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3. Direct estimators for domain estimation

The HT type estimator does not incorporate auxiliary information. GREG estimation is
assisted by a model fitted at the domain level and uses auxiliary data from the domain.
Calibration incorporates auxiliary data from the domain of interest or from a higher-
level aggregate. All these estimators are direct because the y-values are taken from the
domain of interest. When domain membership is known for all population elements,
domain sizes Nd are also known.

3.1. Horvitz–Thompson estimator

The basic design-based direct estimator of the domain total td is the HT estimator, also
known as the Narain-Horvitz-Thompson (NHT) and the expansion estimator:

t̂dHT =
∑

k∈Ud

Ikyk/πk =
∑

k∈sd

yk/πk =
∑

k∈sd

akyk (1)

(Horvitz and Thompson, 1952; Narain, 1951; notation as in Section 2.1). HT estimates
of domain totals are additive: they sum up to the HT estimator t̂HT = ∑

k∈s akyk of
the population total. As E(Ik) = πk, the HT estimator is design unbiased for td . Under
mild conditions on the πk, the corresponding mean estimator t̂dHT/Nd is also design
consistent (Isaki and Fuller, 1982). The estimator t̂dHT has design variance

Var
(
t̂dHT

) = E

⎛

⎝
∑

k∈Ud

Ik − πk

πk

yk

⎞

⎠

2

=
∑

k∈Ud

∑

l∈Ud

E(Ik − πk)(Il − πl)
yk

πk

yl

πl

=
∑

k∈Ud

∑

l∈Ud

(πkl − πkπl)
yk

πk

yl

πl

=
∑

k∈Ud

∑

l∈Ud

(akal/akl − 1)ykyl. (2)

From aklE(IkIl) = 1, we see that an unbiased estimator for the design variance is

V̂
(
t̂dHT

) =
∑

k∈Ud

∑

l∈Ud

aklIkIl(akal/akl − 1)ykyl =
∑

k∈sd

∑

l∈sd

(akal − akl)ykyl.

(3)

An alternative Sen–Yates–Grundy formula for fixed sample size designs is (Sen,
1953; Yates, 1953):

V̂
(
t̂dHT

) = −
∑

k∈sd

∑

l<k;l∈sd

akl(πkl − πkπl)(akyk − alyl)
2

=
∑

k∈sd

∑

l<k;l∈sd

(akl/akal − 1)(akyk − alyl)
2.

These variance estimators are impractical because they contain second-order inclu-
sion probabilities πkl whose computation is often laborious for practical purposes.
Hájek (1964) and Berger (2004, 2005b) proposed approximations to πkl. Särndal (1996)
developed efficient strategies with simple variance estimators under fixed sample size
probability proportional-to-size (πPS) schemes, including a combination of Poisson
sampling or stratified simple random sampling without replacement (SRSWOR) with
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GREG estimation. Berger and Skinner (2005) proposed a jackknife variance estima-
tor and Kott (2006a) introduced a delete-a-group jackknife variance estimator for πPS
designs. The SAS procedure SURVEYSELECT is able to compute πkl under certain
unequal probability without-replacement sampling designs. Some software products can
incorporate the πkl into variance estimation procedures; an example is the SUDAAN
software. The SAS macro CLAN includes the Sen–Yates–Grundy formula. Such esti-
mators are discussed in Chapter 2.

Many πPS designs allow using of Hájek approximation (Berger, 2004, 2005b; Hájek,
1964) of second-order inclusion probabilities by πkl ≈ πkπl

[
1 − (1 − πk)(1 − πl)m

−1
d

]

for k �= l, where md = ∑
i∈Ud

πi(1 − πi). The approximation is used in a simple

variance estimator V̂
(
t̂dHT

) = ∑
k∈sd

cke
2
k , where ci = nd(nd − 1)−1(1 − πi) and

ek = akyk − (∑
i∈sd

ci

)−1∑
i∈sd

ciaiyi.
For unequal probability sampling designs, the variance of the ordinary HT estimator

has been approximated under a with-replacement (WR) assumption, leading to Hansen–
Hurwitz (1943) type variance estimator (Lehtonen and Pahkinen, 2004, p. 228, and SAS
procedure SURVEYMEANS) given by

