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ABSTRACT

Small area estimation is important in survey analysis when domain (subpopulation) sample sizes are too small to
provide adequate precision for direct domain estimators. Popular techniques for small area estimation use implicit or
explicit statistical models to indirectly estimate the small area parameters of interest. Indirect estimation requires you
to go beyond the survey data analysis methods that are available in the SAS/STAT® survey procedures. This paper
describes the use of the MIXED, IML, and MCMC procedures to fit unit-level and area-level models, and to obtain
small area predictions and the mean squared error of predictions. Hierarchical Bayes models are also discussed as
extensions to the basic models.

INTRODUCTION

Estimating quantities of interest for subpopulations (also known as domains) with survey data is a common practice.
Domains can be defined by any characteristics that partition the population into a set of mutually exclusive subpop-
ulations. Common characteristics by which domains are defined are geographic areas such as states, counties, or
municipalities, and demographic groups such as age, race, or gender. Domain estimators that are computed using
only the sample data from the domain are known as direct estimators. Although direct estimators have several desired
design-based properties, direct estimates often lack precision when domain sample sizes are small. Domains for which
direct estimates of adequate precision cannot be produced are known as small areas. Survey designs usually focus on
achieving a particular degree of precision for estimates at a much higher level of aggregation than that of small areas;
therefore, the sample sizes for small areas are typically small. Producing estimates for small areas with an adequate
level of precision often requires indirect estimators that use auxiliary data or values of the variable of interest from
related areas, or both.

The traditional indirect estimators, such as synthetic and composite estimators, rely on implicit linking models. Syn-
thetic estimators for small areas are derived from direct estimators for a large area that covers several small areas
under the assumption that the small areas have the same characteristics as the large area. Composite estimators are
essentially weighted averages of direct estimators and synthetic estimators. Both synthetic and composite estimators
can yield estimates that provide higher precision compared to direct estimators. However, both types of estimators
share a common tendency to be design-biased, and the design bias does not necessarily decrease as the sample size
increases.

More recently, explicit linking models provide significant improvements in techniques for indirect estimation. Based on
mixed model methodology, these techniques incorporate random effects into the model. The random effects account
for the between-area variation that cannot be explained by including auxiliary variables. Most small area models can
be defined as an area-level model, a unit-level model, or a hybrid. Area-level models relate small-area direct estimators
to area-specific auxiliary data. Unit-level models relate the unit values of a study variable to unit-specific auxiliary data.
Hybrid models involve both unit-level and area-level auxiliary variables.

This paper describes a unit-level model, a basic area-level model, and an unmatched sampling and linking area-level
model. The section “UNIT-LEVEL SMALL AREA MODELS” illustrates the unit-level model with an example that con-
siders the prediction of crop areas for some counties in lowa. The MIXED procedure provides estimates of the model
parameters and the small area predictions. Small area predictions are based on the empirical best linear unbiased
predictors (EBLUP), and the mean squared error of predictions (MSEP) measures the precision of the predictions. The
section “AREA-LEVEL SMALL AREA MODELS” illustrates the basic area-level model with an example that considers
the prediction of wind erosion for some counties in lowa. The model parameters are estimated with the MIXED pro-
cedure, and then the the EBLUPs and the MSEPs are computed with the IML procedure. The section “UNMATCHED
MODELS?” illustrates an unmatched sampling and linking area-level model with an example that considers estimating
the undercoverage count and the undercoverage rate for provinces in the Canadian census. Standard linear mixed
model theory cannot be applied to unmatched sampling and linking models. Instead, a hierarchical Bayes (HB) ap-
proach to estimation is taken. This approach uses the MCMC procedure to estimate the means and variances of the
posterior distributions of the small area parameters of interest.

UNIT-LEVEL SMALL AREA MODELS

Unit-level models relate the unit values of a study variable to unit-specific auxiliary data. For example, suppose you have
a survey of firms that is designed to estimate total wages and salaries paid to workers. Perhaps the survey is designed



so that estimates of a specified degree of precision can be made at the state level. After the survey is conducted,
you decide you want to estimate total wages and salaries by industry, but the sample sizes for some industries are so
small that the variances of the estimates are unacceptably large. To improve the precision of the estimates, you can
use auxiliary data such as firm-level values of gross business income to fit a linear mixed model with industry-specific
random effects to improve the efficiency of your estimates (Rao and Choudry 1995).

More formally, suppose y;; is the value of a study variable in area i and unit j, fori = 1,2,....m, j = 1,2,...,N;,
where m is the number of small areas and N; is the number of population units in area i. Assume that unit-specific
auxiliary information x;; = (x;;1, ...,xl-jq)T is available for every unit in the population, where ¢ is the number of the
auxiliary variables. A basic unit-level model relates the y;; to the x;; through a nested error regression model of the
form

vij = XEB+ui +eij (1)

where g is a fixed set of regression parameters, u; are area-specific random effects, and ¢;; are the sampling errors.
Suppose the parameters of interest are the small area means which are defined as

where x;(,) = N/ ! Z?’;l x;; is the population mean. Assume u; ind. (0.02), € ind. (0.02), and that u; and ¢;; are

independent. Also assume that a sample of size n; is selected from the N; units in area i and that the sample values
also satisfy population model (1).

If the variance parameters o,f and Uez are known, the best linear unbiased predictor (BLUP) for the small area means
0; are given by

0 = %] B +vi ()71'. —i,TB) 3)

where y; = (02 + ag/n,-)‘l 02, B is the BLUP of 8, and %;, and j;. are the sample means for area i. For areas with
large n;, y; is close to 1 and the predictor (3) is close to the regression predictor j;. + (¥;() — :E,;)T B.If (62,62)is an
estimator of (62, 52), then an empirical best linear unbaised predictor (EBLUP) for 6; is given by

6 =%, 8+7i (5. — 2] ) (4)

where 9; = (62 + &3/nl-)‘1 62 and B is an EBLUP for . Assuming the normality of the error components, the MSEP

for 6; can be obtained following Kackar and Harville (1984), Prasad and Rao (1990), and Kenward and Roger (1997).
The MSEP for 6; has the approximate form

MSEP(6)) ~ g1:(04.07) + 92 (04.07) + 93 (01, 07) (5)
(6)
where

91;(04.02) = yioZ/n; (7)
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with

nj
A =02 Y (xijx; —vimixix”) (10)
j=1
and
h(02,02) = 02Vuu(8) + 01} Vee (8) — 206202 Ve (8) (11)

where § = (a,f,oez)T, Vuu(8), and V. (8) are the asymptotic variances of the estimators 62 and 62, and V. (8) is the
asymptotic covariance of 62 and 62.

