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Definitions and notation - 1 
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Fixed and finite population {1,2,..., ,..., }U k N , where k refers to  

the label of population element  
 

The fixed population is said to be generated from a superpopulation.  
 

Variable of interest y 
 

For practical purposes, we are interested in one particular realized 

population U  with 1 2
( , ,..., )

N
y y y , not in the more general properties  

of the process (or model) explaining how the population evolved.  
 

NOTE: In the design-based approach, the values of the variable of interest  
are regarded as fixed but unknown quantities. The only source of  
randomness is the sampling design, and our conclusions should apply to 
hypothetical repeated sampling from the fixed population. 



Definitions and notation - 2 
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Basic parameters for study variable y for the whole population: 
 

 Total 
kk U

t y


   

 Mean /kk U
y y N


   

 

In most cases we discuss the estimation of totals – Why? 
 

In practice, the values k
y  of y are observed in an n element sample  

s U  which is drawn by a sampling design giving probability ( )p s   

to each sample s  
 

NOTE: The sampling design can be complex involving stratification  
and clustering and several sampling stages – see e.g. the Survey  
sampling reference guidelines document by Lehtonen&Djerf (2008) 



Definitions and notation - 3 
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The design expectation of an estimator t̂  of population total t   

is determined by the probabilities ( )p s :  
 

Let ˆ( )t s  denote the value of estimator that depends on y   

observed in sample s  
 

Expectation is ˆ ˆ( ) ( ) ( )
s

E t p s t s  

Design unbiased estimator:  ˆ( )E t t  

Design variance:   
2

ˆ ˆ ˆ( ) ( ) ( ) ( )
s

Var t p s t s E t   

NOTE: ˆ( )Var t  is an unknown parameter 
 

An estimator of design variance is denoted by ˆ ˆ( )V t  



Definitions and notation - 4 
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Variance estimators are derived in two steps: 
 

(1) The theoretical design-based variance ˆ( )Var t  (or its 

approximation if the theoretical design variance is intractable)  
is derived 
 
(2) The derived quantity is estimated by a design unbiased  

or design-consistent estimator ˆ ˆ( )V t  

 

NOTE: An estimator is design consistent if its design bias  
and variance tend to zero as the sample size increases 



Definitions and notation - 5 
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Inclusion probability: An observation k is included in the sample  

with probability  k P k s    

The inverse probabilities 1/
k k

a  are called design weights  

 

Sample membership indicator: 

{ }
k
I I k s   with value 1 if k  is in the sample and 0 otherwise 

 

Expectation of sample membership indicator ( )
k k

E I   

 

Probability of including both elements k  and l  ( )k l  is ( )kl k lE I I   

with inverse 1/
kl kl

a   ( kl k
a a  when k l ) 

 

The covariance of k
I  and lI  is ( , )

k l kl k l
Cov I I      



Estimation for domains 
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Domain estimation of totals or averages of variable of interest 

y  over D non-overlapping domains d
U U , 1,2,..., ,...,d d D , 

with possibly known domain sizes dN   

Example: Population of a country is divided into D domains by 

regional classification, with dN  households in domain dU  

The aim is to estimate statistics on household income for the 
regional areas (domains) 

The key parameter is domain total: 
d

d kk U
t y


 ,  

where k
y  refers to measurement for household k 



Why domain totals are important? 
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Totals are basic and the simplest descriptive statistics for 
continuous (or binary) study variables 

Many other, more complex statistic are functions of totals 

Domain ratio:    d

d

kk Udy

d

dz kk U

yt
R

t z





 



 

Estimator:         
ˆ

ˆ
ˆ

d

d

k kk sdy

d

k kdz k s

a yt
R

a zt





 



 

Domain mean:  /d d dy t N  

Estimator:         ˆ ˆ ˆˆ ˆ/   or  /  d d d d d dy t N y t N   



Estimation for planned domains - 1 
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Sample is divided into subsamples 
ds , 1,...,d D  

Planned domains:  

Stratified sampling with domains = strata 

 The population domains 
dU  can be regarded as separate 

subpopulations 
 

 Domain sizes dN  in domains dU  are assumed known 
 

 Sample size d
n  in domain sample d ds U is fixed in 

advance 
 

 Standard population estimators are applicable as such 



Estimation for planned domains - 2 
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NOTES 

Stratified sampling with a suitable allocation scheme  
(e.g. optimal (Neyman) or power (Bankier) allocation) 
 is advisable in practical applications, in order to obtain  
control over domain sample sizes 

Singh, Gambino and Mantel (1994) describe  
allocation strategies to attain reasonable accuracy  
for small domains, still retaining good accuracy for  
large domains 



Estimation for unplanned domains 
- 1 
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Unplanned domains: A single sample s of size n  
is drawn from population U .  

