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Model-Assisted Estimation
for Domains

In this chapter, we examine the estimation for population subgroups or domains.
Regional areas constructed by administrative criteria, such as county or munic-
ipality, are typical domains or domains of interest. The population also can be
grouped into domains by demographic criteria, such as sex and age group, as in
a social survey. In a business survey, enterprises are often grouped into domains
according to the type of industry. Further, elements can be assigned into domains
by demographic criteria within regional areas. In all these instances, estimation
for domains, or domain estimation, refers to the estimation of population quantities,
such as totals, for the desired population subgroups. Estimation of domain totals
will be discussed in the context of design-based estimation, which is the main
approach of the book. In practice, design-based estimation is mainly used for
domains whose sample size is reasonably large. For small domains (with a small
sample size in a domain), methods falling under the headline of small area estima-
tion are often used. In Section 6.1, we outline the framework and basic principles
of domain estimation. We also summarize the operational steps of a domain
estimation procedure. Section 6.2 introduces two important concepts, estimator
type and model choice, in the context of domain estimation. Selected estimators
and models are worked out and illustrated in Section 6.3. Section 6.4 includes an
empirical examination of properties of some estimators of domain totals based on
Monte Carlo experiments. Summary and further reading is in Section 6.5.

6.1 FRAMEWORK FOR DOMAIN ESTIMATION

Wefocus on the estimation of population totals for domains in a descriptive survey.
The estimation of domain totals is discussed from a design-based perspective, with
the use of auxiliary information. According to Sarndal et al. (1992), the framework
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is called model-assisted. The reason for incorporating auxiliary data in a domain
estimation procedure is obvious: with strong auxiliary data it is possible to
obtain better accuracy for domain estimates, when compared to an estimation
procedure not using auxiliary data. Thus, this chapter extends the treatment of
model-assisted estimation introduced in Section 3.3.

Different types of auxiliary data can be used in model-assisted estimation. In
Section 3.3, we used population-level aggregates of auxiliary variables. Here, we
also employ unit-level auxiliary data for model-assisted estimation for domains.
These data are incorporated in a domain estimation procedure by unit-level
statistical models. This is possible if we make the following technical assumptions:
(1) register data (such as population census register, business register, different
administrative registers) are available as frame populations and sources of aux-
iliary data, (2) registers contain unique identification keys that can be used in
merging at micro-level data from registers and sample surveys (see Figure 1.1 in
Chapter 1). Obviously, access to micro-merged register and survey data involves
much flexibility for a domain estimation procedure. This view has been adopted,
for example, in Sdrndal (2001) and Lehtonen et al. (2003). Much of the material of
this chapter are based on these sources.

The methods specific to small-area estimation include a variety of model-
dependent techniques such as synthetic (SYN) estimators, composite estimators,
EBLUP (empirical best linear predictor) estimators and various Bayesian tech-
niques, and techniques developed in the context of demography and disease
mapping. The monograph by J.N.K. Rao (2003) provides a comprehensive treat-
ment of model-dependent small-area estimation and discusses design-based
methodologies for the estimation for domains as well. Other materials include, for
example, Schaible (1996), Lawson et al. (1999), and Ghosh (2001), who discusses
especially empirical and hierarchical Bayes techniques.

Basic Principles

Let us introduce our basic notation for population quantities and sample-specific
quantities in the context of domain estimation. The finite population is again
denotedby U = {1, 2, ..., k, ..., N} and, in domain estimation, we consider a set
of mutually exhaustive subgroups of the population denoted Uy, ..., Uy, ..., Up
(note that in this chapter we use exclusively a subscript d for domains of interest).
We assume that the population U can be used as a sampling frame. This implies
that U is available as a computerized data set, for example, a population register, or
aregister of business firms. We therefore also assume that the frame population U
contains (in addition to the ‘labels’ k of the population elements) values for certain
additional variables for all elements k € U (where the symbol ‘€’ refers to the
inclusion of an element in a set of elements). These variables are unique element-
identification (ID) keys, domain membership indicators, stratum membership
indicators and the auxiliary z-variables.
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Denote by y the variable of interest and by Yy its unknown population value
for unit k. The target parameters are the set of domain totals, Ty = 3 .y, Yk, d =
1, ..., D, where summation is over all population elements k belonging to domain
U, (for simplicity, we use this notation throughout this chapter). Auxiliary
information is essential for building accurate domain estimators, and increasingly
so when the sample size of domains get smaller. Let zx = (zik, - . -, Zjk, - - -, Zjr)” be
the auxiliary variable vector of dimension | > 1. The value z; is assumed to be
known for every element k € U. In a survey on individuals, z; may specify known
data about a person k, such as age, sex, taxable income and other continuous or
qualitative variable values. In a business survey, z; may indicate the turnover, or
the total number of staff, for business firm k. It is important to emphasize that we
assume the auxiliary z-data to be at the micro-level, that is, a value is assigned
for each population element in the frame register. This is for flexibility, because
the data can be then aggregated at higher levels of the population, such as at the
domain or stratum level, if desired. Indeed, for some estimators, it suffices to know
the population totals Ty, . . ., Ta; of the auxiliary variables z; for each domain of
interest. In the model-fitting phase, we often assume that a constant value 1 is
assigned as the first element in a vector z.