V̂A(t̂dHT) = 1

nd(nd − 1)

∑

k∈sd

(ndakyk − t̂dHT)2. (4)

For unplanned domains, the variance estimator for HT should account for random
domain sizes. An approximate variance estimator applied, for example, in SAS proce-
dure SURVEYMEANS contains extended domain variables ydk:

V̂U(t̂dHT) = n

n − 1

∑

k∈s

(akydk − t̂d/n)2, (5)

where n is the total sample size. Under SRSWOR, an alternative to (5) is

V̂srswor(t̂dHT) = N2
(

1 − n

N

)(1

n

)

pdŝ
2
dy

(

1 + qd

c.v2
dy

)

,

where pd = nsd
/n, qd = 1 − pd , variance estimator is, ŝ2

dy = ∑
k∈sd

(yk − ȳd)
2/(nsd

−1), and estimated coefficient of variation is c.vdy = ŝdy/ȳd for ȳd = ∑
k∈sd

yk/nsd
.

The HT estimator can be regarded as a model-dependent estimator under a model
Yk = βπk + πkεk (Zheng and Little, 2003). HT is nearly optimal estimator among
weighted sums of Y values when Y depends on scalar x as E(Yk) = βxk, the variance of
errors is proportional to x2

k , and the sampling design assigns πk proportional to xk. On
the other hand, HT is very inefficient when the intercept of the model is far from zero.
Disastrous results are possible in HT estimation, as the famous example of Basu (1971)
shows (e.g., citation in Little, 2004).

If the domain size Nd is known, we expect better results with a “Hájek” type direct
estimator t̂dH(N ) = Nd

ˆ̄yd (e.g., Hidiroglou and Patak, 2004; Särndal et al., 1992, p. 391)
derived from the domain mean ˆ̄yd = ∑

k∈sd
akyk/N̂d with N̂d = ∑

k∈sd
ak. This is a

special case of ratio estimation (Section 4.3.1). The variance of t̂dH(N ) is estimated by

V̂ (t̂dH(N )) =
(

Nd

N̂d

)2∑

k∈sd

∑

l∈sd

(akal − akl)(yk − ˆ̄yd)(yl − ˆ̄yd). (6)
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3.2. Population fit regression estimator

The population fit regression estimator is a theoretical tool used in approximating real-
world estimators. We first consider difference estimators (Särndal, 1980; Särndal et al.,
1992, p. 221). If known values y0

k are close to yk, we write the estimable population
total as

t =
∑

k∈U

yk =
∑

k∈U

y0
k +

∑

k∈U

(yk − y0
k).

A difference estimator is defined by estimating the second sum using HT:

t̂DIFF =
∑

k∈U

y0
k +

∑

k∈s

ak(yk − y0
k).

As the y0
k are constants, t̂DIFF is unbiased for t.

Consider a regression superpopulation model Yk = x′
kβ + εk, where xk = (1, x1k,

. . . , xJk)
′ is the vector of auxiliary x-variables, β = (β0, β1, . . . , βJ )′ is the vector of

regression coefficients, and εk are the residuals with variances σ2
k = Var(εk). Hypothet-

ically, we can fit the model to the population by calculating generalized least squares
(GLS) estimator B = β̂ as

B =
(
∑

k∈U

xkx′
k

σ2
k

)−1(
∑

k∈U

xkyk

σ2
k

)

.

In practice, the error variance Var(εk) = σ2
k can often be assumed constant, σ2

k = σ2,
and then it cancels out. When the variance varies between observations, the σ2

k should
be included in the estimators. Straightforward cases are known σ2

k or an assumption that
the variances differ by known constants ck such that σ2

k = ckσ
2. A special case is when

ck = 1 for all k ∈ U. For more details on the treatment of σ2
k , see, for example, Särndal

et al. (1992, p. 229 and Chapter 7).
A difference estimator with fitted values ŷ0

k = x′
kB defines the population fit regres-

sion estimator,

t̂REG =
∑

k∈U

ŷ0
k +

∑

k∈s

ak(yk − ŷ0
k).

