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Abstract

We propose to combine two quite powerful ideas that have recently appeared
in the Markov chain Monte Carlo literature: adaptive Metropolis samplers and de-
laying rejection. The ergodicity of the approach is proved, and the efficiency of
the combination is demonstrated with various test examples. We present situations
where the combination outperforms the original methods: the adaptation clearly
enhances the efficiency of the delayed rejection algorithm in cases where good can-
didates for the proposal distributions are not available. Similarly, the delayed re-
jection provides a systematic remedy for cases where the adaptation has difficulties
to get started.
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1 Introduction and motivation

Markov chain Monte Carlo (MCMC) methods allow to estimate Eπf , the expectation of a
function f with respect to a distribution π, possibly known up to a normalizing constant.
A Markov chain that has π as it unique stationary and limiting distribution is constructed
and simulated. The mean of f along a realized path of the chain, 1

n

∑n
i=1 f(Xi), is the

MCMC estimator. Typically the mean is computed after a burn-in to allow the chain to
reach its stationary regime. Under mild regularity condition [12] the MCMC sampler is
asymptotically unbiased and normally distributed.

In this paper we propose various strategies to combine two quite powerful ideas that
have recently appeared in the MCMC literature: adaptive Metropolis samplers [5, 6] and
delaying rejection [14, 4, 9].

Delaying rejection (DR) is a way of modifying the standard Metropolis-Hastings al-
gorithm (MH) [12] to improve efficiency of the resulting MCMC estimates relative to
Peskun [10, 13] asymptotic variance ordering. The basic idea is that, upon rejection in a
MH, instead of advancing time and retaining the current position, a second stage move is
proposed. The acceptance probability of the second stage candidate is computed so that
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reversibility of the Markov chain relative to the distribution of interest is preserved. The
process of delaying rejection can be iterated for a fixed or random number of stages. The
higher stage proposals are allowed to depend on the candidates so far proposed and re-
jected. Thus DR allows partial adaptation of the proposal within each step of the Markov
chain.

The DR can be also considered as a way of combining different proposals for MH or
different kernels for MCMC. There are other strategies suggested in the MCMC literature
to combine kernels all having the proper stationary distribution, namely mixing and
cycling [14]. The advantage of DR over these alternatives is that a hierarchy between
kernels can be exploited so that kernels that are easier to compute (in terms of CPU
time) are tried first for example, thus saving in terms of simulation time. Or moves that
are more “bold” (bigger variance of the proposal for example) are tried at earlier stages
thus allowing the sampler to explore the state space more efficiently. Similarly, again to
allow better exploration of the stage space, global moves (i.e. updating all coordinates at
once) and be tried first and local moves (updating single or groups of coordinates) can be
attempted later.

The global adaptive strategy we will combine with the local adaptive strategy provided
by the DR, is the Adaptive Metropolis (AM) algorithm [5, 6]. The intuition behind the
AM is that, on-line tuning the proposal distribution in a MH can be based on the past
sample path of the sampled chain. Due to this form of adaptation sampler is neither
Markovian nor reversible. In [6] the Authors prove, from first principles, that, under some
regularity conditions on the way adaptation is performed, the AM retains the stationary
distribution desired.

In Sections 2 and 3 we give the details of the DR and of the AM strategies respectively.
We then propose different ways of combining DR with AM (Section 4) and prove the

ergodicity of the resulting algorithms (Section 5).
In Section 6, various test examples will be used to compare the proposed strategies

in terms of their efficiency measured both by the asymptotic variance of the resulting
MCMC estimators and in terms of CPU simulation time.

2 Delaying rejection

In this section we give the details of DR. Suppose the current position of the Markov
chain is Xt = x. As in a regular MH a candidate move Y1 is generated from a proposal
q1(x, ·) and accepted with the usual probability

α1(x, y1) = 1 ∧ π(y1)q1(y1, x)

π(x)q1(x, y1)

= 1 ∧ N1

D1

.