Assuming normality of the errors u; and ¢;;, an estimator of the MSEP (Rao 2003) is given by

msep(6;) = 91, (63.62) + 92 (6.82) + 205; (87.67) (12)
where (62, 62) is an unbiased estimator of (62, 02).

PROC MIXED provides estimators of (62, 2) that satisfy these assumptions when you specify the Type 1 or residual
(restricted) maximum likelihood (REML) estimation methods together with the Kenward-Roger method of covariance
estimation. Thus, PROC MIXED can compute the EBLUPs and their MSEPs.

Example: Prediction of County Crop Areas

This example from Battese, Harter, and Fuller (1988) considers the prediction of areas planted with corn and soybeans
for 12 counties in north-central lowa. The area of corn and soybeans in the 37 segments (primary sampling units) of
the 12 counties was determined by interviewing farm operators. Each segment represents approximately 250 hectares.
This information is augmented by auxiliary data derived from satellite imagery readings. Crop areas for each segment
are estimated from satellite images by counting the number of individual pixels in the satellite photographs. Each pixel,
which can be either a corn or soybean crop, represents approximately 0.45 hectares. The objective of the study is
to generate a predictor of mean crop areas per segment in the sample. The model assumes that there is a linear
relationship between the survey and satellite data with county-specific random effects.

The survey results and satellite data are contained in the following SAS data set Corndata. The data set includes the
variables County, Segments, Cornhec, Cornpix, and Soypix. The variable Segments is the total number of segments
within each county. In the first 36 observations, Cornhec records the number of hectares of corn reported in the survey,
Cornpix is the number of pixels reported for corn, and Soypix is the number of pixels for soybeans. In the last 12
observations of the data set, the variable Cornhec is set to missing, Cornpix contains the population mean number
of pixels per segment for corn, and Soypix contains the population mean number of pixels per segment for soybeans.
After the model parameters have been estimated, the population mean numbers of pixels for corn and soybeans are
used to compute the EBLUPS in equation (4).

data corndata;
length county §$ 12;
input county $ segments n Q@;
do i =1 to n;

drop i;
input cornhec cornpix soypix @@;
output;
end;
label county = 'County'
segments = 'Total Segments'
n = 'Sampled Segments'
cornhec = "Reported Hectares for Corn"
cornpix = "Number of Pixels for Corn"
soypix = "Number of Pixels for Soybeans";
datalines;
CerroGordo 545 1 165.76 374 55
Hamilton 566 1 96.32 209 218
Worth 394 1 76.08 253 250
Humbolt 424 2 185.35 432 96 116.43 367 178

3



Franklin
Pocahontas
Winenbago
Wright
Webster

Hancock
Kossuth
Hardin

CerroGordo
Worth
Franklin
Winenbago
Webster
Kossuth

’

The following SAS statements use the MIXED procedure to estimate the regression parameters and the variance
parameters for a unit-level small area model. The METHOD= option in the PROC MIXED statement specifies that the
Type 1 estimation method be used. The Type 1 method provides a method of moments estimator which produces an
unbiased estimate of the residual variance. The ASYCOV option requests the asymptotic covariance matrix for the
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variance parameters.

The DDFM=KENWARDROGER option in the MODEL statement performs the MSEP and the degrees-of-freedom cal-
culations detailed by Kenward and Roger (1997). This method is based on taking more of the true nonlinearity of the
mixed model estimates into account to achieve a higher order of accuracy for the estimated covariance of effects. The
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RANDOM statement specifies that a county-level random effect be included in the model.

proc mixed data =
class county;
model cornhec

corndata method = typel asycov order=data;

random county / cl;

run;

Output 1 displays the results.

The estimate of 62 is 139.68, and the estimate of o2 is 149.56. Standard errors for the estimated covariance parameters
are the square root of the diagonals of the estimated asymptotic covariance matrix. Thus, the standard error of the
estimate for o2 is 87.54 (the square root of 7664.58), and the standard error of the estimate for 2 is 44.28 (the square

root of 1960.89).

cornpix soypix / solution covb outp=pred

ddfm=kenwardroger;

Output 1 Parameter Estimates

Effect

Intercept
cornpix

soypix

The Mixed Procedure

Covariance Parameter

Estimates
Cov Parm Estimate
county 139.68
Residual 149.56

Asymptotic Covariance Matrix of Estimates

Row Cov Parm CovP1l CovP2
1 county 7664.58 -714.68

2 Residual -714.68 1960.89

Solution for Fixed Effects
Standard

Estimate Error DF t Value
51.0466 25.2010 29.5 2.03
0.3287 0.05165 28.9 6.36
-0.1344 0.05731 29.9 -2.34

Pr > |t|

0.0519
<.0001
0.0259




The OUTP= option in the MODEL statement produces an output data set that contains the predicted values and their
standard errors. Output 2 displays a part of the input data set with the prediction statistics. The coefficient of variation
(CV) for the small area predictor is defined as the ratio of the estimated standard error and the predicted value. The
last two columns are the model CV for the EBLUP and the design CV for the direct estimates. The direct estimates
and the design CV for the direct estimates are obtained by using the DOMAIN statement in PROC SURVEYMEANS
(statements not shown). The use of the DOMAIN statement is common for survey data when you have adequate
sample sizes within domains. From the table, you can see that the model CVs for the EBLUPs are always lower than
the design CVs for the direct estimates except for the Franklin, Hancock, and Kossuth counties. Design CVs for the
direct estimates are not available for Cerro Gordo, Hamilton, and Worth counties. All these counties have only one
sampled segment.

