j) =
1
25
m(Ek,j)
dk,j

.

(4.15)

Here we used the fact that the gradient of the Poisson kernel on the line segment
connecting the points involved is less than 4/d2

k,j . Combining (4.14) and (4.15) we
now get (4.10) with c = 1

20 −
1
25 = 1

100 .
Step 3: compactness properties. Recall that we write T = Cφ−Cψ. First we check

that T ∈ K(H2). We let Ek =
⋃2k

j=1Ek,j for k ≥ 1 and define Tkf = χEkTf for
k ≥ 0, so that Tk is an operator from H2 to L2. We obviously have

T = T0 + T1 + T2 + · · ·

with convergence in the strong operator topology (i.e. with pointwise convergence).
It is enough to show that each summand on the right-hand side is compact and
that

∑
k‖Tk‖ < ∞. The compactness of T0 is a consequence of (4.9), the fact that

|H| ≤ h a.e. on T and Lemma 4.2. Fix k ≥ 1. Since φ and ψ are bounded away from
the unit circle on Ek, it is clear that Tk is compact. We next estimate the norm of Tk.
Let f ∈ H2. Since the values of φ and ψ on Ek,j lie in the disc B((1−dk,j)ei/k, 1

2dk,j),
we see that there exists a point wk,j in the closure of that disc such that

|f ◦ φ− f ◦ ψ| ≤ |f ′(wk,j)|dk,j on Ek,j .
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Applying inequality (4.5) and Lemma 4.3 we obtain

‖Tkf‖2
2 ≤ C22−k

2k∑
j=1

|f ′(wk,j)|2d3
k,j ≤ CC22−k‖f‖2

2.

Thus ‖Tk‖ ≤ (CC2)1/22−k/2, and it follows that
∑

k‖Tk‖ <∞. Hence T ∈ K(H2).
Finally we verify that T /∈ K(L1). Summing over j in (4.10) and applying estimate

(4.6) we find ∫
Ek

∣∣∣∣ 1− |ψ|2

|ei/k − ψ|2
− 1− |φ|2

|ei/k − φ|2

∣∣∣∣ dm ≥ c
2k∑
j=1

m(Ek,j)
dk,j

≥ cC1.

Since m(Ek) tends to zero as k →∞, we conclude that condition (5) of Theorem 3.1
fails. Hence T /∈ K(L1). The proof of Theorem 4.1 is now complete.

Remark 4.6. The above proof deals with H2, but it might be more instructive to
consider H1 instead because it bears a close relation to L1 and the compactness of
T on H1 is equivalent to compactness on H2 by Theorem 2.1. Slightly heuristically
speaking, one applies above the fact (essentially due to Paley) that in the dual of H1

widely separated blocks with respect to the trigonometric basis generate L2, whereas
nothing like this is true for L1.

5. Necessity of the uniform integrability condition in Theorem 3.1:
a conjecture of J. E. Shapiro

In this section we show that the uniform integrability requirement in condition (5)
of Theorem 3.1 is not superfluous. This matter is directly connected to a conjecture
of J. E. Shapiro [Sh]. Shapiro’s work contains, among other things, a number of
interesting estimates for the norm and essential norm of the operator T = Cφ − Cψ
on H2. In his Conjecture 5.4 it is conjectured that T ∈ K(H2) if the singular parts
of the Aleksandrov measures of φ and ψ coincide at every point of T. Our next
result produces a counter-example to this conjecture and at the same time verifies
the necessity of uniform integrability in condition (5) of Theorem 3.1.

Theorem 5.1. There exist two analytic functions φ, ψ : D → D such that the
singular parts of the Aleksandrov measures of φ and ψ coincide at every point of T
but T = Cφ − Cψ is non-compact on all the spaces Hp (1 ≤ p <∞), L1 and M .