(1)

Upon rejection, instead of retaining the same position, Xt+1 = x, as we would do in a
standard MH, a second stage move Y2 is proposed. The second stage proposal is allowed
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to depend not only on the current position of the chain but also on what we have just
proposed and rejected: q2(x, y1, ·). The second stage proposal is accepted with probability

α2(x, y1, y2) = 1 ∧ π(y2)q1(y2, y1)q2(y2, y1, x)[1− α1(y2, y1)]

π(x)q1(x, y1)q2(x, y1, y2)[1− α1(x, y1)]

= 1 ∧ N2

D2

.

(2)

This process of delaying rejection can be iterated and the i-th stage acceptance probability
is, following [8],:

αi(x, y1, · · · , yi) = 1 ∧
{

π(yi)q1(yi, yi−1)q2(yi, yi−1, yi−2) · · · qi(yi, yi−1, · · · , x)

π(x)q1(x, y1)q2(x, y1, y2) · · · qi(x, y1, · · · , yi)

[1− α1(yi, yi−1)][1− α2(yi, yi−1, yi−2)] · · · [1− αi−1(yi, · · · , y1)]

[1− α1(x, y1)][1− α2(x, y1, y2)] · · · [1− αi−1(x, y1, · · · , yi−1)]

}

= 1 ∧ Ni

Di

.

(3)

If i-th stage is reached, it means that Nj < Dj for j = 1, · · · , i−1, therefore αj(x, y1, · · · , yj)
can be rewritten as Nj/Dj, j = 1, · · · , i− 1 and we obtain the recursive formula

Di = qi(x, · · · , yi)(Di−1 −Ni−1)

which leads to

Di = qi(x, · · · , yi)[qi−1(x, · · · , yi−1)[qi−2(x, · · · , yi−2) · · ·
[q2(x, y1, y2)[q1(x, y1)π(x)−N1]−N2]−N3] · · · −Ni−1].

(4)

Since all acceptance probabilities are computed so that reversibility with respect to π
is preserved separately at each stage, the process of delaying rejection can be interrupted
at any stage that is, we can, in advance, decide to try at most, say, 3 times to move away
from the current position, otherwise we let the chain stay where it is. Alternatively, upon
each rejection, we can toss a p-coin (i.e. a coin with head probability equal to p), and if
the outcome is head we move to a higher stage proposal, otherwise we stay put.

In [14] the DR strategy is proved to outperform the standard MH in the Peskun
absolute efficiency ordering. This means that, using the DR, we obtain MCMC estimators
that have a smaller asymptotic variance for every function f whose expectation relative
to π we want to estimate (provided f has finite variance under π).

3 Adaptive MCMC

In this section we briefly introduce the AM strategy, for more details and theory see [5],[6].
The basic idea is to create a Gaussian proposal distribution from the points of the MCMC
chain. This achieved by computing the covariance matrix of the chain. The crucial point
regarding the AM adaptation is how the covariance of the proposal distribution depends
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on the history of the chain. We take, possibly after an initial non-adaptation period,
the proposal to be centered at the current position of the Markov chain, Xt, and set the
covariance to be: Ct = sdCov(X0, . . . , Xt−1)+sdεId, where sd is a parameter that depends
only on the dimension d of the state space where π is defined and ε > 0 is a constant that
we may choose very small compared to the size of S. Here Id denotes the d-dimensional
identity matrix. In order to start the adaptation procedure an arbitrary strictly positive
definite initial covariance, C0, is chosen according to a priori knowledge (which may be
quite poor). A time index, t0 > 0, defines the length the initial non-adaptation period
and we let

Ct =

{
C0, t ≤ t0
sdCov(X0, . . . , Xt−1) + sdεId, t > t0.

(5)

Recall the definition of the empirical covariance matrix determined by points X0, . . . , Xk ∈
Rd :

Cov(X0, . . . , Xk) =
1

k

(
k∑

i=0

XiX
T
i − (k + 1)Xk X

T

k

)
, (6)

where Xk = 1
k+1

∑k
i=0 Xi and the elements Xi ∈ Rd are considered as column vectors.