For unique identification of domain membership for each population element,
we define 8y = (81x, ..., 8ak, - - ., Opx)’ to be the domain indicator vector for unit k,
such that 84 = 1 for all elements k € Uy, and 84 = O for all elements k ¢ Uy, d =
1,...,D. An indicator vector T} for stratum identification for population element
k is constructed in a similar manner: 7, =1 for all ke Uy, h =1, ..., H, and
T = O otherwise, where Uy, refers to stratum h and H is the number of strata.
Thus, a total of D domain indicator variables and H stratum indicator variables
are assumed in the population frame.

A probability sample s of size n is drawn from U using a sampling design p(s)
such that an inclusion probability m; is assigned to unit k. The corresponding
sampling weights are wy, = 1/m. Measurements yj of the response variable y are
obtained for the sampled elements k € s. We assume that a unique element ID
key is included in sample s making it possible to micro-merge these data with the
frame register U.

The domain samples are s; = U;Ns,d=1,...,D. A domain is defined
unplanned, if the domain sample size ng, is not fixed in the sampling design.
This is the case in which the desired domain structure is not a part of the sampling
design. Thus, the domain sample sizes are random quantities introducing an increase
in the variance estimates of domain estimators. In addition, an extremely small
number (even zero) of sample elements in a domain can be realized in this
case, if the domain size in the population is small. For planned domains on the
other hand, the domain sample sizes are fixed in advance by stratification. Stratified
sampling in connection with a suitable allocation scheme is often used in practical
applications.

A certain domain structure for a stratified sample of n elements can be illustrated,
for example, as in Table 6.1. In the table setting, an unplanned domain structure
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Table 6.1 Planned and unplanned domain structures in a stratified sample of n

elements.

Strata (planned domains
Unplanned (p )
domains 1 2 . h ... H Sum
1 ng, ng, .. Ny, .. N, ng,
2 Ns,, Ns,, . Ns,, . Ny, N,
d Mgy, Ny, e Mgy, e Mgy N,
D nSm nSnz e nSm, e nSml nSI)
Sum m n ... np ... ny n
Sample sizes n;,, d =1, ..., D, for unplanned domains are not fixed in advance and
thus are random variables.
Stratum sample sizes ny,, h =1, ..., H are fixed in the sampling design. Thus, the

strata are defined as planned domains.
Cell sample sizes ng,, are random variables in both cases.

cuts across the strata, a situation that is common in practice. In other types of
structures, strata and domains can be nested such that a stratum contains several
unplanned domains (for example, regional sub-areas within larger areas) or the
strata themselves constitute the domains. The latter case represents a planned
domain structure. Singh et al. (1994) illustrates the benefits of the planned domain
approach for domain estimation. They presented compromise sample allocation
schemes for the Canadian labour force survey to satisfy reliability requirements
at the provincial level as well as at sub-provincial level. However, for practical
reasons, it is usually not possible to define all desired domain structures as strata.

For the estimation for domains, it is advisable to apply the planned domains
approach when possible, by defining the most important domains of interest
as strata and to use a suitable allocation scheme in the sampling design, such
as power or Bankier allocation (see the next example). It is also beneficial to
use a large overall sample size to avoid small expected domain sample sizes if an
unplanned domain approach is used. And in the estimation phase, it is often useful
to incorporate strong auxiliary data into the estimation procedure by carefully
chosen models and estimators of domain totals (see Example 6.2 and Section 6.4).

Example 6.1

Impact of sampling design in estimation for domains: the cases of unplanned and
planned domain structures. Problems may be encountered when working with
an unplanned domain structure, because small domain samples can be obtained
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for domains with a small population size, if the overall sample size is not large,
involving imprecise estimation. For example, if the sample has been drawn with
simple random sampling without replacement, then the expected sample size in
a domain would be E(n,,) = n x (Ng4/N), thus corresponding to the proportional
allocation in stratified sampling. An alternative is based on the planned domain
structure, where the domains are defined as strata. Then, more appropriate
allocation schemes can be used. In this example, the allocation scheme is based
on power allocation (see Section 3.1). In power or Bankier allocation, the sample is
allocated to the domains on the basis of information on the coefficient of variation
of the response variable y in the domains and on the possibly known domain
totals Ty, of an auxiliary variable z. We use a simplified version of power allocation
in a hypothetical situation in which the coefficients of variation C.Vg, = Sg/Y4
of the response variable y are known in all domains, where Sy, and Y, are
the population standard deviation and the population mean of y in domain d,
respectively.
In power allocation, the domain sample sizes are given by

T x C.Vgy

D
D T x C.Vy,
d=1

)

Ng.pow = N X

where the coefficient a refers to the desired power (typical choices are 0, 0.5 or
1). Here we have chosen a = O for simplicity. Thus, information on coefficients of
variation is only used.