If an estimator t̂ can be well approximated by t̂REG, then Var(t̂) can be estimated by
a sample-based estimator of

Var(t̂REG) = Var

(
∑

k∈s

akEk

)

=
∑

k∈U

∑

l∈U

(akal/akl − 1)EkEl,

where Ek = yk − ŷ0
k are the population fit residuals. To estimate Var(t̂REG) from sample,

we replace the Ek by corresponding sample residuals ek = yk − x′
kB̂. If B̂ is nearly

unbiased for B, we can verify using E(aklIkIl) = 1 that a nearly unbiased estimator for
Var(t̂REG) is

V̂ (t̂REG) =
∑

k∈s

∑

l∈s

(akal − akl)ekel. (7)
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One approach to estimate B is to plug in HT estimators of both of its sum components.
When σ2

k is constant, we use a weighted least squares (WLS) estimator

B̂ =
(
∑

k∈s

akxkx′
k

)−1 (
∑

k∈s

akxkyk

)

.

This estimator is only approximately unbiased due to its nonlinearity. Another
approach is to consider the population maximum likelihood (ML) estimator maximizing
f(β) = −∑k∈U

(
yk − x′

kβ
)2

/σ2. As only the sample is available, we use an estimated
log-likelihood, the so-called pseudolikelihood, instead (Binder, 1983; Godambe and
Thompson, 1986a; Nordberg, 1989). The function f(β) is estimated by an unbiased HT
type estimator f̂ (β) = −∑k∈s ak

(
yk − x′

kβ
)2

/σ2. This function is maximized by B̂.
Robust alternatives are presented in Beaumont and Alavi (2004).

Särndal et al. (1992) and Estevao and Särndal (2006) have approximated GREG
and calibration estimators (Sections 3.3 and 3.4) by Taylor linearization yielding a
population fit regression estimator. Because many approximations are involved, the
resulting variance estimators are at least slightly biased.

3.3. GREG estimators

The GREG estimator is a sample-based substitute for the population fit regression esti-
mator (Section 3.2). A direct type GREG estimator of domain total td is assisted by a
regression model Yk = x′

kβd + εk, Var(εk) = σ2
k . Assuming constant error variance σ2

k ,
the domain-specific parameter Bd of the population fit defined for Ud is estimated as in
Section 3.2 by

B̂d =
⎛

⎝
∑

k∈sd

akxkx′
k

⎞

⎠

−1⎛

⎝
∑

k∈sd

akxkyk

⎞

⎠,

and the fitted values ŷk = x′
kB̂d and residuals ek = yk − ŷk are incorporated into the

GREG estimator

t̂dGREG =
∑

k∈Ud

ŷk +
∑

k∈sd

ak(yk − ŷk) =
∑

k∈Ud

ŷk +
∑

k∈sd

akek (8)

(Särndal, 1980; Särndal et al., 1992). The first part in t̂dGREG, the population sum of
fitted values over the domain, is sometimes called a synthetic estimator (Särndal, 1984).
When compared with direct GREG, it may have smaller variance but possibly large
design bias. The weighted sum of residuals tends to correct for the design bias. In some
cases, however, the weighted sum of the residual terms is zero. This happens when the
model contains an intercept.