Substituting (6) in definition (5) for t ≥ t0 + 1 the covariance Ct satisfies the recursive
formula:

Ct+1 =
t− 1

t
Ct +

sd

t

(
tX t−1X

T

t−1 − (t + 1)X tX
T

t + XtX
T
t + εId

)
. (7)

This permits the calculation of Ct without excessive computational cost since the mean,
X t, also satisfies an obvious recursive formula.

This adaptation was proved to be ergodic in [6]. In numerical applications, some
helpful observations have emerged. The choice for the length of the initial non-adaptive
portion of the simulation, t0 > 0 is free, but the bigger it is, the longer it takes for the
effect of adaptation to take place. In the earlier, non–ergodic version of the algorithm
([5]) it was found that the adaptation should not be done at each time step, but only at
given time intervals. This way of adaptation has shown to improve the mixing properties
even with AM. So the index t0, in fact, can be used define the length of non–adaptation
during the whole chain. The role of the parameter ε is just to ensure that, theoretically,
Ct will not become singular, but in practice it can be safely set to zero. Following [3], we
take the scaling parameter to be sd = (2.4)2/d. In [3] the Authors show that, in a certain
sense, this choice optimizes the mixing properties of the Metropolis search in the case of
Gaussian targets and Gaussian proposals.

4 Combining DR and AM

The success of MCMC methods, in general, depends on how well the proposal distribution
fits the target distribution. In its basic formulation, DR employs a given number of fixed
proposals that are used at the different stages. Therefore, the success of the DR strategy
depends largely on the fact that at least one of the proposals is successfully chosen. The
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intuition behind adaptive strategies is to learn from the information obtained during the
run of the chain, and to tune the proposals to work more efficiently. There are, in principle,
numerous ways of combining AM or MH within the DR framework. One could use AM
only at the first stage and employ fixed MH proposals at higher stages of the delaying
rejection process. The choice of the fixed MH proposals could be based on separate pilot
runs. Or one might adapt the proposals at the different stages separately, with the aim
of attempting ’global’ moves at the first stage (update all coordinates at once) and ’local’
moves at higher stages (update single coordinates of groups of them). As an alternative,
at different stages of the delaying rejection different values of t0 and sd could be used.

We shall follow here a rather direct way of combining AM adaptation and DR. The
proposal of the first stage of DR is adapted just as in AM: the covariance for AM is
computed from the points of the sampled chain, no matter at which stage these points in
the sample path have been accepted. The proposal for higher stages are always computed
simply as scaled versions of the proposal of the first stage. The scale factor can be freely
chosen: the proposals of the higher stages can have a smaller or larger variance than the
proposal at earlier stages. The simulation results in [4] suggest that, it is more beneficial,
in terms of asymptotic variance reduction of the resulting MCMC estimators, to have
larger variance at earlier stages and then reduce the variance upon rejection.

From the DR strategy point of view, the rational of the approach is to adapt, via
AM, the first stage proposal to better fit the target distribution. If the variance of the
first stage proposal is too large or small, the points obtained from the higher stages will
transform the variance in the right direction.

From the AM point of view, clear benefits are expected, too. It sometimes may be
difficult to get the AM adaptation started. This happens if the initial guess for the
proposal distribution is far from a correct one. This occurs, e.g., if the variance of the
proposal is too large, or the covariance for the proposal is nearly singular. Now the DR
framework provides a natural remedy for these situations: by scaling down the size of the
proposals at higher DR stages we ensure that some points will be accepted. Once this
happens, the above AM adaptation usually starts working properly.

Below, we shall present the discussed merits of the DRAM combination in light of
concrete examples.

