SAE course spring 2015 / Risto Lehtonen VARIANCE ESTIMATION for HT and GREG EXAMPLE: SRSWOR case

(1) Planned domains under STR-SRSWOR

SRSWOR sample from every domain U_d

Domain sample sizes n_d are fixed

Sample allocation schemes

Optimal (Neyman) allocation
Bankier allocation
Equal allocation
Proportional allocation

see e.g. Lehtonen and Pahkinen (2004) Practical methods for design and analysis of complex surveys. Wiley.

Sample s_d of size n_d elements is drawn from stratum U_d whose size is N_d elements, d = 1,...,D

Design weights are $a_k = N_d / n_d$ for all $k \in s_d$

NOTE: We assume that N_d are known

NOTE: SURVEYMEANS with BY statement

Domain totals (unknown parameters)

$$t_d = \sum_{k \in U_d} y_k$$
 , $d = 1,...,D$

a) HT estimator (direct estimator)

$$\hat{t}_{dHT} = \sum_{k \in S_d} a_k y_k = \frac{N_d}{n_d} \sum_{k \in S_d} y_k = N_d \overline{y}_d$$

Variance estimator for HT

$$\hat{V}_{str-srswor}(\hat{t}_{dHT}) = N_d^2 (1 - \frac{n_d}{N_d}) (\frac{1}{n_d}) \sum_{k \in S_d} \frac{(y_k - \overline{y}_d)^2}{n_d - 1}$$

b) GREG estimator (direct estimator)

$$\hat{t}_{dGREG} = \sum_{k \in U_d} \hat{y}_k + \sum_{k \in S_d} a_k (y_k - \hat{y}_k)$$

$$= \sum_{k \in U_d} \hat{y}_k + \frac{N_d}{n_d} \sum_{k \in S_d} (y_k - \hat{y}_k)$$

Variance estimator for GREG

$$\hat{V}_{str-srswor}(\hat{t}_{dGREG}) = N_d^2 (1 - \frac{n_d}{N_d}) (\frac{1}{n_d}) \sum_{k \in S_d} \frac{(e_k - \overline{e}_d)^2}{n_d - 1}$$

where $e_k = y_k - \hat{y}_k$, $k \in s_d$ are residuals

 $\overline{e}_d = \sum_{k \in S_d} e_k / n_d$ is mean of residuals in domain d

Assisting model: $y_k = \mathbf{x}_k' \mathbf{\beta}_d + \varepsilon_k$, $\hat{y}_k = \mathbf{x}_k' \hat{\mathbf{\beta}}_d$, $k \in s_d$

(2) Unplanned domains

A single SRSWOR sample *s* of size *n* elements from population *U* whose size is *N* elements

Sample size n_d in domain U_d is a random variable with expectation $E(n_d) = nN_d / N$

Inclusion probability is $\pi_k = n/N$ Design weights are $a_k = N/n$ for all $k \in U$

Define

Domain y-variables $y_{dk} = I_{dk}y_k$ Domain residuals $e_{dk} = y_{dk} - \hat{y}_k$, d = 1,...,Dwhere $I_{dk} = 1$ if $k \in U_d$, zero otherwise \hat{y}_k are fitted values from the specified model

NOTE: SURVEYMEANS with DOMAIN statement

a) HT estimator (direct estimator)

$$\hat{t}_{dHT} = \sum_{k \in S_d} a_k y_k = \frac{N}{n} \sum_{k \in S} y_{dk} = \frac{N}{n} n_d \overline{y}_d$$

Variance estimator for HT:

$$\hat{V}_{srswor}(\hat{t}_{dHT}) = N^2 (1 - \frac{n}{N}) (\frac{1}{n}) \sum_{k \in S} \frac{(y_{dk} - \overline{y}_d)^2}{n - 1}$$

b) GREG estimator (indirect estimator)

$$\hat{t}_{dGREG} = \sum_{k \in U_d} \hat{y}_k + \sum_{k \in S_d} a_k (y_k - \hat{y}_k)$$

$$= \sum_{k \in U_d} \hat{y}_k + \frac{N}{n} \sum_{k \in S_d} (y_k - \hat{y}_k)$$

Variance estimator for GREG

$$\hat{V}_{srswor}(\hat{t}_{dGREG}) = N^2(1 - \frac{n}{N})(\frac{1}{n})\sum_{k \in S} \frac{(e_{dk} - \overline{e}_{d})^2}{n - 1}$$

Assisting model: $y_k = \mathbf{x}_k' \mathbf{\beta} + \varepsilon_k$

Fitted values are $\hat{y}_k = \mathbf{x}'_k \hat{\boldsymbol{\beta}}$, $k \in s$

Residuals are $e_{dk} = y_{dk} - \hat{y}_k$, $k \in s$

NOTE: Elements outside the domain *d* also contribute to the GREG variance estimator

This is because $e_{dk} = -\hat{y}_k$ for $k \notin s_d$ and $k \in s$