Output 2 Predicted Small Area Means and Prediction Errors

Number of Number of
Total Sampled Pixels for Pixels for
County Segments Segments Corn Soybeans
CerroGordo 545 1 295.29 189.70
Franklin 566 3 300.40 196.65
Hamilton 394 1 289.60 205.28
Hancock 424 5 290.74 220.22
Hardin 564 5 318.21 188.06
Humbolt 570 2 257.17 247.13
Kossuth 402 5 291.77 185.37
Pocahontas 567 3 301.26 221.36
Webster 687 4 262.17 247.09
Winenbago 569 3 314.28 198.66
Worth 965 1 298.65 204.61
Wright 556 3 325.99 177.05
Direct
Estimates EBLUP for
for the Mean the Mean
Hectares of Hectares of Standard CV for CV for the
Corn per Corn per Error of the Direct
Segment Segment Prediction EBLUP Estimates
165.76 122.22 10.13 0.08 .
158.62 126.20 10.04 0.08 0.02
96.32 106.80 9.85 0.09 .
109.38 108.51 8.45 0.08 0.06
120.05 144 .22 6.73 0.05 0.12
150.89 112.10 6.78 0.06 0.16
110.25 112.85 6.78 0.06 0.04
102.52 122.00 6.88 0.06 0.20
117.60 115.29 5.91 0.05 0.08
112.77 124.43 5.48 0.04 0.13
76.08 106.95 5.37 0.05 .
144.30 142.98 5.79 0.04 0.18

AREA-LEVEL SMALL AREA MODELS

Area-level models relate area-specific direct survey estimates to area-specific auxiliary data. For example, suppose
you have a survey designed to estimate per capita income. Estimates of per capita income at the state level might
be measured with adequate precision; but if you want estimates for munincipalities with populations less than 1,000
people, the sample sizes can be very small and the estimates can have large variances. To improve the precision of the
estimates, you can use auxiliary data such as county-level values of per capita income, tax return data, and housing
data to fit a linear mixed model to improve the efficiency of your estimates (Fay and Herriot 1979).

Suppose the population is divided into M mutually exclusive and exhaustive areas and that there are survey estimates
available for m, m < M, of the areas. y; is the survey estimate of the mean for area i, and x; = (¥;1, ...,xip)T is a
known population mean vector of auxiliary variables for area i. A basic area-level model relates the y; to the x; through
a linear mixed model of the form

Vi =% B+ui+é (13)

where B is a fixed set of regression parameters, u; are area-specific random effects, and ¢; are the sampling errors.

Assume that u; ind. 0,02), & ind. (0, D;) and that u; and ¢; are independent for all i and ;.
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The unknown mean for area i is

0 =xI'B +u (14)

If B, 02, and D; are known, the BLUP of u; is

uj =y (u; +é) (15)
where
—1
Vi = (0’3 + Di) o (16)

The BLUP for 6; is

=T = =T e
G = xiﬂ+)/i(yi—xiﬂ) ifi e A .
;ffﬂ ifi & A (17)

where 4 is the index set for small areas in which y; is observed.

For area-level small area models, the sampling variances D; are typically estimated from the survey data (usually by
pooling information across several related areas) or from other sources and then assumed to be known. Therefore, the
variability of estimating D; is often ignored for MSEP computation. When g, and ¢ are unknown, the EBLUP is given
in equation (17) with the estimators 8 and 62 replacing the unknown parameters. The EBLUP for the observed small
areas can also be written as

0 =piyi + (1 —p)xl B

With this representation, the EBLUP for the observed small areas are convex combinations of the direct estimators (y;)
and the synthetic estimators (fl.Tﬂ). For large areas where §; are close to 1, the EBLUP is close to the direct estimator;
for small areas where p; are close to zero, the EBLUP is close to the synthetic estimator.

If 62 is an unbaised estimator of o2, then an estimator of the MSEP is

PiDi + (1= )% VIB)xl +2(62+ D) Vipy ified

msep(6;) = { 52+ % VipEl ifigA

where

Vi = (62 + Di)_4Di2\_/ (52)

and V(62) is the asymptotic variance of 62 (Prasad and Rao 1990).

You can use the MIXED procedure along with the GDATA= option to estimate the parameters of the small area model.
Then, you compute the predicted values and the MSEP with the IML procedure, as shown in the next example.

Example: Predicting Wind Erosion for Counties in lowa

This example considers the prediction of wind erosion in lowa for the year 2002 (Fuller 2009, section 5.5). The data
are a small subset from the U.S. National Resources Inventory with a few modifications to facilitate the example. Forty-
four counties in lowa report measures of wind erosion. The survey provides observations for all 44 counties, but an
additional 4 counties with no observations are included in the example for the purposes of illustration. Each county
is divided into segments, and the segments are the primary sampling units of the survey. The sample of segments
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in a county are treated as a simple random sample. The soils of lowa have been mapped, so population values for a
number of soil characteristics are available. The mean of the soil erodibility index for each county is the auxiliary data
in the small area model.

The survey results and auxiliary data are contained in the following SAS data set Erosion:
data erosion;

input County TotalSegments SampleSegments Erodibility y @Q@;
datalines;

3 1387 13 -1.2317 0.429 15 2462 18 -0.0431 0.665 21 2265 14 0.6593 1.083
27 2479 19 -1.1273 0.788 33 2318 18 -0.6198 0.869 35 1748 12 1.3130 1.125
41 2186 16 0.0079 0.683 47 3048 19 -0.9243 0.408 59 1261 12 -0.5306 0.839
63 1822 15 0.4563 0.754 67 1597 11 -1.4053 0.690 71 1345 15 -0.2193 0.927
73 1795 12 -0.4818 0.945 75 2369 13 -1.8049 0.619 77 2562 15 -1.0395 0.475
79 1899 11 1.5981 0.790 83 2486 16 -0.1545 0.647 85 2241 19 0.7700 0.727
91 2066 15 -0.2882 1.120 93 1385 10 0.2830 0.677 109 2752 18 0.5255 0.968