5 Ergodicity of DR+AM

In order to approach properties of the simulation provided by the non-Markovian DRAM
algorithm we first fix some notation and define the stochastic process corresponding to
the algorithm. We follow mainly the approach and notation of [6], to which we refer for
unexplained concepts.

In this section we focus on two-stages DR algorithms but the theory can be generalized
at DR strategies with more than two attempts to move.

To start with, denote by qC(x, y) the density of a Gaussian proposal with covariance
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matrix C. Thus

qC(x, y) =
1

(2π)n/2
√
|C|e

−(x−y)TC−1(x−y)/2. (8)

We shall assume that D ⊂ Rd is a Borel-measurable subset of the Euclidean space, and
the target π : D → [0,∞) is a probability density on D (actually, we shall also denote by
π the associated measure). As explained in Section 2, given two proposals one may always
define a corresponding delayed rejection transition probability function (DR-t.p.f.). We
formalize this into a definition

Definition 1 Let π and D be as above and fix C1, C2 be given covariance matrices. The
corresponding two-stages DR-t.p.f. is denoted by QC1,C2.

In order to give an explicit formula for QC1,C2 we write (compare with Section 2)

α1(x, y) = 1 ∧ π(y)

π(x)
, (9)

where we understand that π(x) = 0 for x 6∈ D and α1 takes the value 1 if both π(x) =
π(y) = 0. Moreover,

α2(x, y′, y) = 1 ∧ π(y)qC1(y, y′)(1− α1(y, y′))
π(x)qC1(x, y′)(1− α1(x, y′))

. (10)

Comparing the above formula with (2) one should notice the cancellation of the second
stage proposals. We are now able to define for any Borel-measurable subset A ⊂ D such
that x 6∈ A

QC1,C2(x; A) =

∫

A

qC1(x, y′)α1(x, y′)dy′ (11)

+

∫

A

(∫

Rn

qC1(y, y′)(1− α1(y, y′))qC2(x, y)α2(x, y′, y) dy′
)

dy.

The definition of the t.p.f. is completed by setting

QC1,C2(x; {x}) = 1−QC1,C2(x; D \ {x}). (12)

For later need we estimate quantitatively the dependence of QC1,C2 on the covariances.
The following technical lemmata serve this purpose. The derivative Dk

ij in the first lemma
are taken with respect to the (i, j):th element (i, j = 1, . . . , d) of the covariance matrix
Ck (k = 1, 2). The easy proof of the first lemma is left to the reader.

Lemma 1 Let D ⊂ Rd be bounded. Assume that the covariances C1, C2 satisfy the matrix
inequality

a1Id ≤ C1, C2 ≤ a2Id, (13)
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where 0 < a1 < a2 < ∞ are constants and Id is the d-dimensional identity matrix. Then
there are finite constants a3, a4 that depend only on D, a1, a2 such that the inequalities

|Dk
ijqCk

(x, y′)|
qCk

(x, y′)
≤ a3(1 + |y′|2) (14)

and
|D1

ijα2(x, y′, y)|
α2(x, y′, y)

≤ a4(1 + |y′|2) (15)

hold for all y′ ∈ Rn and x, y ∈ D. Here 1 ≤ k ≤ 2 and 1 ≤ i, j ≤ d are arbitrary.

(We should remark here that α2 is not necessarily differentiable in the strict sense, but
(15) should be interpreted as an estimate for the local Lipschitz constant).

Lemma 2 Let D ⊂ Rd be bounded and assume that all the covariances C1, C
′
1, C2, C

′
2

satisfy the matrix inequality (13). Then there is a constant a5 such that

|QC1,C2(x, A)−QC′1,C′2(x,A)| ≤ a5(‖C1 − C ′
1‖+ ‖C2 − C ′

2‖) (16)

for all x ∈ D and measurable A ⊂ D.