Note that it is sufficient to verify the non-compactness of T only on the space H2

since Theorem 2.1 asserts that the compactness of T onHp does not depend on p and
since H1 is a subspace of L1 and M . We will actually provide two different examples
to prove the theorem. The first one will be obtained as a simple application of a result
by J. H. Shapiro and C. Sundberg [SS2]. Let κ : R → [0, 1) be a continuous, 2π-
periodic function which is increasing and positive on (0, π], decreasing and positive
on [−π, 0), and vanishes at the origin. Shapiro and Sundberg call such κ a contact
function. It defines an approach region

Ω(κ) = {reiθ : 1− r > κ(θ)},

whose boundary is a Jordan curve in D that meets the unit circle only at the point
1. The following theorem is a slightly simplified version of [SS2, Theorem 4.1], as
complemented by [SS2, Remark 5.1].
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Theorem 5.2. Suppose κ is a C2 contact function and φ is a conformal map from
D onto Ω(κ). If ∫ π

0
log κ(θ) dθ = −∞,

then Cφ is essentially isolated in the set of composition operators on H2.

First proof of Theorem 5.1. Choose any contact function κ satisfying the conditions
of the above theorem; for instance, let κ(θ) = e−1/|θ| when 0 < |θ| ≤ π, and κ(0) = 0.
Also let φ be a conformal map from D onto Ω(κ) such that Imφ(0) 6= 0 and φ(1) = 1.
Here we consider φ as extended to a homeomorphism from D onto Ω(κ). Since Ω(κ)
touches the unit circle only at the point 1, we see that for all α 6= 1 the function (1.1)
is bounded and hence the singular part of the corresponding Aleksandrov measure
vanishes: µsα = 0. In addition, µs1 must be a multiple of δ1 since in the case α = 1 the
function (1.1) is continuous on D\{1}. Now define ψ by the formula ψ(z) = φ(z) and
use να to denote the Aleksandrov measure of ψ at α. By symmetry considerations
it is clear that νsα = µsα for all α. However, since φ(0) 6= ψ(0), Theorem 5.2 shows
that Cφ − Cψ is non-compact on H2. �

Remark 5.3. Observe that in the above example the operators Cφ and Cψ are both
essentially isolated in the set of composition operators on H2, that is, isolated in
the topology induced by the essential norm. Moreover, both φ and ψ are univalent.

Since the proof of Theorem 5.2 is fairly long and technical, it seems desirable to
establish Theorem 5.1 by a direct argument, which reveals in a more transparent
manner how the continuous parts of the Aleksandrov measures influence the dif-
ference operator. We will spend the rest of the present section sketching such an
example.

To prepare, we note that whenever φ is a univalent map on D we may perform a
change of variables in (4.1) to get the estimate

(5.1) ‖Cφf‖2
2 − |f(φ(0))|2 ∼

∫
φ(D)

|f ′(w)|2(1− |φ−1(w)|) dλ(w)

for f ∈ H2. A consequence of this is given by the next lemma.

Lemma 5.4. Let φ : D → D be univalent with φ(0) = 0, and assume that B is an
open disc of radius 3

4 contained in φ(D). Then, for all f ∈ H2,

‖Cφf‖2
2 ≥ c

∫
B
|f ′(w)|2 dist(w, ∂B) dλ(w),

where c > 0 is a constant independent of φ, B and f .

Proof. Let ψ be a conformal map taking D onto B with ψ(0) = 0. Applying the
Schwarz lemma to the map φ−1 ◦ ψ one sees that |φ−1(w)| ≤ |ψ−1(w)| for w ∈ B.
Moreover, since ψ is a Möbius transformation and dist(0, ∂B) ≥ 1

4 , it is not difficult
to show that 1 − |ψ−1(w)| ≥ c′ dist(w, ∂B) where c′ > 0 is an absolute constant.
Thus 1−|φ−1(w)| ≥ c′ dist(w, ∂B) for w ∈ B, and the lemma follows from (5.1). �

Second proof of Theorem 5.1. For every integer k 6= 0 define

Ak = B
(
(1
4 − |k|−9)ei/k, 3

4

)
,

so that Ak is an open disc contained in D with radius 3
4 . Its distance to T equals

|k|−9, the closest point on T being ei/k. Let Ω =
⋃∞
k=2Ak. Then Ω is a simply

connected Jordan region that touches the unit circle only at the point 1. The map φ
is now defined to be the conformal map taking D onto Ω with φ(0) = 0 and φ(1) = 1;
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again we consider φ as extended to a homeomorphism between D and Ω. Finally
define the map ψ through the formula ψ(z) = φ(z), so that ψ becomes a conformal
map from D onto the region Ω′ =

⋃∞
k=2A−k, the reflection of Ω with respect to the

real axis.
Let µα and να be the Aleksandrov measures of φ and ψ at α ∈ T, respectively.