119 1753 29 0.2605 0.703 129 1270 12 -0.0261 0.616 131 1232 10 -1.0261 0.422
133 2943 24 1.4121 1.045 135 1190 15 -1.3583 0.363 141 1567 11 2.2911 1.424
143 1511 10 -0.2771 0.975 145 1772 16 -1.8138 0.451 147 2716 17 0.1811 0.945
149 3877 16 2.1541 1.065 151 1823 10 0.4190 0.918 153 1580 18 -1.0497 0.670
155 4405 21 0.3348 0.619 157 2121 13 -1.4538 0.578 161 2423 16 0.7551 0.719
165 2327 12 -1.1504 0.376 167 3180 44 1.3262 0.954 169 1862 16 -0.4206 0.583
187 3011 15 -0.0580 0.874 189 1644 10 1.7335 1.256 193 2319 17 1.6142 0.905
195 1290 16 -1.2512 0.599 197 1754 11 1.2380 0.577 201 1822 15 0.4563
2.1541 . 204 3011 15 -0.0580

202 1511 10 -0.2771 . 203 3877 16

’

The data set includes the variables County, TotalSegments, SampleSegments, Erodibility, and Y. The variable County
records an identification number for each county, TotalSegments records the total number of segments in the county,
and SampleSegments records the sampled number of segments in the county. The variable Erodibility records a
standardized population mean of the soil erodibility index for each county, and Y records the survey sample mean
(direct estimate) of a variable that is related to wind erosion for each county. The first 44 observations contain the
observed data, and the last 4 observations contain the hypothetical counties for which there were no observations in
the survey. Consequently, the variable Y is set to missing in those 4 observations.

Unlike the unit-level model in the previous example, the area-level model attempts to model the relationship between
area-level means and auxiliary data. However, without repeated measures for each area with which to estimate the
within-area variability, the parameters o2 and D; are not identified. Therefore, exogenous information is necessary in
order to successfully model the data.

A preliminary analysis suggests that the assumption of a common population variance for the counties is reasonable
(Fuller 2009). Therefore, assume that the variance of the mean wind erosion for county i is n,.—log(: D;), where n; is
the sampled number of segments in county i and o2 is the common variance with a value of 0.0971. This exogenous
information makes it possible to identify and estimate the remaining parameters of the model. However, the estimation
procedure is not as straightforward as it was for the unit-level model in the previous example. To understand why, you
need a little knowledge of how PROC MIXED works.

Recall that a mixed model is of the form
y=XB+2y +e

where y represents univariate data, g is an unknown vector of fixed effects with known model matrix X, y is an unknown
vector of random effects with known model matrix Z, and € is an unknown random error vector.

A key assumption is that y and € are normally distributed with
vy | _ |0
[ ]-[o]
y| [G O
el 2]-[3 )

The variance of y is therefore V = ZGZ' + R. You can model V by setting up the random-effects design matrix Z and
by specifying covariance structures for G and R.

PROC MIXED constructs a mixed model according to the specifications in the MODEL, RANDOM, and REPEATED
statements. The MODEL statement names a single dependent variable and the fixed effects, which determine the
X matrix of the mixed model. The RANDOM statement defines the Z matrix of the mixed model, the random effects
in the y vector, and the structure of G. The REPEATED statement specifies the R matrix in the mixed model. If no
REPEATED statement is specified, R is assumed to be equal to ¢2l.
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The GDATA= option in the RANDOM statement provides you with complete control over the specification of the G matrix.
Specification of the R matrix in the REPEATED statement is restricted to a limited number of covariance structures.
However, this does not mean that you cannot use PROC MIXED to fit the area-level model. One remedy is to switch the
roles of the G and R matrices. That is, you use the GDATA= option to specify the covariance structure of the residuals
(the n7'62) and you do not include a REPEATED statement so that R is assumed to be equal to o721.

As a result of this subterfuge, the output from PROC MIXED is reversed, so that the covariance parameter estimate
and the standard error that is reported for the residual are in fact the estimate and standard error for the random effect
variance o2. Also, the EBLUPs and their standard errors depend on G, and because the roles of G and R have been
switched, PROC MIXED computes the EBLUPs and their standard errors incorrectly. Fortunately, the EBLUPs and their
standard errors can be easily computed using the ODS output data sets from PROC MIXED and a little programming
using the IML procedure.

The following DATA step creates a sampling variance data set named G2 that is later provided to PROC MIXED using
the GDATA= option in the RANDOM statement:

data g2;
set erosion;
row=_n_;
col=n_;
value=0.0971/SampleSegments;
keep row col value;

run;

The following SAS statements estimate the regression parameters and the covariance parameter for the area-level
model. The METHOD=REML option in the MODEL statement specifies that the residual (restricted) maximum likelihood
method be used to estimate the covariance parameters. The CLASS statement declares the variable County to be a
class variable. The MODEL statement specifies Y as the dependent variable and Erod_Ind as the only independent
variable in the model. The SOLUTION option produces a solution for the fixed-effects parameters, and the COVB
option produces the approximate variance-covariance matrix of the fixed-effects parameter estimates ﬂ The RANDOM
statement defines the random effects, and the GDATA= option specifies that the G matrix be read from the SAS data
set G2. The ODS OUTPUT statement specifies that the covariance matrix of fixed-effects parameter estimates, the
fixed-effects solution vector, the estimated covariance parameters, and the asymptotic covariance matrix of covariance
parameters be saved in the SAS data sets Covbeta, Beta, Sigma2, and Acovsigma2, respectively. These data sets are
used later to compute the EBLUPs and their standard errors.

proc mixed data = erosion asycov method = reml;
class county;
model y = Erodibility / solution covb;
random county / gdata = g2;
ods output covb = covbeta
solutionF = beta
covparms = sigma2
asycov = aCovSigma2;
run;

The parameter estimates are reported in Output 3.

