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Assisting models
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Additional model-assisted methods
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"‘\ Indirect estimators and models

* Model-assisted and model-based estimators

e In both approaches the model underlying an indirect
estimator extends beyond the domain of interest
(i.e. the model is NOT domain-specific as is the case in
direct estimators)
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"‘\ Indirect estimators and models

* The role of model differs in model-assisted
and model-based estimators

e GREG uses models as assisting tools
This is to avoid design bias
Cost to be paid is poor accuracy in small domains

e SYN, EBLUP and EBP rely solely on models
A benefit is better accuracy in small domains
Cost to be paid is the risk of design bias
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¥ Models: Examples

* Members of the generalized linear mixed
models (GLMM) family
e Linear fixed-effects models
e Linear mixed models
e Logistic fixed-effects models
e Logistic mixed models

* Large literature

e E.g. Demidenko (2005). Mixed Models: Theory and
Applications. Wiley.
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‘_“ Linear GREG and extensions

* Linear GREG - “Traditional” GREG estimator

o GREG estimator assisted by a linear fixed-effects model
e Sarndal, Swensson and Wretman (1992)

* Members of extended GREG family
e GREG estimators assisted by more complex models

e Logistic fixed-effects model
LGREG, Lehtonen and Veijanen (1998)

e Linear mixed model
MGREG, Lehtonen, Sarndal and Veijanen (2003)

e Logistic mixed model
MLGREG, Lehtonen, Sarndal and Veijanen (2005)
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i Assisting models: GLMM
* formulation

GLMM formulation with domain - specific random terms
E..(Yy|u,)=f(x; (B +u,)), where
f(.) refers to the chosen functional form
X, =(1,Xy,---,X;, ) predictor variables (for all k e U)
B=(8,0,..05,) fixed effects
u, =(u,,,..-,u,,) domain-spefic random effects

Predictions: y, =f(x.(B+40,)), keU,, d =1...,D
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 Models - 1

Linear mixed model for continuous study variable y
Domain-level random intercepts u,
Y =X B+Uy + &,
where X, =(L,Xy,-- Xy ), B=(8Bu-8,)
u, ~N(0,5°), ¢, ~N(0,6°%), u, and &, independent
Estimate B and & from the data
Calculate estimates u,, d =1,...,D
Calculate fitted values
Y. = x/B+U,, keU,, d=1..D
Used in MGREG estimator
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% Models - 2

Logistic fixed - effects model
for binary response variable y

exp(xB)
1+ exp(x,B)
Estimate B from the data

Em (yk) —

n

Calculate fitted values vy, =

Used in LGREG estimator
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Models - 3

Logistic mixed model for binary response variable y
Domain-level random intercepts u,

exp(X,B+uy) - 5
E u)= with u, ~ N(O,

Estimate B and o from the data
Calculate estimates u,, d =1,...,D
Calculate fitted values
j = SPGB eU,, d=1..D
1+ exp(ka +Uy,)
Used in MLGREG estimator
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‘* Estimation of the model

* GLMMs can be fitted for example by:
e R packages nlme or 1lmed4 (glmer function) using
maximum likelihood

e SAS procedures GLIMMIX (using ML) or MIXED (using
REML or ML)

* Some methodological references
e Datta (2009)
e Jiang and Lahiri (2006)
e Rao (2003)
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‘* GREG estimator

* In all three cases:
e MGREG - Mixed model assisted GREG
e LGREG - Logistic fixed-effects model assisted GREG
e MLGREG - Logistic mixed model assisted GREG

the formulation of the GREG estimators for
domain total and mean remain the same!

{dGREG - Zkeud Yi +Zkesd a, (Y. -V ,d=1..D

~n ~n

thREG / Nd

YdeRreG :thREG / Nd Ol Yicreo
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‘_“ Data requirements

* Traditional linear GREG estimator
e Unit-level x-vectors not necessarily needed
e Known domain totals of x-variables only are needed

e Applicable in "survey” countries in particular

* Extended GREG family

e MGREG, LGREG, MLGREG
e Unit-level x-data are needed for all units in population

o Applicable in "register” countries
e Applicable also in “survey” countries if census data can

be merged with sample survey data at the unit level
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¥ EXAMPLES FROM LITERATURE

* Numerical (simulation) results on relative
performance (design bias and accuracy) of
the extended family GREG estimators

* Lehtonen, Sarndal and Veijanen (2003)
e MGREG estimation assisted by linear mixed model
* Lehtonen, Sarndal and Veijanen (2005)
e LGREG estimation assisted by logistic mixed model
* Lehtonen and Veijanen (2009)
e MLGREG estimation assisted by linear mixed model
* Lehtonen, R., Veijanen, A., Myrskyla, M. and Valaste, M. (2011)
e AMELI project; Applications to poverty indicators
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‘_“ EMPIRICAL EXAMPLES

e CASE STUDY 1: Empirical example on estimation of
regional means of perceived income by HT, linear GREG
(assisted by fixed-effects linear model) and mixed-model
assisted MGREG methods. SILC data (Finland) will be used

e CASE STUDY 2: Simulation example in accounting for
unequal probability sampling in model-based EBLUP

* (To be discussed on Tuesday 17 Feb.)
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‘.“ Other model-assisted methods

* Model calibration
e Wu and Sitter (2001), Montanari and Ranalli (2005, 2009)

* Model calibration for domains
e Lehtonen and Veijanen (2012, 2014)

* Assisting models
e Members of the GLMM family, for example:
e Linear mixed models
e Logistic mixed models

* NOTE: Traditional GREG estimator is restricted to linear fixed-
effects assisting model for continuous variables
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Calibration methods - Summary

CALIBRATION METHODS

Model-free (linear)
calibration
MFC

Model calibration
MC

Hybrid calibration
HC

Sarndal (2007}
Lehtonen and Veijanen (2009}

Montanari and Ranalli (2005)
Lehtonen and Veijanen (2012}

Weight Calibration to reproduce the | Calibration to the Combination of MC and
calibration known population totals of population total of the MFC, depending on
the auxiliary variables predictions derived via the | coherence
specified model requirements
Typical study | Continuous Continuous, binary, Same as MC
variable polytomous, count
Auxiliary data | Aggregate level Unit level Unit level
Model No explicit model statement | Generalized linear models | Same as MC
specification family
Main aims Coherence of estimates with | Accuracy improvement, Accuracy improvement,
published statistics, “Multi- extension of calibration to | extension of calibration to
purpose” weighting, nonlinear relationships nonlinear relation-ships,
Accuracy improvement Coherence of estimates
with published statistics
Literature Deville and Sarndal (1992} Wu and Sitter (2001} Montanari and Ranalli (2009}

Lehtonen and Veijanen (2014)
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