We illustrate the methodology by selecting an SRSWOR sample (n = 392
persons) from the Occupational Health Care Survey (OHC) data set (N = 7841
persons) and estimating the total number of chronically ill persons in the D = 30
domains constructed. In the population, the sizes of the domains vary with
a minimum of 81 persons and a maximum of 517 persons. The results for
the allocation of the sample by proportional allocation (corresponding to an
unplanned domain structure) and by power allocation (corresponding to a
planned domain structure) are shown in Table 6.2. The domain totals of the
number of chronically ill persons are estimated by a Horvitz—Thompson (HT)
estimator tgyr = Zkesd wiy. The stability of the estimators is measured by the
population coefficient of variation of an estimator of a domain total, given by
C.V(&aur) = S.E (taur)/ Ta.

The results show that SRSWOR sampling produces a large variation in the
expected domain sample size: the average domain sample size is 13, the minimum
sample size is 4 and the maximum is 26. On the other hand, power allocation
smoothes considerably the variation in domain sample size: the minimum domain
sample size is now 10 and the maximum is 17. The percentage coefficient of vari-
ation varies much in the case of SRSWOR. For example, the difference between
the smallest and largest coefficient of variation is over 60% points. In power
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Table 6.2 Allocation schemes for a sample of n = 392 elements for D = 30 domains of
the OHC Survey data set. Calculation of the expected domain sample size E(n;,) under an
SRSWOR design and realized domain sample size n; under a stratified SRSWOR design
with power allocation (a = 0), and the corresponding coefficients of variation (%) of a
Horvitz—Thompson estimator .

Coefficient of
variation C.V (%)
of HT estimators of
Domain sample size domain totals

Unplanned domain  Planned domain  Unplanned Planned domain

structure structure Realized under domain structure
Expected under stratified SRSWOR structure Stratified SRSWOR
Domain SRSWOR (power allocation) SRSWOR (power allocation)
d Ny E(n,) nq C.V(taur) C.V(taur)

10 81 4 11 84.10 38.88
20 101 5 12 78.41 40.54
18 129 6 13 72.69 42.38
3 133 7 15 81.04 45.63
8 141 7 16 81.03 46.54
30 146 7 15 74.80 45.03
21 153 8 12 62.87 41.15
23 156 8 11 57.65 39.05
16 165 8 13 64.94 43.19
1 181 9 17 75.90 48.78
11 187 9 14 63.52 44.52
6 188 9 13 60.37 43.22
28 194 10 10 50.52 38.69
24 200 10 13 58.68 43.39
22 242 12 10 44.27 38.30
15 252 13 14 55.68 45.50
7 292 15 17 60.34 50.06
4 295 15 15 53.92 47.04
13 305 15 13 46.00 43.04
12 311 16 12 44.50 42.38
323 16 16 53.50 48.23

25 339 17 11 40.57 41.03
2 352 18 14 46.80 45.74
26 364 18 11 38.87 40.88
29 365 18 11 38.25 40.45
9 366 18 14 45.99 45.85
17 426 21 12 36.67 41.62
14 447 22 13 37.95 43.37
19 490 24 11 33.60 41.22
27 517 26 10 30.68 39.34

Sum 7841 392 392
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allocation, the difference is reduced to 12% points. Thus, power allocation tends
to smooth the variation in the coefficient of variation such that large coefficients
are considerably decreased. However, the coefficients of variation of estimated
domain totals tend to be quite large; this is mainly due to the small overall
sample size.

The progression in coefficients of variation can be illustrated graphically. In
Figure 6.1, the coefficients of variation have been plotted against domain size in
population. The curve for the HT estimator obtained for coefficients of variation
under SRSWOR shows clear decrease with increasing domain size. For power
allocation, the curve is clearly stabilized.

To continue the specification of the setting for domain estimation, our further
technical assumption is as follows. We assume that after data collection from
the selected sample and preparation of the final sample data set, denoted by
s(y), the population frame U and the sample measurements s(y) can be micro-
merged using the unique element ID keys that are available in both data sources.
Completing this procedure we have obtained an enhanced frame register data set
that includes the auxiliary z-data and stratum and domain indicator variables
for all population elements, amended with y-measurements for the elements
belonging to the sample.

We have now completed the technical preparations for conducting an estima-
tion for the domains. The operational steps in a domain estimation procedure,
given in general terms, are summarized in Box 6.1.

100
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Figure 6.1 Coefficient of variation (%) of Horvitz—Thompson estimator of domain total
under SRSWOR sampling (corresponding to the unplanned domain structure) and strat-
ified SRSWOR sampling with power allocation (a = 0) (corresponding to the planned
domain structure).
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BOX 6.1 Operational steps in a domain estimation procedure

Step 1: Construction of frame population Construction of the frame population
U={1,2,...,k ...,N} of N elements containing unique element ID keys,
domain indicator vectors §j, stratum indicator vectors 7, inclusion probabili-
ties 7ty for drawing of an n element sample with sampling design p(s), and the
vectors 2y of auxiliary z-data, for all elements kin U.

Step 2: Sampling and measurement Sample selection by using the design p(s)
and measurement of the values of the response variable y, and the construction
of the sample data set s(y), including the element ID keys, observed values yy
and sampling weights wy = 1/, for all elements k € s.

Step 3: Frame population revisited Construction of a combined data set by
micro-merging the frame population U and the sample data set s(y) by using
the element ID keys.