Output 3 Parameter Estimates

The Mixed Procedure

Covariance Parameter

Estimates
Cov Parm Estimate
Residual 0.02405

Asymptotic Covariance
Matrix of Estimates

Row Cov Parm CovP1l

1 Residual 0.000046




Output 3 continued

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t
Intercept 0.7700 0.02642 42 29.14 <.0001
Erodibility 0.1554 0.02461 0 6.31

The parameter estimates reported in Output 3 are in agreement with those reported in Fuller (2009), with some numer-
ical differences due to the fact that Fuller (2009) reports maximum likelihood estimates while the estimates reported
in Output 3 are residual maximum likelihood (REML) estimates. Keep in mind that the 0.2405 that is reported as the

residual variance is in fact the estimate of the variance of the random effects, o2

With the estimates produced by PROC MIXED, you can now compute the EBLUPs and their standard errors. The first
step in this process is to generate a variable in the Erosion data set to represent the sample variance for each county.

data erosion;

set erosion;

dsgvar = 0.0971/SampleSegments;
run;

Now, use PROC IML to read into matrices the ODS output data sets that PROC MIXED created:

proc iml;
use beta; read all var {estimate} into bet;
use covbeta; read all var _num into covb;
use sigma2; read all var {estimate} into sigma2;
use aCovSigma2; read all var {CovP1l} into acSigma2;
use erosion; read all var {y Erodibility dsgvar} into dat;

nobs = nrow(dat);

np = nrow(bet);

y = dat[,1];

one = J(nobs,1,1);

XI = J(nobs,1,1) || dat[,2:np];

d = dat[,np + 1];

sigma2Vec = sigma2xone;

covb = covb[,2:np+l1];

gamma = sigma2Vec/ (sigma2Vec + d);

Next, the following statement computes the predicted means for the observed counties using equation (17):
EBLUP = gamma#y + (l-gamma)#(XIxbet);
The following SAS statements compute the predicted means for the unobserved counties:
do i = 1 to nobs;
if y[i] = . then

EBLUP[i] = XI[i,]~*bet;
end;

Next, the following statements compute the MSE of the predicted means for the observed counties using equation (18):

gli = gamma#d;

XCovBXT = XI % covb * XI';
g2i = (one - gamma) ##2 # vecdiag(diag (XCovBXT));

avSigma2 = 1/sum( (sigma2Vec + d)##(-2) );
avSigma2 = 2xavSigma2;
g3i =( (d##2) # ( (d+sigma2Vec) ##(-3) ) ) * acSigma2;

mse = gli + g2i + 2xg3i;
The following statements compute the MSE for the unobserved counties:
do i = 1 to nobs;
if y[i] = . then

mse[i] = XI[i,]* covb x XI[i,]  + sigma2;
end;
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The following statements create a SAS data set Outdata, which contains the small area predictions and their variances:
create outData var{EBLUP mse} ;
append;
close outData;
quit;

The Outdata data set is now merged with the original data set Erosion, and the standard area of the prediction is
computed and stored as the variable SE_EBLUP. Labels are also generated for the variables in preparation for printing
the results.

data outData;
merge outData erosion;

SE_EBLUP = sqrt (mse);
CV_EBLUP = SE_EBLUP/EBLUP;
CV_Direct = sqrt (dsgvar)/y;

keep County TotalSegments SampleSegments Erodibility y EBLUP
SE_EBLUP CV_EBLUP CV_Direct;
run;

Finally, the data set is printed; Output 4 displays the results.

proc print data = outdata noobs;

var county TotalSegments SampleSegments Erodibility y EBLUP

SE_EBLUP CV_EBLUP CV_Direct;

format Erodibility 3
Yy
EBLUP
SE_EBLUP
CV_EBLUP
CV_Direct

oo Oy Oy 0O
NDNDWWW

~.

run;

Output 4 displays a part of the input data set with the prediction statistics. The last two columns are the model CV for
the EBLUP and the design CV for the direct estimate. You can see that the model CV for the EBLUP is smaller than
the design CV for the direct estimates for all counties except for counties 91 and 133 where they are the same. For
counties with a large number of sampled segments, the EBLUP is close to the direct estimates.
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Output 4 Predicted Small Area Means and Prediction Errors

Total Sample
County Segments Segments Erodibility y EBLUP SE_EBLUP CV_EBLUP CV_Direct
3 1387 13 -1.232 0.429 0.464 0.077 0.17 0.20
15 2462 18 -0.043 0.665 0.683 0.067 0.10 0.11
21 2265 14 0.659 1.083 1.036 0.075 0.07 0.08
27 2479 19 -1.127 0.788 0.754 0.066 0.09 0.09
33 2318 18 -0.620 0.869 0.833 0.067 0.08 0.08
35 1748 12 1.313 1.125 1.087 0.080 0.07 0.08
41 2186 16 0.008 0.683 0.701 0.071 0.10 0.11
47 3048 19 -0.924 0.408 0.446 0.066 0.15 0.18
59 1261 12 -0.531 0.839 0.801 0.079 0.10 0.11
63 1822 15 0.456 0.754 0.772 0.073 0.09 0.11
67 1597 11 -1.405 0.690 0.653 0.082 0.13 0.14
71 1345 15 -0.219 0.927 0.886 0.073 0.08 0.09
73 1795 12 -0.482 0.945 0.882 0.079 0.09 0.10
75 2369 13 -1.805 0.619 0.588 0.078 0.13 0.14
77 2562 15 -1.040 0.475 0.503 0.073 0.14 0.17
79 1899 11 1.598 0.790 0.851 0.083 0.10 0.12
83 2486 16 -0.155 0.647 0.667 0.071 0.11 0.12
85 2241 19 0.770 0.727 0.756 0.066 0.09 0.10
91 2066 15 -0.288 1.120 1.036 0.073 0.07 0.07
93 1385 10 0.283 0.677 0.716 0.085 0.12 0.15
109 2752 18 0.526 0.968 0.947 0.067 0.07 0.08
119 1753 29 0.261 0.703 0.716 0.055 0.08 0.08
129 1270 12 -0.026 0.616 0.654 0.079 0.12 0.15
131 1232 10 -1.026 0.422 0.476 0.085 0.18 0.23
133 2943 24 1.412 1.045 1.037 0.060 0.06 0.06
135 1190 15 -1.358 0.363 0.405 0.073 0.18 0.22
141 1567 11 2.291 1.424 1.344 0.083 0.06 0.07
143 1511 10 -0.277 0.975 0.904 0.085 0.09 0.10
145 1772 16 -1.814 0.451 0.458 0.071 0.16 0.17
147 2716 17 0.181 0.945 0.917 0.069 0.08 0.08
149 3877 16 2.154 1.065 1.073 0.072 0.07 0.07
151 1823 10 0.419 0.918 0.894 0.085 0.09 0.11
153 1580 18 -1.050 0.670 0.658 0.068 0.10 0.11
155 4405 21 0.335 0.619 0.652 0.063 0.10 0.11
157 2121 13 -1.454 0.578 0.570 0.077 0.14 0.15
161 2423 16 0.755 0.719 0.753 0.071 0.09 0.11
165 2327 12 -1.150 0.376 0.430 0.080 0.18 0.24
167 3180 44 1.326 0.954 0.956 0.045 0.05 0.05
169 1862 16 -0.421 0.583 0.608 0.071 0.12 0.13
187 3011 15 -0.058 0.874 0.850 0.073 0.09 0.09
189 1644 10 1.734 1.256 1.194 0.086 0.07 0.08
193 2319 17 1.614 0.905 0.927 0.069 0.07 0.08
195 1290 16 -1.251 0.599 0.594 0.071 0.12 0.13
197 1754 11 1.238 0.577 0.680 0.082 0.12 0.16
201 1822 15 0.456 0.841 0.158 0.19
202 1511 10 -0.277 0.727 0.157 0.22
203 3877 16 2.154 1.105 0.166 0.15
204 3011 15 -0.058 0.761 0.157 0.21