Also, for every a ∈ D, define fa ∈ H2 to be the normalized reproducing kernel
function

fa(z) =

√
1− |a|2
1− az

.

Then ‖fa‖2 = 1 and fa → 0 weakly in H2 as |a| → 1−. With this notation, the
crucial properties of φ and ψ can be summarized as follows:

(1) µsα = νsα = 0 for α 6= 1, and µs1 = νs1 = γδ1 with γ ≥ 0;
(2) if ak = (1− k−9)ei/k, then

lim inf
k→∞

‖Cφfak‖2 > 0 and lim
k→∞

‖Cψfak‖2 = 0.

Notice that property (2) ensures that the difference Cφ −Cψ is non-compact on H2

since it does not map the weakly null sequence (fak) into a norm-null sequence.
Property (1) is verified by exactly the same reasoning as used in the paragraph

following Theorem 5.2. To establish the first part of (2), we let k ≥ 2 and apply
Lemma 5.4 to get

‖Cφfak‖
2
2 ≥ c

∫
Ak

|f ′ak(w)|2 dist(w, ∂Ak) dλ(w),

where c > 0 is a constant. Write Gk = B((1 − 3k−9)ei/k, k−9). Then Gk ⊂ Ak
and an easy estimate shows that for w ∈ Gk one has |1 − akw| ≤ 5k−9 and hence
|f ′ak(w)|2 ≥ c′k27 with some constant c′ > 0. Since dist(w, ∂Ak) ≥ k−9 for w ∈ Gk,
we obtain

‖Cφfak‖
2
2 ≥ cc′k27λ(Gk) = cc′,

and the first part of (2) follows.
For the proof of the second part of (2) we begin with the estimate

‖Cψfak‖
2
2 ≤ |fak(0)|2 + c

∫
Ω′
|f ′ak(w)|2 dλ(w),

which trivially follows from (5.1). Clearly fak(0) → 0 as k → ∞. To estimate the
integral observe that by the definition of the region Ω′ we have

dist(1/ak, ∂Ω′) ≥ dist(ei/k, ∂B(1
4 ,

3
4)) ≥ 1

16k2
.

Hence, if w ∈ Ω′, one has

|f ′ak(w)|2 =
1− |ak|2

|ak|2|1/ak − w|4
≤ 2k−9

(1
2)2(1/16k2)4

= 219/k,

and it follows that
∫
Ω′ |f

′
ak
|2 dA → 0 as k →∞. This establishes the second part of

(2) and finishes the second proof of Theorem 5.1. �

6. Compactness on H∞ and L∞

In [MOZ] B. MacCluer et al. studied the topological structure and compact dif-
ferences of composition operators on the space H∞ of bounded analytic functions.
Their results involve the pseudo-hyperbolic metric β, defined by (4.2). In particular
they showed that the operator T = Cφ − Cψ is compact on H∞ if and only if

(6.1) β(φ(z), ψ(z)) → 0 as max
(
|φ(z)|, |ψ(z)|

)
→ 1.
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In this section we revisit this result and generalize it slightly by considering the
case of L∞ and weakly compact differences. Observe that [MOZ] established the
equivalence of conditions (3) and (5) of the following result.

Theorem 6.1. Let φ, ψ : D → D be analytic and put T = Cφ − Cψ. Then the
following five conditions are equivalent:

(1) T ∈ K(L∞),
(2) T ∈W (L∞),
(3) T ∈ K(H∞),
(4) T ∈W (H∞),
(5) condition (6.1) holds.

Note that it is enough to verify that (4) implies (5) and (5) implies (1). The latter
implication is a straightforward adaptation of the argument given in [MOZ] and it
is dealt with in Proposition 6.3 below. The former implication is more involved and
will be established as Proposition 6.5.

We begin with an easy lemma. Here we use ρ to denote the hyperbolic metric on
D; it is related to the pseudo-hyperbolic metric by the formula

ρ(z, w) = log
1 + β(z, w)
1− β(z, w)

.

(See, for example, [G, §I.1].)

Lemma 6.2. If u is the Poisson integral of a function f ∈ L∞, then |u(z)−u(w)| ≤
‖f‖∞ρ(z, w) for z, w ∈ D.

