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Abstract

In this paper we will study the price-forming of securities in purely
financial markets when the agents have quadratic utility functions for
final wealth. We will emphasize a model where the utility parameters
are sampled and agents’ acts are somewhat random even in a homoge-
neous environment. In the scale of the whole economy some behavior
is still expected and we study the deviations from this behavior.

1 Security demand and equilibrium

Consider a set of agents ¢ = 1, ..., n acting on a two-period financial markets
with securities 7 = 1,...,/ bearing risk and a safe security j = ¢+ 1 with a
fixed payoff. At the next period there are states s = 1,...,S one of which
will reveal. The securities have state-dependent payoffs tomorrow in money,

P (s).

—_

) P(1) . (D)

i
(& PA(2) ... PH2)

—

-
[\

~

VHS) ¥AS) ... YTHS)

Especially for the £+ 1% commodity ¢*1(s) =1 Vs =1,...,S for which
the price p*™' = 1. Hence it can be considered as the numeraire. For the
different states agents assign probabilities ¢;(s), ¢ = 1,...,n. Furthermore,
agents have initial endowments in assets e}, ... ,ef“ and a wutility function
u; : IR — IR for final wealth with a special quadratic form:
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The parameter a; ' has a risk-aversion interpretation — the bigger it is,
the further we are from risk-neutrality. Argument z refers to the terminal
wealth of a feasible and optimal consumption allocation, or portfolio, as used
more often.

We assume that the portfolio-holders or agents have unique beliefs q of
future and agreement on W. We define the portfolios and future beliefs by

) q(1)
7 q(2)

X = . s q= .
it q(S)

We will first discuss the selection of an optimal and feasible portfolio. For
this, choose one agent and supress the agent index ¢ everywhere.

1.1 Individual security demand

Recall that the instantaneous utility of a terminal wealth was v : R — R. If
we see this from today, the utility will be u : R® — IR”, as there are S states
tomorrow. The utility of a whole portfolio x will then be u : R“V*% — R®

u(Tx) = (u(P(1)x),...,u(T(9)x))". (1.2)

To define the optimal portfolio, an agent wants to maximize a utility
function U : R“"! — RR. A natural choice is the expected utility

U(x) = q' u(¥x). (1.3)

Besides optimal, the portfolio must also be feasible and thus we have a convex
programming problem

max{U(x) = q' u(¥x)|p'x =p'e}. (1.4)
The Lagrangean is
L(x;\) =q u(¥x) — Ap' (x —e)
and the first-order condition is

VL(x;\) = V(¥Ix)u'(¥x)q—AV(x—e)p
= ¥'u/(¥x)q— Ap =0,

where u'(¥x) = diagu’(¥(s)x)] € R®*®. This produces the system,

U = fog: R - R® — IR, where g(x) = ¥x and f(y) = q u(y).
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Now put u'(z) = 1 — 2. The system of equations (*) can be written
shortly as

1
Koy — 52¢X = /\p7

where p,, = ¥ q and

S
[BPF = (s)ek(s)q(s).

For +!(-) =1 € R¥ and p™*' =1, hence A =1— 1 pJx and

1 1 1
/w—awa:p—aulxp:p—apulx

The demand i.e. optimal and feasible portfolio is then

x(p) = a[p @ py — Ty (P — py), (1.5)

where p ® py, denotes the tensor (Kronecker-) product pul e R,

1.2 Equilibrium

We now add the subindex ¢ in a, x(p) and e to indicate the agent. Denote
the indiwvidual excess demand by

¢i(p) = xi(p) — € = a;[p ® py — 21&]71(13 — By) — €

a vector in RY, like e; and p — py, while [p ® py — X)) is in £ x £. For an
economy with n agents we use the following notation:

{(p) = a®[[p® puy — By (P — py)] — e, (1.6)

where &, ¢(p) € R™, a € IR" and hence the rest is in R™** as ought to be.
The total excess demand Z(p) is the sum of the n individual excess demands

Z(p) =¢(p) 1.
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We get the market clearing condition of equilibrium:

ao((p@puy—%,) ' (p—py)) 1-e"1=0.

Let us look at the equilibrium prices of the securities. They satisfy

(P®@ny —Xy) '(p—nyla’'l—e'1=0.

Denote
. 1 e'l
Sp)=P®uy —Ey) (P~ my) = =7
1 _ _
S P —py = pue 1-2,e'1)

a'l
1 T_Tq _ 1 s &l
We get the formula for the equilibrium prices,

a'lp, — el

=P —

Po et =P (1.7)
Remark 1.1. Write a = 0!, el = 62, ... e' = 0" and the total excess
demand Z(0; p) can be defined more precisely
Z(0;p) = ¢(01;p) + ... +¢(0u3P) = A(p)S(0), (1.8)
where A(p) is a R _matrix,
S(p) -1 0 0
A S(:p) 0 -1 0
S(.p) 0 0 -1

and S(6) is the sum of the individual characteristics. Using vector ¢(p),
Z(0,p) = ¢(p)T1 = A(p)OT1 so that ¢(p) = OA(p)T, © € R,

Remark 1.2 (Capital asset prices). Put m = (uy, — p), W = p'e and
Cy = [sz)k] = [cov(¢7,¢F)] = By, — py ® py. We can write (1.5) as
x(p) = (a — W)[Cy + m @ m] 'm. (1.9)
Write
Cyo+memjx=(a—W)m<&
Xy —P®uy—py ®Pp+PpOpx=am— (mXp)e.