Proof. In order to prove (16) we first consider the case C2 = C ′
2. By (12) we may also

assume that x 6∈ A. We obtain by (11) that

|QC1,C2(x,A)−QC′1,C2
(x,A)| ≤

∫ 1

0

| d

ds
h1(s)|ds +

∫ 1

0

| d

ds
h2(s)|ds,

where

h1(s) =

∫

A

qC(s)(x, y)α1(x, y)dy

with C(s) = sC ′
1 + (1− s)C1 = C1 + s(C ′

1 − C1), and

h2(s) =

∫

A

(∫

Rn

qC(s)(y, y′)(1− α1(y, y′))qC2(x, y)α2(x, y′, y) dy′
)

dy.

Observe that α2 depends on C(s). The matrix C(s) clearly satisfies the inequalities (13)
for all s ∈ [0, 1]. Hence the previous lemma applies and we obtain the estimate

| d

ds
h1(s)| ≤ a6a3‖C1 − C ′

1‖ sup
y∈D

(1 + |y|2)h1(s) ≤ a7‖C1 − C ′
1‖

since h1 ≤ 1 and D is bounded.
Similarly we compute

| d

ds
h2(s)| ≤ a6‖C1 − C ′

1‖
∫

A

(∫

Rn

(a3 + a4)(1 + |y′|2)qC(s)(y, y′)

(1− α1(y, y′))qC2(x, y)α2(x, y′, y) dy′) dy

≤ a8‖C1 − C ′
1‖

∫

Rn

(1 + |y′|2)qC(s)(y, y′)dy′
∫

A

qC2(x, y)dy

≤ a9‖C1 − C ′
1‖ sup

y∈D

∫

Rn

(1 + |y′|2)qC(s)(y, y′)dy′ ≤ a10‖C1 − C ′
1‖.
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Above the last written supremum is clearly uniformly bounded as C(s) satisfies (13).
By combining the obtained estimates the claim follows in the case C2 = C ′

2. The case
C1 = C ′

1 is similar, although easier since α2 does not depend on C2. By combining the
two cases the general statement is proved.

The sequence (Kn) of generalized transition probability functions defining the DRAM
algorithm (with second covariance proportional to the first one) is obviously given by

Kn(x0, . . . , xn−1; A) = QCn,γCn , (17)

where Cn is the covariance obtained from the history of the algorithm, defined by the
formula (5) in Section 3. The constant γ > 0 is fixed (usually one chooses γ ∈ (0, 1), see
Section 4). Our proof for the exactness of the simulation provided by DRAM is based on
Theorem 2 in [6]. For readers convenience we recall this result here (Theorem 3 below). In
order to do this we need to define a ”freezed” transition probability. Given a generalized
transition probability Kn (where n ≥ 2) and a fixed (n−1)-tuple, (y0, y1, . . . yn−2) ∈ Sn−1,
we denote ỹn−2 = (y0, y1, . . . yn−2) and define the transition probability Kn,eyn−2 by

Kn,eyn−2(x; A) = Kn(y0, y1, . . . yn−2, x; A) (18)

for x ∈ D and A ⊂ D. For the definition of the (Dobrushin) coefficient of ergodicity,
δ(K), we refer to [6] (p. 228).

Theorem 3 Assume that (Kn) satisfies the following three conditions (i) – (iii) :

(i) There is an integer k0 and a constant λ ∈ (0, 1) such that

δ((Kn,eyn−2)
k0) ≤ λ < 1 for all ỹn−2 ∈ Sn−1 and n ≥ 2.

(ii) There is a probability measure π on S and a constant c0 > 0 so that

‖πKn,eyn−2 − π‖ ≤ c0

n
for all ỹn−2 ∈ Sn−1 and n ≥ 2.

(iii) The estimate for the operator norm

‖Kn,eyn−2 −Kn+k,eyn+k−2
‖M(D)→M(D) ≤ c1

k

n
,

holds, where c1 is a positive constant, n, k ≥ 1 and one assumes that the (n+k−1)-
tuple ỹn+k−2 is a direct continuation of the (n− 1)-tuple ỹn−2.