UNMATCHED MODELS

You can use the techniques described in the previous two examples to estimate the means or totals for small areas.
However, sometimes the small area parameter of interest is a nonlinear function of the small area totals y;. For example,
you might want to estimate small area rates or proportions such as census undercoverage rates, the proportion of a
population below a certain poverty level, or the illiteracy rate in the population at smaller subdivisions such as counties
or school districts. In such situations, the sampling model is

Vi.=yite
along with the linking model

0 = g(yi) = x] B +u;
where ¢; ind. (0, D;), u; ind. (0,62),and i = 1,2,...,m. Here, the sampling model does not match the linking model.

That is, you cannot naively combine the sampling model with the linking model to produce a linear mixed-effects model
for small area estimation. See Rao (2003) for more information about unmatched small area models.

To fit an unmatched small area model using the hierarchical Bayes (HB) approach, you first specify a prior distribution
f(B,02) on the model parameters. You then apply Bayes’ rule to derive the posterior distributions of the model param-
eters and the small area parameters § = (61, 63,..., Qm)T. The posterior means of the small area parameters are the
Bayes estimators for the small areas. See Gelman et al. (2004) for an introduction to Bayesian analysis.
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Assuming normality, the small area model can be written as

yilyi. Di ~ N(yi. D),

0 = g(yi)B.og. i ~ N(&] B.oj),

f(B) o 1,

02 ~ 1G(a,b),
where IG(a, b) denotes the inverse gamma distribution with the shape parameter a and the scale parameter 5. Note
that D; are assumed to be known as in the section “AREA-LEVEL SMALL AREA MODELS” on page 5.

Evaluating the posterior distribution often involves multidimensional integration. When the solution is analytically in-
tractable, as is often the case, you can use Markov chain Monte Carlo (MCMC) methods. The MCMC method is a
general simulation method for sampling from posterior distributions and computing posterior quantities of interest. The
MCMC procedure is designed specifically for this purpose. Chen (2009) describes how the MCMC procedure is used
for Bayesian modeling.

Example: Estimating Census Undercoverage

This example from Rao (2003, section 10.4) applies the HB approach to an unmatched sampling and linking model to
estimate the undercoverage count M; and the undercoverage rate U; for each province in the 1991 Canadian census.
After the census is taken, a follow-up survey is conducted in order to provide a direct estimate (M;) of M;, the number
of persons missed by the census. The undercoverage rate is then calculated as U; = M;/(M; + C;), where C; is the
actual census count.

Thus, the sampling model is

Mi = M; + ¢; (19)

where €;~N(0, D;) and i = 1,2,..., 10 denote the 10 provinces in Canada. The sampling variances D; are estimated
through a generalized variance function model of the form V(M;) « Cl.” and are treated as known in the sampling model
(19).

The linking model is

log(U;) = log (M; /(M + C;)) = Bo + B1109(C;) + u; (20)
fori =1,...,10. One specification of the model using the HB framework is
M;|M;, D; "% N(M;, D) (21)
log(U)|Bo. B1.02. Ci " N(Bo + p1l0g(C;). 02) (22)
2 2 o P (N b
— — O'u
1(Bo. o) = B S0 s z) e 3)

wherei =1,2,...,10.

Equation (23) specifies the prior distributions of the model parameters. Specifically, 8o and B; are specified as having
“flat” priors such that f(B) o 1 to reflect a lack of prior information regarding these parameters. The prior distribution
for the parameter o2 is specified as an inverse-gamma with shape and scale parameters a and b, respectively. The
shape and scale parameters are typically set to be very small.

The following SAS statements use the MCMC procedure to estimate the model parameters and the small area under-
coverage counts and rates. The input data set is named Undercoverage, and it contains the variables Index, Province,
CensusCount, Missing, and D. The variable Missing contains the direct estimates of the undercoverage count M;, and
the variable D contains the known variances. The data set is similar to Rao (2003, example 10.2.2).
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data undercoverage;
input Index Province $ CensusCount Missing D;
datalines;
1 Nfld 569640 11566 3424572 .3136
2 PEI 129963 1220 133956
3 Ns 899549 17329 12011769.64
4 NB 722797 24280 11554560.64
5 Que 6965643 184473 217793841.47
6 Ont 10088786 381104 929537656.42
7 Man 1091728 20691 18879980.912
8 Sask 987783 18106 11834563.22
9 Alta 2526533 51825 60431189.063
10 BC 3286372 92236 85074796.96

’

The following SAS statements specify the model in PROC MCMC. The NMC= option in the PROC MCMC statement
specifies the number of MCMC iterations, excluding the burn-in iterations. The NTHIN= option controls the thinning rate
of the simulation, and the NBI= option specifies the number of burn-in iterations. The OUTPOST= option names the
output data set for posterior samples of parameters. The MONITOR= option directs PROC MCMC to output analysis
for the specified symbols of interest.

proc mcmc data=undercoverage nmc=45000 nthin=10 nbi=5000 seed=123456
outpost=0l monitor=(_parms_ m u)
stats=(summary interval) diag=none;
array m[10];
array ul[l0];
parm (betaO betal) 1;
parm s2;
prior beta: ~ general(0);
prior s2 ~ igamma (shape=0.01, scale=0.01);
random gamma ~ n(beta0 + betalxlog(censuscount), var=s2) subject=province;
m[index] = censuscountxexp (—gamma)/ (l—-exp (—gamma)) ;
u[index] = exp(—gamma);
model missing ~ n(m[index], var=d);
ods output postsummaries=est;
run;

The two ARRAY statements specify that the arrays M and U be constructed. The arrays define the undercoverage
count (M;) and the undercoverage rate (U;) for each province.

