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Topic 4 Part I 

• GREG and calibration estimators 
PART II: Indirect GREG estimators 

• Indirect linear GREG estimator for domain totals 

• Variance estimators 

• Example 
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Indirect estimators 

• Recall definition 
 

• Indirect estimator uses y-values not only from 
the domain of interest itself but also outside the 
domain or from earlier time points 
 

• “Borrowing strength” from other domains or in a 
temporal dimension 
 

• Borrowing strength can be exercised both in 
design-based SAE and model-based SAE 
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Linear GREG estimator 

• GREG estimator assisted by a linear fixed-effects 
model (Särndal, Swensson and Wretman, 1992) 
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Indirect GREG estimator for domain 
total 
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This GREG is an indirect estimator, since all y-values in the 
sample contribute  



Indirect GREG estimator – another 
form 
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Since assisting model is linear, GREG estimation does not 

require unit-level information on kx  

It is enough to have access to the vector 
d

dx kk U
t x  of 

domain totals of auxiliary x-variables in the population and the 

corresponding HT estimates ˆ
d

dx kk s
t x  in the sample 

 

Standard textbook form: 
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Details 
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Practical variance estimator for 
indirect GREG for unplanned domains 
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Approximate variance estimator of GREG by using extended residuals: 
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   n is the total sample size and 1/k ka   (design weights) 
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NOTE: Similarity of (15) with HT variance estimator (5) for unplanned 
domains (both (5) and (15) are used in RDomest software) 



Indirect GREG estimator expressed 
as calibration estimator 
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NOTE: Calibration property holds for the auxiliary x-variables 
 



Variance estimator  
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Variance estimator for unplanned domains 
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Indirect design-based model-
assisted GREG estimators 

• SUMMARY page for: 

• Direct GREG estimator for planned domains under SRS 

• Indirect GREG for unplanned domains under SRS 

• Assisting model: linear fixed-effects model of common 
model type:  
 

• Example: Comparison of results for HT and GREG under 
more complex unequal probability sampling 
 

 

 

• See separate sheet for Topic 4, Part 2, available at 
course website 
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Summary_Examples.pdf


EXAMPLE: HT and indirect GREG 
for unplanned domains 

• Lehtonen R. and Veijanen A. (2009). Design-based 
methods of estimation for domains and small areas. 
Chapter 31 in Rao C.R. and Pfeffermann D. (Eds.). 
Handbook of Statistics. Sample Surveys: Inference 
and Analysis. Vol. 29B. New York: Elsevier. 
 

• Section 4.2. Computational example with direct and 
indirect estimation under an unplanned domain 
structure 
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Sampling design 

• Population: N = 431,000 households 

• Household sampling: πPS (PPS-WOR) 

• Size variable in PPS-WOR: Number of household 
members 

• Domains: D = 12 NUTS4 regions (domains) 

• Domain sample sizes are assumed random 

• Sample size: n = 1000 households 
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Variables 

• Study variable y 

• Disposable household income 

• Auxiliary x-variable (known for all HHs) 

• EMP: the number of months in total the household 
members were employed during last year 

• Variable is derived from administrative registers 

• Domain sizes in population and domain totals of EMP are 
assumed known 
 

• NOTE: Also here we have access to unit-level population 
values of our study variable y and auxiliary x-variable 

• This gives option to compare results with true values 
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Estimators of domain totals 

• HT estimator with variance estimator (5) 

• Linear GREG estimator with variance estimator (15) 
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Assisting model in GREG 
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GREG estimator is assisted by a linear fixed-
effects model 
 

   
0 1EMPk k ky        

 

fitted to the whole sample 
 

NOTE: Common intercept and slope for all 
domains - therefore, this GREG is indirect 



Quality measures of estimators 
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ARE Absolute relative error of an estimator in domain d  

   ˆ ˆARE( ) | | /
d d d d

t t t t  , d = 1,...,D 
 

MARE in domain group:  
The mean of absolute relative errors over domains in the group  
 

MCV The mean coefficient of variation of the estimate over 
domain group 
 

The coefficient of variation is calculated as ˆ ˆ. ( ) /
d d

s e t t  

where s.e refers to the estimated standard error of an estimator 
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Table 4. Mean absolute relative error MARE (%) and mean coefficient of 
variation MCV (%) of HT and indirect GREG estimators of totals for minor, 
medium-sized and major domains for unplanned domains. 
 

 
 
 
 

HT GREG 

Auxiliary information  

1 
None 

2 
Domain sizes  
and domain  

totals of EMP 

Domain  
sample size  

class 

 
MARE 

% 

 
MCV 

% 

 
MARE 

% 

 
MCV 

% 

Minor 
8 33dn   

 
11.5 

 
28.3 

 
7.6 

 
9.0 

Medium 
34 45dn   

 
7.6 

 
20.3 

 
3.8 

 
8.1 

Major 
46 277dn   

 
12.5 

 
9.6 

 
4.1 

 
5.0 

 



Lessons learned from the two 
examples 

• Planned domains, direct estimators 

• GREG better than HT in terms of accuracy 

• Unplanned domains, indirect estimators 

• GREG again better than HT in terms of accuracy 

• Use of auxiliary data makes sense! 

• Planned vs. unplanned case 

• Accuracy tends to be better in planned domains case 

• Stratification for important domains of 
interest makes sense! 

• An issue of the survey planning stage! 
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