Step 4: Model choice and model fitting The choice of the model, specification
of model parameters and effects, model fitting using the sample data set and
model validation and diagnostics. On the basis of the fitted model, calculation
of fitted values fjy for all population elements k € U and residuals ¢, = yx — i
for all elements k € s (y), the sample data set.

Step 5: Choice of estimator of domain totals and estimation for domains  Supply of
fitted values, residuals and weights in the chosen estimator for domain totals.
Basically, estimators of domain totals labeled ‘model-dependent’ use the fitted
values Jjx, k € U, and the estimators of domain totals labeled ‘model-assisted’
use the fitted values jj, k € U, and in addition, the residuals ¢; and the weights
wy, k € s.

Step 6: Variance estimation and diagnostics Choice of an appropriate variance
estimator. Calculation of standard error estimates and coefficients of variation.

In Table 6.3, we summarize in a hypothetical situation, the progression in
the population frame data set that occurs when the operations in Steps 1 to
4 of Box 6.1 are implemented for a domain estimation procedure. Because the
vectors zx = (zx, - - -, zj)" of auxiliary z-variables are assumed to be known for
every population element, including sampled and nonsampled elements, the
vector T, = (T, ..., Tz/)/ with T = ) .y zx.j =1, ..., ], of population totals of
auxiliary z-variables is known. Also, domain totals Ty, = Z,\,EUA Zr.d=1,...,D
and j=1,...,], can be calculated for each z-variable, because the domain
indicators are assumed to be known for all k € U. The sample membership
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Table 6.3 Execution of Steps 1, 3 and 4 of Box 6.1 in a domain estimation procedure
(hypothetical situation).

Step 3: Merging of the

frame population Step 4: Calculation
Step 1: Construction of the U and the sample of fitted y-values
frame population U data set s(y) and residuals
Domain Stratum Sample

D D Inclusion Auxiliary Sampling membership Study Fitted
Element vectors vectors probability z-vectors weight indicator variable values Residuals
D &'k 'y Tk 7'y Wi Iy Y Bk ek
1 5’1 1’1 ] 2’1 (0] (0] . ].71
2 &> 5 T 75 0 0 .. 2 .
3 8’3 '3 3 73 w3 1 Y3 B &3
4 8'4 1,4 T4 2,4 (0] (0] . }74 .
5 &'s T's s 75 ws 1 Ys bs es

&y L Tk 7y Wi 1 Yk Ik ek
N 6’;\« T’N N Z’N 0 0 . }7;\

... Nonsampled element.

indicator variable I is created for the whole population data set such that I, =1
if k € s, zero otherwise. Obviously, the sum of the indicator variable over the
population is n, the sample size. In the model-fitting phase, the fitted values jj are
calculated for all N elements k € U. On the other hand, the residuals ¢, = y, —
can be calculated for the sampled elements k € s only. It is also important to
emphasize that the fitted values {Jj; k € U} calculated by a given model differ from
one model specification to another. This will be apparent in the next section in
which models and estimators of domain totals are treated in more detail.

6.2 ESTIMATOR TYPE AND MODEL CHOICE

Important phases in a model-assisted domain estimation procedure are the
selection of the type of the estimator of a total, the choice of the auxiliary variables
to be used, the formulation of the model for the incorporation of the auxiliary
data into the estimation procedure, the model-fitting phase and the derivation of
variance estimators for the selected domain total estimators (see Box 6.1). In this
section, we consider these phases in a more technical manner.

Estimator Type

We first discuss two concepts, estimator type and model choice, making the basis
for the construction of an estimator of the population totals for domains of interest.
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The concept estimator type refers to the explicit structure of the selected estimator
of the domain totals. There are two main types of estimators discussed in this
chapter. These are the generalized regression (GREG) estimator and the synthetic
(SYN) estimator. The main conceptual difference in these estimators is that GREG
estimators use models as assisting tools, whereas SYN estimators rely exclusively
on the model used. Thus, GREG estimators are model-assisted and SYN estimators
are model-dependent. The main consequence of this differing role of a model is
that a GREG estimator of a domain total is constructed to be design unbiased (or
approximately so) irrespective of the ‘truth’ of the model. This is a benefit of GREG
estimators. However, a GREG estimator can be very unstable if the sample size in
a domain becomes small. On the other hand, the bias of a SYN estimator depends
heavily on a correct model specification. If the model is severely misspecified,
a SYN estimator can involve substantial design bias. If, on the other hand, the
model is correctly specified or nearly so, then the bias of a SYN estimator can
be small.

In a typical large-scale survey conducted, for example, by a national statistical
agency, some domains of interest are large enough, and the auxiliary information
strong enough, so that the GREG-type estimators will be sufficiently precise. But
for a small domain the variance of a GREG estimator can become unacceptably
large, and in this case, the variance of a SYN estimator can be much smaller. Better
precision of SYN estimators for small domains favours their use, in particular, for
small-area estimation (recall that ‘small area’ refers to the situation in which the
attained sample size in a given domain, or ‘area’, is small, or very small, even zero).

To summarize the main theoretical properties of the estimator types, GREG
estimators are constructed to be design unbiased; the SYN estimators usually are
not. Variance of the GREG estimator can be large for a small domain, that is, if
the domain sample size is small, causing poor precision. The SYN estimator is
usually design biased; its bias does not approach zero with increasing sample size;
its variance is usually smaller than that of GREG; this holds especially for small
domains. The accuracy, measured by the mean squared error MSE, of a SYN
estimator can be poor even in the case of a small variance, if the bias is substantial.