Rearranging the terms of GREG we obtain the traditional regression estimator

t̂dGREG = t̂dHT + (tdx − t̂dx)
′B̂d,

where tdx = ∑
k∈Ud

xk = (
Nd,

∑
k∈Ud

x1k, . . . ,
∑

k∈Ud
xJk

)′
and t̂dx = ∑

k∈sd
akxk. By

Taylor linearization, t̂dGREG is approximated by a population fit regression estimator
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t̂dREG = t̂dHT + (tdx − t̂dx)
′Bd applied in Ud . The estimator t̂dREG is unbiased for td , and

so the GREG estimator is nearly unbiased. Although GREG incorporates a model, it is
model-assisted, not model-dependent, because the model only yields a fixed population
quantity Bd , and GREG is nearly design unbiased even when the model is not valid. By
(7), the variance of t̂dGREG can be estimated using sample residuals ek = yk − x′

kB̂d :

V̂1(t̂dGREG) =
∑

k∈sd

∑

l∈sd

(akal − akl)ekel. (9)

The GREG estimator can be written as a weighted sum of observations incorporating
so-called g-weights:

t̂dGREG =
∑

k∈sd

akgdkyk; gdk = Idk + Idk(tdx − t̂dx)
′M̂−1

d xk,

where M̂d = ∑
i∈sd

aixix′
i and Idk = I{k ∈ Ud} is the domain membership indicator.

The g-weights are used in a variance estimator

V̂2(t̂dGREG) =
∑

k∈sd

∑

l∈sd

(akal − akl)gdkekgdlel (10)

(Hidiroglou and Patak, 2004; Särndal et al., 1989 and 1992, p. 235). In practice, V̂1 and
V̂2 often yield similar results but V̂2 in (10) is preferable (Fuller, 2002; Särndal et al.,
1989).

3.4. Calibration estimators

Calibration is based on information about known totals of auxiliary variables xk, also
called benchmark variables, at an aggregate level. In model-free calibration (Särndal,
2007) discussed here, it is not necessary to impose a model on the data. Suppose the
population is divided into calibration groups Uc (c = 1, 2, . . . , C) so that every domain
Ud is contained within one of the groups and the population totals tcx = ∑

k∈Uc
xk of

auxiliary variables are known. The domain totals tdx are not required. Direct calibration
estimator of the domain total td is a weighted sum of observations:

t̂dCAL =
∑

k∈sd

wkyk,

where the calibration weights wk have to satisfy the calibration equations
∑

k∈sc

wkxk =
∑

k∈Uc

xk = tcx

for every calibration group. It follows immediately that calibration estimator applied to
the auxiliary data yields the known totals. We therefore expect that the weighted sum
of y over sd is close to td .

There are two main approaches to calibration, one based on a distance measure and
the other based on instrument vectors (Chapter 25). In the distance measure approach,
the weights wk minimize a distance to the design weights ak, subject to the calibra-
tion equations (Deville and Särndal, 1992; Singh and Mohl, 1996). An example of a
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calibration estimator incorporating an instrument vector zk is

t̂dCAL =
∑

k∈sd

ak(1 + λ′zk)yk,

where λ′ = (tcx− t̂cx)′
(∑

k∈sc
akzkx′

k

)−1
. It should be noted that the values of instrument

z-variables need to be known only for the sample (or need to be estimated); they are not
necessarily treated as proper auxiliary information in the same manner as the auxiliary
x-variables. For practical purposes, a natural choice is zk = xk; an optimal choice is
discussed in Estevao and Särndal (2004).

As in (7), the variance of t̂dCAL is estimated by

V̂ (t̂dCAL) =
∑

k∈sc

∑

l∈sc

(akal − akl)(ydk − x′
ckB̂cd)(ydl − x′

clB̂cd),

where xck = I{k ∈ Uc}xk (Estevao and Särndal, 2006), and

B̂cd =
⎛

⎝
∑

k∈sc

akzkx′
ck

⎞

⎠

−1⎛

⎝
∑

k∈sc

akzkydk

⎞

⎠.

When Uc is much larger than Ud , the variance can become large. Therefore, we should
attempt to find a calibration group that agrees closely with the domain of interest.

Our GREG estimator of Section 3.3 is actually a special case of calibration, some-
times called linear calibration estimator, as the weights akgdk minimize a certain chi-
square distance to design weights ak, subject to domain-level calibration equations∑

k∈sd
akgdkxk = tdx.