Then, if f : D → R is bounded and measurable, it holds almost surely that

lim
n→∞

1

n + 1
(f(X0) + f(X1) + . . . + f(Xn)) =

∫

S

f(x)π(dx). (19)

We are ready to verify that the DRAM algorithm yields unbiased simulation of the
target distribution.
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Theorem 4 Let π be the density of a target distribution supported on a bounded measur-
able subset D ⊂ Rd and assume that π is bounded from above. Then the DRAM algorithm,
as described in Section 4 (see also (17)) is ergodic in the sense of (19).

Proof. We are to show that the transition probabilities (17) fulfill the conditions (i)–
(iii) of Theorem 3. Observe first that by (5) and boundedness of D the covariances Cn

satisfy a uniform estimate (13) with constants depending only on D, d and ε. Hence the
corresponding densities qCn(x, y) are uniformly bounded from below for x, y ∈ D and the
first term in the formula (11) easily yields the estimate

Kn,eyn−2(x A) ≥ a3π(A)

since π is bounded from above. This is well known to yield condition (i) with k0 = 1
(compare [6, p. 230]).

In order to check condition (ii) we fix ỹn−2 ∈ Dn−1 and denote C∗ = Cn−1(y0, . . . yn−2).
By the very definitions (5)–(6) it follows that

‖C∗ − Cn(y0, . . . yn−2, y)‖ ≤ a10/n, (20)

where a10 does not depend on y ∈ S. We may hence apply Lemma 2 to to deduce for all
measurable A ⊂ D that |Kn,eyn−2(y; A) − QC∗,γC∗(y; A)| ≤ a11/n, which in turn implies
that ‖Kn,eyn−2−QC∗,γC∗‖M(D)→M(D) ≤ 2a11/n. By [14] the delayed rejection kernel satisfies
πQC∗,γC∗ = π, and we obtain

‖π − πKn,eyn−2‖ = ‖π(MC∗ −Kn,eyn−2)‖ ≤
2a11

n
,

as desired.
Finally, the verification of condition (iii) is based on Lemma 2, which yields that

‖Kn,eyn−2 −Kn+k,eyn+k−2
‖M(D)→M(D) ≤ 2 sup

y∈S,A∈B(D)

|Kn,eyn−2(y; A)−Kn+k,eyn+k−2
(y; A)|

≤ 2a5(1 + γ) sup
y1,...,yn+k−2∈S

‖Cn − Cn+k‖ ≤ a12k/n,

where the last estimate follows from the definition (5).

Remark. One could easily modify the proof of [6, Thm 2] to obtain a considerably
stronger result with less restrictive assumptions. However, the above result is enough for
our purposes here. Some interesting generalizations (for a slightly modified algorithm,
though) are obtained in [1],[2]. We expect the result to hold under quite minimal as-
sumptions, especially without the extra smoothness and decay of π assumed in [2]).

The above proof works without changes to modifications of the DRAM algorithm,
where one, e.g., keeps the second covariance fixed all the time, or adapts only after
prescribed periods.
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6 Test examples

The examples presented below are artificially constructed to show that when either one
of the two building blocks of DRAM, namely DR and AM, are badly designed, the combi-
nation of them almost automatically solves the problems that would appear running each
one of them separately.

In the test examples we consider unimodal target distributions, i.e., Gaussian type
distributions in the case of linear models and ’banana’ shaped distributions in cases of
nonlinear models.

We conclude with a more realist application where neither DR nor AM alone works
properly but the combination of the two seems to work quite well.

6.1 Test example 1

We shall first employ the targets already used in [5] and [6] as test cases. More specifically,
we use the correlated Gaussian distribution (π2) and the ’strongly nonlinear banana-
shaped’ distribution (π4). The distributions allow an exact computation for the, e.g.,
50 % and 90 % probability regions, so the correctness of the MCMC runs can be easily
verified.