Model Choice

The concept model choice refers to the specification of the relationship of the
study variable y with the auxiliary predictor variables zy, . . ., z;, asreflected by the
structure of the constructed model. Model choice has two aspects, the mathematical
form of the model and the specification of the parameters and effects in the model.
For example, when working with a continuous study variable, a linear model
formulation is usually appropriate. For binary or polytomous study variables, one
might make a choice for a nonlinear model, such as a binomial or multinomial
logistic model. For example, for a binary study variable, a logistic model formulation
is arguably an improvement on a linear model type, because the fitted y-values
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under the former will necessarily fall in to the unit interval, which is not always
true for a linear model.

The second aspect of model choice is the specification of the parameters and
effectsin the model. Some of these may be defined at the fully aggregated population
level, others at the level of the domain (domain-specific parameters), yet others
at some intermediate level. We will separate a fixed-effects model formulation and
a mixed model formulation. A fixed-effects model can involve population-level or
domain-specific fixed effects, or effects specified on an intermediate level. In a mixed
model, there are domain-specific random effects in addition to the fixed effects. Using
a mixed model type, we can introduce stochastic effects that recognize domain
differences.

To summarize, the chosen model specifies a hypothetical relationship between
the variable of interest, y, and the predictor variables, zi, ..., z;, and makes
assumptions about its perhaps complex error structure. Fixed-effects models can
often be satisfactory, but mixed models offer additional possibilities for flexible
modelling. For every specified model, we can derive one GREG estimator and
one SYN estimator, by observing the respective construction principles. How-
ever, fixed-effects models have been more common in model-assisted estimators,
whereas mixed models have most often been used in model-dependent estimators.

By combining these two aspects of an estimator for domain totals, estimator
type and model choice, we get a two-dimensional arrangement of estimators. To
illustrate this, we have included in Table 6.4 a number of selected estimators.
There are six model-dependent SYN-type estimators and six design-based GREG-
type estimators in the table. Each of the six rows corresponds to a different model
choice. A population model (P-model; rows 1 and 2) is one whose only parameters
are fixed effects defined at the population level; it contains no domain-specific
parameters. A domain model (D-model) is one having at least some of its parameters
or effects defined at the domain level. These are fixed effects for rows 3 and 4 and

Table 6.4 Classification of estimators for domain totals by model choice and estimator
type.

Model choice Estimator type

Specification of Level of Functional = Model- Design-based
model effects aggregation form dependent model-assisted

Population Linear SYN-P GREG-P
Fixed-effects models  models Logistic LSYN-P LGREG-P

Domain Linear SYN-D GREG-D

models Logistic LSYN-D LGREG-D
Mixed models Domain Linear MSYN-D MGREG-D

including fixed and models Logistic MLSYN-D MLGREG-D

random effects




Lehtonen-Pahkinen (2004) Practical Methods for Design and Analysis of Complex Surveys.
198 Model-Assisted Estimation for Domains

random effects for rows 5 and 6. ‘Linear’ and ‘logistic’ refer to the mathematical
forms. In Example 6.2 and Section 6.4, we will consider in more detail a number
of these estimators.

6.3 CONSTRUCTION OF ESTIMATORS AND MODEL
SPECIFICATION

Construction of Estimators of Domain Totals

The estimators of domain totals are constructed in the following three phases
(according to Steps 4 and 5 in Box 6.1):

1. The parameters of the designated model are estimated using the sample data
set s(y) = {(yk, zx); k € s}.

2. Using the estimates of the model parameters and the population vectors z, the
fitted value fj; is computed for every population element k, including elements
belonging to the sample and also elements that are not sampled.

3. For obtaining an estimate t; of the total T; in domain d, the fitted values,
{yr; k € U}, and the sample observations, {y;; k € s}, are incorporated in the
respective formulas for the GREG and SYN estimators.

We will illustrate the domain estimation procedure in the context of linear
models. Consider a fixed-effects linear model specification such that y, = 2’8 + &y,
where 8 is an unknown parameter vector requiring estimation, and &; are the
residual terms. The model fit yields the estimate 8. The supply of fitted values
given by jjx = #/1f is computed for all elements k € U. Similarly, for a linear mixed
model involving domain-specific random effects in addition to the fixed effects, the
model specification is y, = 2z’ (B + wy) + &k, where uy is a vector of random effects
defined at the domain level. Using the estimated parameters, fitted values given
by i = z'k(ﬁ + @) are computed for all k € U. In more general terms, models
used in the construction of GREG- and SYN-type estimators of domain totals are
special cases of generalized linear mixed models, such as a mixed linear model and a
logistic model (see e.g. McCulloch and Searle 2001; Dempster et al. 1981).

The fitted values {jj; k € U} differ from one model specification to another. For
a given model specification, an estimator of domain total Ty = )y, Y has the
following structure for the two basic estimator types:

Synthetic estimator: tasyn = Z Bk (6.1)
keUy

Generalized

regression estimator: tiGreG = Z Uk + Z wr(Yr — Gr) (6.2)

keUy kesq
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where wy = 1/my, s = s N Uy is the part of the full sample s that falls in to domain
Ug,andd=1,...,D.