Calibration is contrasted with GREG estimation in Särndal (2007). Särndal and
Lundström (2005) discuss calibration in the context of adjustment for unit nonresponse
in sample surveys.

3.5. Computational example with direct estimation under a planned domain structure

In this section, we demonstrate with real data the direct Horvitz–Thompson, Hájek,
and GREG estimation of totals for domains. The data set contains disposable income
of households in D = 12 regions of Western Finland. The population consists of N =
431,000 households. In addition to the income data, the record of a household shows
the number of household members who had higher education (variable EDUC) and
the number of months in total the household members were employed (EMP) during
last year. All three variables were determined using administrative registers. For this
computational exercise, we had access to population level information on all variables.
This gives a possibility to compare sample estimates to the known population values.

We were interested in the yearly total disposable income td = ∑
k∈Ud

yk in the regions
Ud(d = 1, . . . , D). A sample of 1000 households was drawn from the population by
using stratified πPS (without-replacement type probability proportional to size sam-
pling) with household size as the size variable. To demonstrate estimation for planned
domains, we interpret here the sample as a stratified sample where the regions constitute
the strata. Thus, the domain structure is of planned type, where the regional sample sizes
are considered fixed by the sampling design. In Section 4.2, we use the same sample
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in estimation for unplanned domains, where the regional sample sizes are considered
random.

In Table 2, we grouped the domains by sample size into minor (8 ≤ nd ≤ 33),
medium-sized (34 ≤ nd ≤ 45) and major (46 ≤ nd ≤ 277) domains, where nd is the
observed domain sample size in domain Ud . There were four domains in each domain
size class.

Results are shown in Table 2. The absolute relative error of an estimator in domain
d is calculated as |t̂d − td |/td and domain group’s MARE is the mean of absolute rel-
ative errors over domains in the group. Correspondingly, MCV is the mean coefficient
of variation of the estimate over domain group. The coefficient of variation is calcu-
lated as s.e(t̂d)/t̂d , where s.e refers to the estimated standard error of an estimator. For
variance estimation, we approximated the design by with-replacement type probability-
proportional-to-size sampling (PPS). The variance estimators for ordinary HT (column
1) and the Hájek type estimator (column 2) were defined by (4) and (6), respectively.
The Hájek estimator, which contains the known domain sizes Nd , yielded better results
than ordinary HT.

A calibration estimator, the direct GREG estimator with linear assisting model,

Yk = β0d + β1dEMPk + εk(column 3) or

Yk = β0d + β1dEMPk + β2dEDUCk + εk(column 4),

and variance estimator (10) incorporated the known domain sizes and domain totals
of EMP (column 3) and EDUC (column 4). The model parameters were estimated by
WLS with weights ak = 1/πk. By GREG, we obtained clearly smaller MARE and MCV
figures than by HT.

Adding information in the estimation procedure improved the results until the assist-
ing model contained both EMP and EDUC: inclusion of EDUC in GREG decreased
MCV but average errors did not always decrease. In large domains, the average error
and MCV were usually smaller than in small domains.

Table 2
Mean absolute relative error (MARE) and mean coefficient of variation (MCV) of direct HT, Hájek, and
calibration (GREG) estimators of totals for minor, medium-sized, and major domains by using various amounts
of auxiliary information in a planned domains case

HT Hájek Calibration (GREG)

1 2 3 4
Auxiliary
Information

None Domain Sizes Domain Sizes and
Domain Totals of

EMP

Domain Sizes and
Domain Totals of
EMP and EDUC

Domain sample
size class

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

Minor
8 ≤ nd ≤ 33

11.5 11.9 5.3 10.9 5.8 7.7 6.4 6.8

Medium
34 ≤ nd ≤ 45

7.6 9.0 6.4 9.0 3.7 8.0 3.6 8.1

Major
46 ≤ nd ≤ 277

12.5 5.2 4.7 5.6 4.3 4.7 5.2 3.7
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