Domain samples are 
d ds U  

Domain sample sizes 
d

n  cannot be considered fixed  

but are random 

Extended domain variable of interest 
d

y  defined as: 

 dk k
y y  for dk U  and 0dky   for dk U   

In other words, { }
dk d k

y I k U y   

Because 
d

d k dkk U k U
t y y

 
   , we can estimate  

domain total of y  by estimating the population total of dk
y   



Estimation for unplanned domains  
- 2 
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NOTES 

Contribution of extra variance caused by random domain  
sample sizes can be incorporated in variance expressions 
and computation 

SAS survey procedures: 

   SURVEYMEANS 
   SURVEYREG etc. 

can handle the unplanned domains case by using the  
DOMAIN statement with extended domain y-variables  
and extended residuals 

 

NOTE: This is not necessarily so in the R Survey package of  

Thomas Lumley 



Horvitz-Thompson estimator of 
domain totals 
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Horvitz-Thompson (HT) estimator (expansion estimator)  
is the basic design-based direct estimator of the domain  

total 
d

d kk U
t y


 , 1,...,d D : 

 ˆ / /
d d d

dHT k k k k k k k

k U k s k s

t I y y a y 
  

      (1) 

HT estimates of domain totals are additive: they sum up  

to the HT estimator ˆ
HT k kk s

t a y


  of the population total  

kk U
t y


  

As ( )
k k

E I  , the HT estimator is design unbiased for d
t   



Variance estimation for HT - 1  
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Standard variance estimator for ˆ
dHTt  under planned domains: 

  ˆ ˆ ( )
d d

dHT k l kl k l

k s l s

V t a a a y y
 

   (2) 

An alternative Sen-Yates-Grundy formula: 

   2

;

ˆ ˆ ( 1)( )
d d

kl
dHT k k l l

k s l k l s k l

a
V t a y a y

a a  

     (3) 

NOTE: Both (2) and (3) are somewhat impractical... Why? 



Variance estimation for HT - 2 
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Variance estimation for planned domains in practice 
 

  SUDAAN: Standard formula (2) 
  SAS macro CLAN: Sen-Yates-Grundy formula (3) 

 

Variance estimators are impractical because of 1/
kl kl

a   
 

Approximations to kl  for fixed- size without-replacement (WOR) 

probability proportional-to-size (πPS) designs : 
 

 Hájek (1964) and Berger (2004, 2005) approximation 
 

 Särndal (1996) approximation 
 

 Berger and Skinner (2005) jackknife variance estimator  
 

 Kott (2006) delete-a-group jackknife variance estimator 
 



Variance estimation for HT - 3 
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Variance estimation for planned domains in practice 
 

    
21ˆ ˆ ˆ

( 1)
d

A dHT d k k dHT

k sd d

V t n a y t
n n 

 


         (4) 

 
For example, SAS Procedure SURVEYMEANS uses (4) 



Variance estimation for HT - 4 
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Unplanned domains: 

Variance estimator should account for random domain sizes  

Approximate variance estimator by using extended domain  

variables dk
y : 

    
21ˆ ˆ ˆ

( 1)
U dHT k dk dHT

k s

V t na y t
n n 

 

 ,                     (5) 

where n is the total sample size  

NOTE: e.g. SAS procedure SURVEYMEANS uses (5) 
 

NOTE: Extended domain variables are { }
dk d k

y I k U y   

Recall:  if ,  0 otherwise
dk k d

y y k U   



Hájek estimator of domain totals 
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Hájek type direct estimator:  

  ( )
ˆ ˆ

ˆ d

d
dH N d d k kk s

d

N
t N y a y

N 
      (6) 

where ˆˆ /
d

d k k dk s
y a y N


  are estimated domain means  

 ˆ
d

d kk s
N a


  are estimated sizes of population domains 

Assuming domain sizes dN  are known we expect better results  

with the Hájek estimator (Särndal, Swensson and Wretman 1992) 

The variance of ( )
ˆ
dH Nt  is estimated by 

     
2

( )
ˆ ˆ ˆ ˆ( )  

ˆ
d d

d
dH N k l kl k d l d

k s l sd

N
V t a a a y y y y

N  

 
    
 

  (7) 



EXAMPLE: HT and Hájek 
estimators for domain totals 

• Real population data from Western Finland (Statistics Finland) 

• Domains: D = 12 regional areas = strata 

• Planned domains for HT and Hájek 

• Unplanned domains for HT 

• Study variable y: Disposable income (registers) 

• Auxiliary data: Sizes of population domains 

• Sample size: n = 1,000 households (dwelling units) 

• Sampling: stratified πPS (WOR type probability proportional to 
size sampling) with household size as the size variable 

• Details: See separate pdf sheet (course website) and Table 2 
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../Materials/Example_HT_Hajek.pdf
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Table 2. Mean absolute relative error MARE (%) and mean coefficient  
of variation MCV (%) of direct HT and Hájek estimators of totals for  
minor, medium-sized and major domains for planned domains (HT and 
Hájek) and unplanned domains (HT). 
 

  
 
 

Domain sample 
size class  

 
HT 

 

 
Hájek 

Auxiliary information 

None Domain sizes 

MARE % MCV1 % MCV2 % MARE % MCV1 % 

Minor 

8 33dn   

 
11.5 

 
11.9 

 
28.3 

 
5.3 

 
10.9 

Medium 

34 45
d

n   

 
7.6 

 
9.0 

 
20.3 

 
6.4 

 
9.0 

  Major 

46 277
d

n   

 
12.5 

 
5.2 

 
9.6 

 
4.7 

 
5.6 

MCV1: Assuming planned domains for HT and Hájek 
MCV2: Assuming unplanned domains for HT 
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