The next two PARMS statements specify the parameters of the model. The first PARMS statement specifies that the
two regression coefficients be named BetaO and Beta1 and that both have initial values equal to 1. The second PARMS
statement specifies that the random effects variance parameter be named S2.

For each parameter, you must specify a prior distribution. The first PRIOR statement specifies a general(0) distribution
for the regression coefficients, which implements the notion of a “flat” prior. The prior for the random effects variance
parameter S2 is specified as an inverse-gamma with shape and scale parameters equal to 0.01.

The RANDOM statement defines a random effect and its prior distribution. The SUBJECT= option identifies the sub-
jects in the random effects model. The random effects parameters associated with each subject are assumed to be
conditionally independent of each other given other parameters in the model. In this case, the random effect is named
Gamma, and it is defined to have a normal distribution with a mean equal to 8o + $1log(C;) and a variance of S2.

NoOTE: The RANDOM statement in PROC MCMC is available only in SAS/STAT 9.3 and later. You can fit the model
using earlier releases, but more programming is required. For an example of how to do this in SAS/STAT 9.2, see
“Example 52.5 Random Effects Models” in the SAS/STAT 9.2 User’s Guide.

The next two statements simply define the equations for M; and U; as derived from the linking equation (20). The
results of these computations are stored in the previously declared arrays M and U.

Next, the MODEL statement specifies the complete small area model, which now encompasses both the sampling
model for M; and the linking model for log(U;).

Finally, the ODS OUTPUT statement directs the procedure to create a data set named Est to store the basic statistics for
each parameter; these statistics include the posterior summaries (namely, the sample size, mean, standard deviation,
and percentiles).

Output 5 displays the MCMC results. The “Posterior Summaries” table displays the number of posterior samples, the
posterior mean and standard deviation estimates, and the percentile estimates. The “Posterior Intervals” table displays
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the equal-tail and highest posterior density (HPD) interval (Gelman et al. 2004) estimates for each parameter.

Output 5 PROC MCMC Results

The MCMC Procedure
Number of Observations Read 10
Number of Observations Used 10
Parameters
Sampling Initial
Block Parameter Method Value Prior Distribution
1 betal N-Metropolis 1.0000 general (0)
betal 1.0000 general (0)
2 s2 Conjugate 0.00990 igamma (shape=0.01, scale=0.01)
Random Effects Parameters
Parameter Subject Levels Prior Distribution
gamma Province 10 normal (betal +
betalxlog(censuscount), var=s2)
The MCMC Procedure
Posterior Summaries
Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
betal 4500 7.0153 1.0397 6.3606 6.9717 7.6065
betal 4500 -0.2227 0.0721 -0.2635 -0.2194 -0.1777
s2 4500 0.0531 0.0534 0.0207 0.0374 0.0681
ml 4500 10784.6 1535.7 9726.6 10745.3 11790.9
m2 4500 1467.0 289.2 1270.9 1467.3 1654.5
m3 4500 17241.5 2566.5 15505.5 17168.5 18889.2
mé 4500 18707.9 3557.0 15984.2 18514.7 21118.8
m5 4500 188535 14029.8 179288 188683 197803
mé 4500 370690 29578.6 350916 369700 390504
m7 4500 21257.0 3170.6 19144.3 21258.8 23371.6
m8 4500 18677.8 2621.6 16886.1 18638.7 20423.5
m9 4500 54963.0 6555.2 50846.9 55037.8 59323.5
ml0 4500 89967.3 8286.4 84317.7 89620.7 95426.9
ul 4500 0.0186 0.00260 0.0168 0.0185 0.0203
u2 4500 0.0112 0.00218 0.00968 0.0112 0.0126
u3 4500 0.0188 0.00275 0.0169 0.0187 0.0206
u4 4500 0.0252 0.00467 0.0216 0.0250 0.0284
u5 4500 0.0263 0.00191 0.0251 0.0264 0.0276
ué 4500 0.0354 0.00273 0.0336 0.0353 0.0373
u’7 4500 0.0191 0.00279 0.0172 0.0191 0.0210
u8 4500 0.0186 0.00256 0.0168 0.0185 0.0203
u9 4500 0.0213 0.00249 0.0197 0.0213 0.0229
ulo 4500 0.0266 0.00239 0.0250 0.0265 0.0282
Posterior Intervals
Parameter Alpha Equal-Tail Interval HPD Interval
betal 0.050 5.0450 9.2706 4.9166 9.0390
betal 0.050 -0.3799 -0.0870 -0.3605 -0.0745
s2 0.050 0.00627 0.1819 0.00306 0.1474
ml 0.050 7887.8 13938.5 7763.8 13769.9
m2 0.050 896.2 2043.6 920.1 2062.8
m3 0.050 12423.7 22436.8 12376.5 22309.4
mé 0.050 12676.5 26194.8 12355.2 25693.3
m5 0.050 161318 216311 161824 216623
mé 0.050 314273 431855 309297 425381
m7 0.050 15004.2 27582.3 14982.6 27512.6
m8 0.050 13665.6 23823.8 13741.7 23877.0
m9 0.050 41907.8 67791.9 41180.5 66942.1
ml0 0.050 73968.4 106327 73516.8 105669
ul 0.050 0.0137 0.0239 0.0134 0.0236
u2 0.050 0.00685 0.0155 0.00703 0.0156
u3 0.050 0.0136 0.0243 0.0136 0.0242
u4d 0.050 0.0172 0.0350 0.0168 0.0343
u5 0.050 0.0226 0.0301 0.0227 0.0302
ué 0.050 0.0302 0.0410 0.0297 0.0405
u’7 0.050 0.0136 0.0246 0.0135 0.0246
u8 0.050 0.0136 0.0236 0.0137 0.0236
u9 0.050 0.0163 0.0261 0.0160 0.0258
ul0 0.050 0.0220 0.0313 0.0219 0.0312

14



SAS Global Forum 2011 Statistics and Data Analysis

You might notice in the “Posterior Summaries” table that the algebraic signs of the regression coefficients o and §;
are opposite of what you might expect. This is due to the parameterizations of Gamma in the preceding statements.
The rationale for reversing the sign on Gamma in the equations for M; and U; is that experimentation with this model
indicates that doing so provides a better range for the estimated quantities of interest in the intermediate computations.