Note that f4yx uses the fitted values given by the estimated model, and thus
relies on the ‘truth’ of the model and, therefore, can be biased. On the other
hand, tsgreg has a second term that aims at protecting against possible model
misspecification. Note also that in the case in which there are no sample elements
in a domain, fygreg reduces to fyn for that domain. A Horvitz—Thompson
estimator fdm = Zkesd wyyy is often calculated as a reference when assessing the
benefits from the more complex estimators.

Model Specification

Let us first discuss fixed-effects linear models. Let zx = (1, zx, - - ., Zjk, - - - » Zjk) be
a (J + 1)-dimensional vector containing the values of ] > 1 predictor variables
zj,j =1,...,]. This vector is used to create the predicted values jj, k € U, in the
estimators (6.1) and (6.2).

1. Fixed-effects P-models. The estimators SYN-P and GREG-P build on the model
specification
Y = Po+ Pz + - + Bz + e = 2k B + ex (6.3)

for k € U, where B = (8o, B1. ..., B;)’ is a vector of fixed effects defined for the
whole population. Owing to this property, we call (6.3) the fixed-effects P-model. If
y-data were observed for the whole population, we could compute the generalized
least-squares (GLS) estimator of 8 given by

-1
B= (Z zkz,k/Ck) Z ZkYk/ Cks (6.4)

keU keU

where the ¢y are specified positive weights. With no significant loss of generality,
we specify these to be of the form ¢, = A’z for k € U, where the (J + 1)-vector
A does not depend on k. As a further simple specification, we can set ¢, = 1 for
all k, and (6.4) reduces to an ordinary least-squares (OLS) estimator. In practice,
a weighted least-squares (WLS) estimate for (6.4) is calculated on the observed
sample data, yielding

-1
b= (Z WkaZ'k> > Wiy, (6.5)

kes kes

where wy = 1/ is the sampling weight of unit k. The resulting predicted values
are given by )
gr=17ib, keU. (6.6)
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By incorporating predicted values jj into (6.1) and (6.2), we obtain the corre-
sponding SYN-P and GREG-P estimators. Note that using a P-model for a given
domain d, y-values from other domains also contribute to the predicted values
incorporated in an estimator SYN-P and GREG-P for that domain. For this reason,
the estimators tysyn_p and Ligrec_p, using a fixed-effects P-model type, are called
indirect estimators.

2. Fixed-effects D-models. The estimators SYN-D and GREG-D are built with the
same predictor vector zx, but with a different model specification allowing a
fixed-effects vector B, separately for every domain, so that

yr = 2'1Ba + ek (6.7)

forke Uyg,d =1, ..., D, orequivalently,

D
Yk = Z Sk kBa + ex (6.8)
=1

for k € U, where 3,4, is the domain indicator of unit k, defined by 4 = 1 for all
ke Uy, and 65y =0 for all k ¢ Us, d=1,...,D. Model (6.7) is called the fixed-
effects D-model. Again, if the model (6.7) could be fitted to the data for the whole
subpopulation Uy, the GLS estimator of 8; would be

-1
B, = Z 712/ Ck Z /e, d=1,...,D. (6.9)

ke Ud ke Ud

In practice, the fit must be based on the observed sample data in domain d.
Setting again ¢, = 1 for all k, the following WLS estimator can be used:

-1
Bd = Z WkaZ,k Z WkZrYk, d= 1, ey D. (610)

kesq kesq
The resulting predicted values are given by
i = 71by (6.11)

for ke Uy; d =1, ...,D. By incorporating predicted values jj; from (6.11) into
(6.1) and (6.2), we obtain the corresponding SYN-D and GREG-D estimators. For
a given domain d, y-values are used from that domain only in the model fitting
and in the calculation of the predicted values incorporated in an estimator SYN-D
and GREG-D in that domain. Thus, the estimators f4yn_p and tigreg—p, using a
fixed-effects D-model type, are called direct estimators. Note that because of the
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specification ¢, = A’z = 1, we have ) ;.. wi(yx — fx) = 0. Consequently, SYN-D
and GREG-D are identical, that is, tysyn_p = tigrig—p for every sample s, when
using the fixed-effects D-model specification.

3. Mixed D-models. The estimators MSYN-D and MGREG-D build on a two-level
linear model, called the mixed linear D-model, involving fixed as well as random
effects recognizing domain differences,

Yk = Po + uoa + (Br + )z + - - - + (B + w)zj + ex = 2’1 (B + wy) + &
(6.12)
for ke Uy, d=1,...,D. Each coefficient is the sum of a fixed component and
a domain-specific random component: By + uy for the intercept and g; + ujq,
j=1,...,] for the slopes. The components of wg = (uog, 14, - - . , Ujg)’ represent
deviations from the coefficients of the fixed-effects part of the model,

