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This thesis consists of two manuscripts, [9] and [10], intended for independent publication
and of the extended abstract that you are now reading. The topic of the dissertation is
the Apollonian metric. The results can be classified on one hand as being estimates of the
Apollonian metric by simpler metrics along the line of investigation started by Alan Beardon,
[3], and on the other hand as generalizations of results by Frederick Gehring and Kari Hag,
[7], describing Apollonian bilipschitz mappings.

This extended abstract consists of a short historical overview of the developments of
the Apollonian metric, a more detailed presentation of some recent results pertaining to the
present investigation and the statement of some of our most interesting results. The notation
and terminology used conforms largely to that of [2] and [17], see Section 2 of [9] for details.

The Apollonian metric was first introduced by Dan Barbilian in 1935 in the paper [1]. It
has since been considered by P. Kelly [13], L. M. Blumenthal [4] and W.-G. Boskoff [5] under
the name of the Barbilian metric. These investigations are based on a qualitative approach.
Thus Kelly concludes for instance that the metric is not of interest in arbitrary domains,
since there are, in general, no geodesics in this case. Similarly, Boskoff is more interested in
generalizations of the metric as we will define it (see (1)), developing an axiomatic approach
to the Barbilian metric.

The approach that we adopt is of a more quantitative nature. Articles along this line
of investigation have appeared recently, inspired by the article [3] of Alan Beardon’s. In
that article, Beardon coins the name and defines the Apollonian metric, αG, unaware of the
previous investigations mentioned above, by

(1) αG(x, y) := sup
a,b∈∂G

log
|a− x|
|a− y|

|b− y|
|b− x|

.

where x, y ∈ G  R
n, and Gc (the complement of G) is not contained in a hyperplane or

sphere. If Gc is contained in a hyperplane or sphere then αG is still well defined, but it is
only a pseudo-metric (i.e. there exist distinct x, y ∈ G such that αG(x, y) = 0). Beardon’s
quantitative approach to the Apollonian metric has also been adopted in [14], [15], [7] and
[12]. Beardon proved various inequalities relating the Apollonian metric to other well-known
metrics, such as the quasihyperbolic metric (see [8]), the Klein-Hilbert metric (see [11]), the
hyperbolic metric (see [7]) and the jG metric, defined for x, y ∈ G  Rn by

jG(x, y) := log

(
1 +

|x− y|
min{d(x, ∂G), d(y, ∂G)}

)
.

An estimate of αG by a metric cannot give a “good” lower bound if it is valid in all domains
G  Rn, since αG is a pseudo-metric in some domains. For instance, Beardon’s estimate [3,
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Theorem 6.1]

αG/2 ≤ hG ≤ 4 sinh(αG/2),

where hG denotes the hyperbolic metric, is valid only in simply connected convex planar
domains. (An inequality of the type dG ≤ cd′G means that dG(x, y) ≤ cd′G(x, y) for all
x, y ∈ G.) On the other hand, Pasi Seittenranta’s result [15, Theorem 3.11],

δG − log 3 ≤ αG ≤ δG,

where δG denotes Seittenranta’s cross ratio metric (see [15, (1.1)]), is valid in every domain
G  Rn but does not provide a linear (as opposed to affine) lower bound. Notice that this
means that Seittenranta’s lower bound tells us nothing when δG ≤ log 3.

On a different track, Gehring and Hag [7, Theorem 3.1] proved that for a simply connected
planar domain G the inequality

(2)
hG
K
≤ αG ≤ 2hG

holds if and only if G is a quasidisk. Apart from the fact that this inequality provides a
new characterization of planar quasidisks it is interesting in the present context since it is a
comparison result valid for quite large a class of domains. Note, however, that the restriction
to planar domains is essential – in Rn (with n ≥ 3) the hyperbolic metric is not even defined
for domains other than balls.

It is well known (e.g. [6]) that jG ≤ chG in quasidisks. Hence it follows from (2) that
jG ≤ cαG in quasidisks. In [9] we will show that this result is also valid in quasiballs in Rn,
n ≥ 3.

Corollary 1.3, [9]. If G  R
n is a K–quasiball then there exists a constant L depending

only on K and n such that jG/L ≤ αG ≤ 2jG.

In fact, we are able to give a geometrical characterization, in terms of an interior double
ball condition, of those domains that satisfy the comparison condition jG/L ≤ αG ≤ 2jG,
see [9, Theorem 5.9].

Using this corollary we will prove a partial generalization of the following theorem.

Theorem 3.11, [7]. Let G  R2 be a quasidisk and f : G→ G′ be an Apollonian bilipschitz
mapping.

(1) If G′ is a quasidisk then f is quasiconformal in G and f = g|G, where g : R2 → R
2 is

quasiconformal.
(2) If f is quasiconformal in G then G′ is a quasidisk and f = g|G, where g : R2 → R

2 is
quasiconformal.

Note that in [7] it is required that f be an isometry instead of a bilipschitz mapping, but
their proof is valid mutatis mutandis for bilipschitz mappings as well. Also, the wording of
the theorem has been changed so as to make its connection with the following results clearer.

We will show that the first statement of the previous theorem is true also for n ≥ 3.

Theorem 1.6, [9]. Let G  Rn be a quasiball and f : G→ R
n be an Apollonian bilipschitz

mapping. If f(G) is a quasiball then f = g|G, where g : Rn → R
n is quasiconformal.