In all the test runs we have compared the results obtained from the basic Metropolis–
Hastings (MH), Adaptive Metropolis (AM), basic Delayed Rejection (DR) and the com-
bination DR+AM (DRAM). In the first set of runs, we use correlated Gaussian target
distributions π2 in various dimensions.

We first want to test situations where the proposal distributions are selected to have
too small variance with respect to the target distribution. The initial proposal distribution
in all cases was a sphere multiplied by the scaling factor sd = (2.4)2/d, and additionally
scaled down by a constant factor. In DR, we used one higher stage, whose proposal was
obtained by scaling the proposal of the first stage by a shrinking factor 0.1.

As it is well known, in this setting the MH algorithm tends to “walk around” the
target distribution with small steps, without effectively exploring the state space. The
same naturally is true for DR, if all the proposals are too small . The point here is to see
how the AM adaptation is able to fix this problem.

Figures 1 and 2 present typical outcomes of the runs in a two dimensional setting.
Figure 1 gives the results of MH and AM, while Figure 2 exhibits the results produced by
DR and DRAM, respectively. The additional scaling factor of the proposal here was 0.01.
The lower parts of the figures give the proportion of the chain points within the 50% and
90% probability regions during the runs. We can see that the adaptation indeed seems to
remove the problem caused by too small variance in proposal distributions for both the
MH and the DR.

For more reliable statistics, we performed the above runs repeatedly, with increasing
dimensions of the target distribution, dim = 2, 5, 10, 15, ...50. The chain length was kept
constant, 20000 for all dimensions. Otherwise the settings are the same as above, the
variance of the basic proposal distribution was again scaled down by a factor of 0.01. In
each dimension, the runs were repeated 100 times. The mean values over the repetitions
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Figure 1: Left figures: results by MH, with too small variance for proposal. Right figures:
results by AM, started with the same proposal distribution as with MH

were computed for the proportion of the chain points in the 50% and 90% probability
regions, as well as for the center point of the distribution as computed by the chain.
The center point of the target distribution was always at the origin, so the norm of the
average value of the chain can be used as a measure of the error of the estimate for the
expectation.

Figure 3 shows the mean errors for the center point of the distributions. We see that
the adaptive algorithms clearly outperform the MH and DR runs, where the center point
of the chain parameters may get strongly biased estimates.

Figure 4 shows the results for the 50% and 90% regions. We can see that for moderate
dimensions, up to around dim = 30, the performance of all versions are comparable. For
higher dimensions (dim = 40 and dim = 50), the adaptation seems to concentrate too
much points in the central part of the target distribution. This is a known difficulty with
the basic form of the AM adaptation. The combination, DRAM, might slightly improve
the situation, but it does not remove this problem with AM in case of higher dimensions.
Methods for adaptation for high dimensional problems are studied elsewhere, e.g., in [7],
therefore here we will focus on simulations in moderate dimensions.

The same set of tests was also run for the strongly nonlinear (π4) target distribution.
The results were quite similar to the above ones, and are not reported here.

6.2 Test example 2

Here we run basically the same tests as in Example 1, but take the proposals so that
the AM adaptation has difficulties to get started. The target distributions are the same
as those in Example 1. But the basic proposal distribution – the fixed proposal for MH,
initial for AM, first stage proposal for DR, and initial first stage for DRAM – is now scaled
up by a factor or 4. The size of this factor was mainly chosen to get the AM adaptation
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Figure 2: Left figures: results by DR, with too small variance for proposals. Right figures:
results by DRAM, started with the same proposal distributions as with DR

at least started. In fact, with an essentially larger initial proposal, practically no new
points would be accepted, and no adaptation would take place. The shrinking factor for
DR was kept in the value 0.1.

As above, we run repeated simulations for increasing dimensions. Again, we see that
the adaptive algorithms clearly outperform the MH and DR runs in computing the ex-
pected value of the distribution, see Figure 5. Figures 6 give the proportions of sampled
points in the 50% and 90% probability regions. We can observe how the results of both
MH and AM are clearly improved by combining them with DR. Note that now DRAM
properly works in all dimensions tested.