The last two terms cancel from both sides by the equilibrium condition x = e,
which results in (1.5). The security demand of (1.9) is proportional to Cllm,
the solution of the mean-variance formulation of the CAPM. See [4].



2 Random economy

Take, not only s, but also a and e as random variables with a joint-distribution

f(a,e). We define
u(p) = Ec(p) = [ [ cila.eip)s(a.e)deda

Each ¢;(p) is a realization via (a,e). When u(p*) = 0 we call p* an
expected equilibrium price. Let us solve the expected equilibrium prices:
u(p) =Ea[p @ py — 2y (p — py) ~Ee=0«
1 1

.
— pulEe —p=—3,Fe — p, <
Eq > TP TR e T
>, Ee — Eap, .
_ = p*. 2.1
p wEe— Ed p (2.1)
Recall that (1.7) equals
- __2¢%éT1——%dT1u¢
Pr = pyieTl—1aT1

Now we see that w.p. 1 asn — oo, p, — p*. This is the law of large numbers.

2.1 The Gartner-Ellis theorem

The total characteristic is denoted
SO)=0,+...+0, = (ar,e] ) +...+ (an,e])7,
which has the (limiting) free energy function
colw) = Jim = log B{explu”S(0)]}
The convex conjugate (or the Legendre— Fenchel transform) of it is

Iy(x) = sgp[uTx — cp(u)]. (2.2)

According to the Gartner-Ellis theorem, for an open set GG and a closed set
F, the LDP holds for n=!S:

1 _
lim sup —logIP{n"'S(d) € F} < —inf Iy(x)
n—00 n

zeF

lim infllog]P{nflg(G) € G} > —inf [h(z).

n—oo n zeG

For instance, with 6; iid, P(n™'S() ~ r) ~ e @) where x % IE0;. In this
special case the Gartner-Ellis theorem is called the Cramér’s theorem.



2.2 Deviations from the expected behavior

We are interested in the asymptotics of IP(n~'Z(6;p) ~ 0) while u(p) # 0.
Equally one may think of the event p # p* while the prices p seem to be
in equilibrium i.e. with zero total excess demand Z(#; p), which was defined

as Z(0;p) = ((0;p) + ... + Gu(0;p) = A(p)S(8), where A(p) was defined in
remark (1.1).

With this linear form, we see that the function Z is continuous and satis-
fies the requirements of the contraction principle, see e.g. [3], Theorem 4.2.1.
By the contraction principle, the LDP holds for n~'Z(f;p) with an excess
demand-rate

I(z;p) = inf Iy(y). (2.3)

y:A(p)y=x
For the random equilibrium prices take z = 0 representing the equation
Z(0;p) = 0. Our equilibrium-rate is then

1(0;p) = sup [0—c(u;p)] =— inf c(u;p).

weRH ueR{H1!

Note that c(u; p) it is not cp(u) but a different function. However u'Z9;p) =
(A(p) "u)"S() which implies

c(u;p) = co(A(p)'u) and

I(p) =— inf co(A(p)Tu) = —co(A(p) u(p)),

ucR !

where u(p) is a unique minimum as the function cy(+) is convex. In this point
Vuco(A(p)'u) = 0.
Using the convex duality: VyIp(x) = u(p), s.t. Vuce(A(p) u) = x, we get
I(p) = —co(A(P) " Vilo(x)).
Especially for the equilibrium prices x = 0 and the rate will be
I(p) = —co(A(P) " Vilo(x) x=0)- (2.4)

To make things more clear we will next present an example where the char-
acteristic parameters are independently sampled from the multinormal dis-
tribution.



Example 2.1. Preferences 6; i.i.d. ~ mn(8,Q) with mean § = IE; and
covariance matrix Q = IE[(; — 8)(6; — 8)"]. Assume Q invertible.
Now S,,(0) = > ", 6; ~ mn(nd,nQ) i.e. the density is

fl6) = [(2m)|Q[I™"? eXp[—%(O -6)'Q7'(6 - 0)].
The Laplace transform of 6 is well-known,
]E[e“Te] _ euTéJr%uTQu
and correspondingly for S,,(9)
Efe" ' Sn] = ¢ 0+5u’Qu, (2.5)

Log of this is cg(u) and the convex conjugate of it is I5(x) = sup,cpert[u’x—

co(w)]

= sup [u'x—nu'6— EuTQu]. (2.6)
ucR( 1! 2

Vulo(x) = 0 = optimum 6 = Q' (X — ). Substitute to (2.6).
lix) = [Q7'( - a)fx —n[Q( - a)]Ta =
e o afaG-o)

2 . n
= [@C-9)] x—no)
e oo
= 3G -97Q7( -9 (.7

The LDP holds with rate I4(x). Put ¢(8) = aS(p) — e where 6;, i =
1,...,n. In matrix form Z,(8; p) = A(p)S,(8), which is a continuous trans-
formation. Thus due to the contraction principle we have that for Z,(6; p) =
S,.(¢(8)) = A(p)S,(8) and the LDP holds for n='Z,(; p) with rate I(z; p) =
infy.a(p)y=z Lo(¥)-

The rate at which the probability of seeing a random equilibrium price
at a large economy, with pricesystem p s.t. p # p* was of the form I(p) =
—inf e+t co(A(P) "u), equivalent to that of

I(p) = —co(A(p) u(p))
= _CG(A(p)Tvxle(X)|x:o)
= —co(—A(p)'Q'0)
= n[A(p)'Q'o]'e
[A(p)'Q '6]"Q[A(p)'Q 'a].
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