Yk = Po+ Pizik+ .+ Bz + e = 2k B + ex, (6.13)

which agrees with (6.3). More generally, we can have that only some of the
coefficients in (6.12) are treated as random, so that, for some j, ujs = O for every
domain d. A simple special case of (6.12), commonly used in practice, is the one
that includes domain-specific random intercepts 1y as the only random terms,
given by yx = Bo + uoa + frizik + - - - + Byzjk + x. We insert the resulting fitted
y-values

i =2 (B + i) (6.14)

into (6.1) to obtain the two-level MSYN-D estimator. Inserting the fitted val-
ues (6.14) into (6.2), we obtain the two-level MGREG-D estimator, introduced
by Lehtonen and Veijanen (1999). A two-level D-model (6.12) can be fitted, for
example, by estimating the variance components by maximum likelihood (ML)
or restricted maximum likelihood (REML) and the fixed effects by GLS given these
variance estimates; for details see, for example, Goldstein (2002) and McCulloch
and Searle (2001). In estimating a mixed D-model, an assumption is usually made
that the random effects follow a joint normal distribution. Note, however, that the
assumption of normality is not necessary to obtain approximate unbiasedness for
the resulting MGREG-D estimator.

Alternative options are available for the estimation of the design variance for
estimators (6.1) and (6.2) of domain totals. When working with planned domains,
where the domain sample sizes n, are fixed in the stratified sampling design and,
for example, the samples are drawn with SRSWOR in each stratum, approximate
variance estimators presented in Section 3.3 for regression estimation can be used
separately for each domain. In this setting, a sample of n; elements is drawn from
the population of N, elements in domain d, and the weights are w, = Ny/ny for



Lehtonen-Pahkinen (2004) Practical Methods for Design and Analysis of Complex Surveys.
202 Model-Assisted Estimation for Domains

all k € Uy. For example, for the GREG estimator (6.2), an approximate variance
estimator is given by

s ng\ (1 (& — 22)°
os(icree) = N2 [1— =2 ) [ = & 6.15
Vgrs (LaGREG) d( Nd) (nd>z — (6.15)

kesg

where the residuals are &, = yx — §i, k € sy, and o1 = Zkesd er/ngq is the mean of
the residuals in domain d,d =1, ..., D. It is obvious that in the SRSWOR case
in which the weights are constants, for a direct estimator the sum of residuals in
each domain is zero. But for other designs, and for an indirect estimator, the sum
can differ from zero.

In an unplanned domain case, the extra variation due to a random domain
sample size ny, should be accounted for. Let us consider the case of SRSWOR
with n elements drawn from the population of N elements. The sampling fraction
is n/N and the weights are wy = N/n for all k. By denoting ys = daxyr and

ek = Yax — Yr, d =1, ..., D, where the domain membership indicator was given
by 84 = 1if k € Uy, zero otherwise, we obtain an approximate variance estimator
given by
A ~ 2
A A 2 n 1 (eqr — €q)
Vsrs(thREG) =N (1 - N) (;) g ﬁ (616)
N

Notethat also elements outside the domain d contribute to the variance estimate,
because ¢z = —Jjy for elements k ¢ U; and k € s. An alternative approximate
variance estimator is given by

PPN ny (1 (& — 2q)* q
Dors (tagreg) = N? (1 - N) (E)pd Z fld _i (1 + . dz , (6.17)

kesq Yde

d=1,...,D, where pj = ng/n and q; =1 — py, and c.vg; = §d;,/§d is the sample
coefficient of variation of residuals in domain d with §;4 as the sample standard
deviation of residualsin domain d. The estimator (6.17) corresponds to the variance
estimator commonly used under Bernoulli sampling (see Example 2.2).

Let us consider in more detail the choice of a model and the construction of an
estimator of the total in the context of ratio estimation and regression estimation for
domains. In Section 3.3 the estimation of the total T for the whole population was
discussed. There, the auxiliary information assumed to be known at the whole-
population level was the total T, of the auxiliary variable z, and the assisting
fixed-effects linear regression model was of the form y, = By + Bizx + &k, k € U,
given by (6.3). The ratio estimator of the population total was given in Section 3.3
by tre = T. X f/fz, and the regression estimator by frpg =t+ Dbi(T, — t,), where
and t, are SRSWOR estimators of totals T and T;, respectively and the estimate IA)l
is a sample-based OLS estimate of the finite-population regression coefficient B;.
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For the estimation of domain totals T; these ratio and regression estimators can
be used, but more complex model types can also be introduced, including model
types (6.3), (6.7) and (6.12) described above.

Consider a continuous response variable y, whose total T; is to be estimated
for a number of domains of interest Us, d =1, ..., D. Assuming one auxiliary
variable z, for example, the following assisting models can be postulated.

1. Fixed-effects P-model for yi, k € U:
(1a) yx = Bo + &r  Common intercept model
(Ib) yx = Bizx + &  Common slope model
(Ic) yx = Bo + Pizk + &x  Common intercept and slope model.

2. Fixed-effects D-model for yx, k € Us,d =1, ..., D:
(2a) yr = Boa + ex Domain-specific intercepts model
(2b) yx = Brazx + &r  Domain-specific slopes model
(2¢) Yyx = Boa + Prazk + &x  Domain-specific intercepts and slopes model.