In [9] we also ask under what conditions a Euclidean bilipschitz mapping is Apollonian
bilipschitz as well. Let us define two quantities that give information about this: for L ≥ 1
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define

αL(G) := sup
f

sup
x,y∈G

max

(
αf(G)(f(x), f(y))

αG(x, y)
,

αG(x, y)

αf(G)(f(x), f(y))

)
,

where the first supremum is over all Euclidean L–bilipschitz mappings f mapping G into Rn

(with the understanding that terms with zero denominators are ignored). Define also

α′L(G) := sup
g

sup
x,y∈G
{αG(g(x), g(y))/αG(x, y)},

where the first supremum is over all Euclidean L–bilipschitz mappings g mapping G onto G
(again ignoring zero-denominator-terms).

Corollary 1.7, [9]. If G  R
n is a K–quasiball then there exists a function φ : [1,∞) →

[1,∞) depending only on K and n such that αL(G) < φ(L) for every 1 ≤ L <∞.

The following result provides a connection between domains in which the Apollonian
metric can be estimated by the jG metric and domains for which every bilipschitz mapping
is Apollonian bilipschitz.

Theorem 1.8, [9]. Let G  Rn be a domain such that αL(G) < ∞ for some L > 1. Then
jG ≤ KαG, where the constant K depends only on L and αL(G).

Conversely, let G be a domain such that jG ≤ KαG for some K. Then there exists a
constant L0 > 1 such that αL(G) <∞ for every 1 ≤ L < L0.

The following result shows that the weaker bilipschitz condition α′L(G) <∞ is equivalent
to the comparison property.

Corollary 1.9, [9]. Let G  Rn be a domain. The following two conditions are equivalent:

(1) There exists a constant K such that jG ≤ KαG.
(2) For every L ≥ 1 we have α′L(G) <∞.

In the second manuscript, [10], we consider in greater depth how Theorem 3.11 from [7],
cited above, can be generalized. However, also in this case the problem itself goes back to
A. Beardon, who speculated in [3] that the isometries of the Apollonian metric are only the
Möbius mappings, at least for many domains, and proved that this is so in a special case, see
[3, Theorem 1.3]. Z. Ibragimov has also recently proved some new results in this direction,
see [12]. Apart from Theorem 3.11, Gehring and Hag proved two other results that also
pertain to this problem.

Theorem 3.16, [7]. Let G ⊆ R2 be a disk and let f : G → R
2 be an Apollonian isometry.

The following conditions are equivalent:

(1) f(G) is a disk.
(2) f is a Möbius mapping of G.

Moreover, if either of the two conditions holds then f = g|G, where g : R2 → R
2 is a Möbius

mapping.

As a last result from the paper of Gehring and Hag we quote the following theorem, which
is a stronger version of the previous one:

Theorem 3.29, [7]. If G ⊆ R2 is a disk and f : G→ R
2 is an Apollonian isometry then

(1) f(G) is a disk and

(2) f = g|G, where g : R2 → R
2 is a Möbius mapping.
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Note that this result solves Beardon’s problem for the disk. In [10] we complement these
results by three new ones, two in space and one in R2. Our first result is the strong version
of Theorem 3.16, [7] and is valid only in the plane.

Theorem 1.7, [10]. If G ⊆ R2 is a quasidisk and f : G → R
2 is an Apollonian bilipschitz

mapping then

(1) f(G) is a quasidisk and

(2) f = g|G, where g : R2 → R
2 is quasiconformal.

The next result is an extension of Theorem 3.16, [7], which is, however, not stated in
terms of quasiballs but in terms of A-uniform domains. A-uniform domains are introduced
in Definition 6.5 of [10] and are defined as those domains that satisfy the relation kG ≤ KαG
for some fixed K ≥ 1, where kG denotes the quasihyperbolic metric from [8]. We show that
in general quasiballs are A-uniform domains (Corollary 6.9) and that in the plane these two
concepts define the same class of simply connected domains (Corollary 6.10). Whether these
classes of domains coincide in space is an open problem. It follows, then, that the next result
implies Theorem 3.16, [7], although it is not the most natural generalization of that result.

Theorem 1.8, [10]. Let G ⊆ Rn be A-uniform and f : G→ R
n be an Apollonian bilipschitz

mapping. The following conditions are equivalent:

(1) f(G) is A-uniform.
(2) f is quasiconformal in G.

Notice that we are not able to prove the last statement of Theorem 3.16, [7], (that f would
be a restriction of a quasiconformal mapping from R

n onto Rn) for the case n ≥ 3.
Our last result along this line of investigation is a generalization of [7, Theorem 3.29] to Rn,

which is also proved quite similarly, although the geometry becomes a bit more complicated
in space.

Theorem 1.9, [10]. If G ⊆ Rn is a ball and f : G→ R
n is an Apollonian isometry then

(1) f(G) is a ball and
(2) f = g|G, where g : Rn → R

n is a Möbius mapping.

As a final result the following theorem summarizes several characterizations of planar
quasidisks in terms of the Apollonian metric. These add to the legion of equivalent condition
given e.g. in [6].

Theorem 1.10, [10]. Let G be a simply connected planar domain. The following statements
are equivalent:

(1) The domain G is a quasidisk.
(2) There exists a constant K such that hG ≤ KαG, where hG denotes the hyperbolic

metric. [7, Theorem 3.1]
(3) The domain G is A-uniform, i.e. there exists a constant K such that kG ≤ KαG. [10,

Corollary 6.10]
(4) The metric αG is quasiconvex, i.e. there exists a constant K such that for every

x, y ∈ G there exists a path γ connecting x and y in G with `αG(γ) ≤ KαG(x, y). [10,
Corollary 7.4]
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Notice that of the conditions in the previous theorem the fourth one involves only the
Apollonian metric.
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