PROC MCMC automatically generates the trace, autocorrelation, and kernel density plots that are shown in Output 6.
A trace plot provides you with evidence of whether the Markov chain has converged to its stationary distribution. A
trace can also tell you whether the chain is mixing well. A chain might have reached stationarity if the distribution of
points is not changing as the chain progresses. The aspects of stationarity that are most recognizable from a trace plot
are a relatively constant mean and variance. The trace plots in Output 6 indicate that the Markov chain has stabilized
and appears constant for all three variables. The trace plots also appear to indicate that the Markov chains have good
mixing. A chain that mixes well traverses its posterior space rapidly, and it can jump from one remote region of the
posterior to another in relatively few steps.

The autocorrelation plots do not indicate any significant autocorrelations for all three small area parameters. The
NTHIN= option in the PROC MCMC statement controls the thinning, which might control the autocorrelations among
the posterior samples. NTHIN = 10 is sufficient in this example.

Output 6 MCMC Diagnostic Plots
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Output 6 continued
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The following SAS statements use the output data set Est to generate two tables of HB estimates of the posterior
means of the undercoverage count M and undercoverage rate U, and coefficients of variation for the estimates.

data estcount;

merge undercoverage est (firstobs=4 obs=13);
CVHB = StdDev/Mean;
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CVD = sqgrt (D) /Missing;

label Missing = 'Direct Estimate for Undercount'
Mean = 'HB Estimate for Undercount'
StdDev = 'Standard Deviation for the HB Estimator'
CVHB = 'CV for the HB Estimator'
CVvD = 'CV for the Direct Estimator’';

run;

data estrate;
merge undercoverage est (firstobs=14);
CVHB = StdDev/Mean;

UR = Missing/ (Missing+CensusCount) ;
label UR = 'Direct Estimate for Undercoverage Rate'
Mean = 'HB Estimate for Undercoverage Rate'
StdDev = 'Standard Deviation for the HB Estimator'
CVHB = 'CV for the HB Estimator’';
run;

proc print data=estcount label noobs;
var Province CensusCount Missing Mean StdDev CVHB CVD;
format Mean 10.1
CVHB 4.2
CVD 4.2;
run;

proc print data=estrate label noobs;
var Province CensusCount UR Mean StdDev CVHB;

format UR 6.3
Mean 6.3
StdDev 6.3
CVHB 6.3;
run;

The results are displayed in Output 7 and Output 8. Output 7 displays the census counts, direct estimates for un-
dercount, HB estimates for undercount, estimated standard deviations for the HB estimates, model CV for the HB
estimates, and the design CV for the direct estimates.

Output 7 HB Estimates for the Undercounts

HB Standard

Direct Estimate Deviation CV for the CV for the
Census Estimate for for for the HB HB Direct

Province Count Undercount Undercount Estimator Estimator Estimator
Nfld 569640 11566 10784.6 1535.7 0.14 0.16
PEI 129963 1220 1467.0 289.2 0.20 0.30
NS 899549 17329 17241.5 2566.5 0.15 0.20
NB 722797 24280 18707.9 3557.0 0.19 0.14
Que 6965643 184473 188534.8 14029.8 0.07 0.08
Ont 10088786 381104 370689.9 29578.6 0.08 0.08
Man 1091728 20691 21257.0 3170.6 0.15 0.21
Sask 987783 18106 18677.8 2621.6 0.14 0.19
Alta 2526533 51825 54963.0 6555.2 0.12 0.15
BC 3286372 92236 89967.3 8286.4 0.09 0.10

From the table in Output 7 you can see that the model CV for the HB estimate is lower than the design CV for the direct
estimate for every province in Canada except for New Brunswick (NB). For provinces with large sample sizes such as
Ontario (Ont) or Quebec (Que), the CV for the direct estimates and the HB estimates are similar.

Output 8 represents the prediction statistics for the undercoverage rate. The model CV for the HB estimates for the
undercoverage rate range from 7.2% to 19.5%.
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Output 8 HB Estimates for the Undercoverage Rates

Direct HB Estimate Standard
Estimate for for Deviation CV for the
Census Undercoverage Undercoverage for the HB HB
Province Count Rate Rate Estimator Estimator
Nfld 569640 0.020 0.019 0.003 0.140
PEI 129963 0.009 0.011 0.002 0.195
NS 899549 0.019 0.019 0.003 0.146
NB 722797 0.032 0.025 0.005 0.185
Que 6965643 0.026 0.026 0.002 0.072
Ont 10088786 0.036 0.035 0.003 0.077
Man 1091728 0.019 0.019 0.003 0.146
Sask 987783 0.018 0.019 0.003 0.138
Alta 2526533 0.020 0.021 0.002 0.117
BC 3286372 0.027 0.027 0.002 0.090

CONCLUSION

Small area estimation techniques are useful for subpopulation (domain) analysis when direct domain estimators do not
have adequate precision due to small sample sizes. Indirect estimation for small areas uses statistical models and
auxiliary variables to borrow strength from similar areas. This paper describes three approaches for indirect estimation
of small area parameters using the three most commonly used small area models. The MIXED, IML, and MCMC
procedures are used to predict the small area parameters and their prediction errors. SAS/STAT users can use the
techniques described in this paper to compute indirect estimators for small area statistics.
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