6.3 Example 3

Our last example presents a situation where neither AM nor DR works properly alone, but
the combination DRAM has no difficulties. Consider a simple chemical reaction A Àk1

k2
B,

where a component A goes to B in a reversible manner, with reaction rate coefficients
k1, k2. So the dynamics is given by the ODE system

dA

dt
= −k1A + k2B,

dB

dt
= k1A− k2B

with some initial values A0, B0 at t = 0. The parameter estimation task would be to find
values for k1, k2 when data for, e.g., A(t) = k2/(k1 +k2)+(A0−k2/(k1 +k2))e

−(k1+k2)t has
been obtained at given sampling times of t. Suppose now that the data has been sampled
too late, in the sense that the reaction already has reached a steady–state equilibrium
at the sampling times, cfr. Figure 7. It is clear that from such data the values of the
parameters can not be separately determined, only the ratio k1/k2 may be identified,
as well as lower bounds for k1 and k2. The posterior distribution for k1, k2 would be a
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Figure 3: Errors in the estimates of the center point of the distribution. Average results
for cases with too small proposal variance.

practically infinite ’zone’ in a direction where k1/k2 = const. As a test case, we try to find
this posterior with MH,DR,AM and DRAM.

While given here in a simplistic setting, situation of this type is, in fact, rather often
faced in the parameter estimation of dynamical systems. Some parts of the dynamics is
very fast, or internal structural characteristics of the model lead to strongly correlated
parameter combinations. In more complex situations, it may not be easy to observe the
correlations beforehand. MCMC methods should work in these situations, too. Indeed,
they can provide a good tool for analyzing the identifiability of the parameters.

A standard procedure would be to estimate the parameters by least squares fitting,
compute the covariance matrix of the parameters by the approximative Hessian matrix,
and use it to construct the proposal distribution for MH. However, in the setting of our
example there is a problem. There is no unique minimum for the least squares function,
and the covariance matrix is singular.

Figure 7 shows a typical run with DR. The computed approximative covariance does
not provide a good proposal, and the efficiency remains very low. The acceptance rate
with the first stage proposal – that is, with the MH proposal – is around 0.4%, with the
second stage proposal around 4–5%. For the second stage we used scaled version of the
first one, both with smaller and larger variances. We may conclude that while DR is
better than MH here, the sampled parameter values do not provide a proper coverage of
the posterior of the parameters.

One could expect that AM would find, possibly after some initial trials, a well cali-
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Figure 4: Proportions of sampled points in the 50 % and 90 % probability regions. Average
results for cases with too small proposal variance.

brated proposal distribution. However, since the initial proposal is so poor, it can take a
very long time for AM to start working. Figure 7 illustrates a typical case. The ’wake–up’
time may be long or quite short, but the success of AM is, at best, uncertain.

The combination of AM and DR was employed as outlined before. The first stage had
the proposal obtained from the covariance of the fit, for the second stage the proposal
was scaled down by a factor of 0.1. The result is a dramatic improvement, see Figure
8. The second DR stage is able to find acceptable proposals right for the beginning, the
AM adaptation starts immediately. The acceptance rate and the mixing of the chain are
nearly optimal.

7 Conclusions

We show how two ways of modifying the standard MH sampler can be successfully com-
bined. The first modification, AM, aims at adapting the proposal distribution based on
the past history of the chain. The second modification, DR, aims at improving the ef-
ficiency of the resulting MCMC estimators. While AM allows for “global” adaptation,
based on all the previously accepted proposals, DR may allow for “local” adaptation, only
based on rejected proposals within each time-step. There are different ways of combining
AM and DR. We tried some basic but very effective ones, as the simulation results show.
We plan to further investigate different ways of combining DR and AM.

Acknowledgement We would like to thank Johanna Tamminen for helpful discus-
sions during this work.
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data, the fit, the 95% probability values as computed by the MCMC chain. Top right:
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