Proof. An application of equality (4.13) yields that

|∇u(z)| ≤
∫

T

2‖f‖∞
|ζ − z|2

dm(ζ) =
2‖f‖∞
1− |z|2

.

The lemma follows since 2|dz|/(1−|z|2) is the element of arc length in the hyperbolic
metric. �

Proposition 6.3. If (6.1) holds, then T ∈ K(L∞).

Proof. Let (fn) be a bounded sequence in L∞ and let (un) be the sequence of corre-
sponding Poisson integrals. We should show that a subsequence of (Tfn) converges
in L∞. Invoking a normal family argument (or the weak∗ compactness of the closed
unit ball of L∞), we may further assume (cf. the proof of Proposition 2.3) that
un → 0 locally uniformly in D.

Let ε > 0. By condition (6.1) and the above lemma we can find 0 < r < 1 such
that for all n

|un(φ(z))− un(ψ(z))| ≤ ε when max
(
|φ(z)|, |ψ(z)|

)
> r.

On the other hand, since un → 0 locally uniformly, we have for n large enough

|un(φ(z))− un(ψ(z))| ≤ ε when max
(
|φ(z)|, |ψ(z)|

)
≤ r.

Combining these two inequalities yields that ‖Tfn‖∞ = ‖un ◦ φ− un ◦ ψ‖∞ ≤ ε for
all sufficiently large n. Hence Tfn → 0 in L∞ and the proof is complete. �

In order to prove that condition (6.1) is implied by the weak compactness of T
on H∞, we recall some notions from the Banach space theory. A Banach space X is
said to have the Dunford–Pettis property if x∗n(xn) → 0 whenever xn → 0 weakly in
X and x∗n → 0 weakly in the dual X∗. Equivalently, this means that every weakly
compact linear operator from X into some Banach space is completely continuous,
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i.e. maps weakly null sequences into norm-null sequences. A well-known example of
a space with the Dunford–Pettis property is c0, the space of null sequences of scalars
under the supremum norm. For a survey of the Dunford–Pettis property we refer to
[D].

The special auxiliary functions provided by the next lemma will be crucial to our
argument. We leave the simple verification of the lemma to the reader.

Lemma 6.4. Suppose (an) is a sequence of points in D such that an → 1. Then
there exist numbers 0 < εn < 1 and 0 < δn < δ′n < π such that εn → 0, δ′n → 0, and
if

hn(eiθ) =

{
1 for δn < |θ| < δ′n
εn otherwise,

then the outer functions

Qn(z) = exp
{

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log hn(eiθ) dθ

}
satisfy ‖Qn‖∞ = 1 and |Qn(an)| ≥ 1

2 for every n.

We have now reached our objective.

Proposition 6.5. If T ∈W (H∞), then (6.1) holds.

Proof. Suppose to the contrary that (6.1) fails. This means that we can find a
number ε > 0 and points zn ∈ D such that if an = φ(zn) and bn = ψ(zn), then

max(|an|, |bn|) → 1 and β(an, bn) ≥ ε for all n.

By passing to a subsequence and interchanging the roles of φ and ψ, if necessary,
we may assume that an → α for some α ∈ T. Without loss of generality, take
α = 1. Let (Qn) be the sequence of outer functions corresponding to (an) as given
by Lemma 6.4. By passing to a further subsequence we may assume that δ′n+1 ≤ δn
and εn ≤ 2−n−1 for all n.

Now define
fn(z) = Qn(z) ·

z − bn

1− zbn
,

so that fn ∈ H∞ with ‖fn‖∞ = 1, |fn(an)| ≥ 1
2ε and fn(bn) = 0. Because the

sets {ζ ∈ T : |fn(ζ)| > εn} are pairwise disjoint and
∑

n εn ≤ 1
2 , it is easy to

check that the mapping (ξn) 7→
∑

n ξnfn is an isomorphic embedding of c0 into H∞.
Thus fn → 0 weakly and since T was assumed weakly compact, the Dunford–Pettis
property of c0 implies that ‖Tfn‖∞ → 0. However, it follows from the definition of
fn that

‖Tfn‖∞ ≥ |Tfn(zn)| = |fn(an)− fn(bn)| = |fn(an)| ≥ 1
2ε

for every n. This contradiction completes the proof of the proposition and, as noted
before, the proof of Theorem 6.1. �
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