3. Mixed D-model for yy, k € Us, d =1, ..., D:
(3a) yx = Boa + ek = Bo + Upg + &x  Domain-specific random intercepts
model
(3b) yx = Boa + Pizk + ek = Bo + upqg + Pizx + &r  Domain-specific random
intercepts and common slope model.

Models (1b) and (2b) can be used in ratio estimation for domains and models
(Ic) and (2c) in regression estimation. It is obvious that indirect SYN and GREG
estimators are obtained with model specification (1) and (3), and model type (2)
gives direct SYN and GREG estimators.

For example, using the P-model (1b), a SYN estimator (6.1) for domain totals T,
is given by

tasyn—p = Z = Z bizp = Taoby = Tge X tur/tr, d=1,...,D, (6.18)
kGUd kEUd

resembling the ratio estimator £, for the whole population, but in t4gyx_p, domain
totals Ty, are used instead of the overall total T,. The estimator for the population

slope By is
D wik

7 kes tyr

b1 = ==,
Z Wiz Lt
kes

which is the ratio of two HT estimators, tyr and £,x7, of totals of the study variable
y and auxiliary variable z respectively. These total estimates are calculated at the
whole-population level and, thus, the estimator of domain totals is indirect. While
using y-values from the whole sample, the estimator fuyn_p aims at borrowing
strength from the other domains.
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A SYN estimator (6.18) using a type (1b) model can be biased. The bias of tygyn_p
is approximated by

BIAS(tusyn—p) = E(tasyn—p) — Ta = —Tg:(Bia — By),

where Big = ) iy, Uk/ D_jey, 2 is the domain-specific slope, d =1, ..., D, and
Bi =Y yeu Yk/ D ey 2k is the slope for the whole population. For a given domain,
the bias is negligible if the domain slope closely approximates the population slope.
But a substantial bias can be encountered if this condition does not hold.

The corresponding indirect GREG estimator (6.2) for domain totals T;is given by

tarec—p = ) Ok + Y Wiy — B1) = tasyn—p + ) _ Witk — bizi)

keUy kesg kesq
A tur A
= tagr + =~ (Ta; — tanr) (6.19)
zHT

mimicking the regression estimator for the whole population, but the underlying
model is different. Note that an attempt to ‘borrow strength’ also holds for the
indirect GREG estimator.

The direct SYN and GREG estimators of type (2b) use y-values from the given
domain only.AThe estimators are obtained by replacing Bl by domain-specific
counterparts b4 given by

A Zkesd Wik laur

b1d= = y d=1,...,D,
Zkesd WkZk taznr

where &7 and {457 are HT estimators of totals T; and Ty, at the domain level. The
direct SYN estimator t45yN—_p hence is

tasyn—p = Z = Z biazk = Tuebig = Ta % tar/tamr,  d=1,...,D. (6.20)
kGUd kEUd

For this model specification, the direct GREG counterpart figrpg_p coin-
cides with the SYN estimator because the second term in GREG estimator
(6.2) vanishes.

Let us consider the relative properties of the estimators (6.18) and (6.20) with
respect to bias, precision and accuracy. First, the indirect estimator tygyy_p given
by (6.18) is biased, and the bias can be substantial if the model assumption does
not hold in a given domain. The direct counterpart tyn_p given by (6.20),
which coincides with the GREG estimator fiGrpc_p. is almost design unbiased,
irrespective of the validity of the model assumption. The variance of the indirect
estimator (6.18) is of the order n~! and thus can be small even in a small domain
if the total sample size n is large. On the other hand, the variance of the direct
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estimator (6.20) is of the order n;l and becomes large when the sample size n; in
domain d is small. Thus, there is a trade-off between bias and precision, depending
on the validity of the model assumption and the domain sample size. Using the
mean squared error, MSE(%;) = V({;) + BIAS?(f;), we can conclude the following.
In small domains, the indirect estimator (6.18) can be more accurate than the
direct counterpart (6.20) because the variance of (6.20) can be very large. But for
large domains (with large domain sample size), the direct estimator can be more
accurate, because the squared bias of (6.18) can dominate. This holds especially
if the model assumption is violated (this trade-off is examined in more detail, for
example, in Lehtonen et al. 2003).

In Example 6.2, we study selected estimators for domain totals for a single
SRSWOR sample drawn from the OHC Survey data set. In Section 6.4, we
examine in more detail the relative properties (bias and accuracy) of the synthetic
and generalized regression estimators under different model choices. There, the
methods are investigated by Monte Carlo simulation techniques, where a large
number of independent SRSWOR samples are drawn from a fixed population.

Example 6.2

Estimation of domain totals by design-based methods under SRSWOR sampling.
We illustrate the domain estimation methodology by selecting an SRSWOR
sample (n = 1960 persons) from the OHC Survey data set (N = 7841 persons)
and estimating the total number of chronically ill persons in the D = 30 domains
constructed. In the population, the sizes of the domains vary with a minimum of 81
persons and a maximum of 517 persons. The domain proportion of chronically ill
persons varies from 18 to 39%, and the overall proportion is 29%. The intra-domain
correlation of being chronically ill (binary response) and the age (in years) varies
from 0.08 to 0.55; the overall correlation is 0.28.

In the sampling procedure, we consider the domains as unplanned type. Thus,
the domain sample sizes are not fixed in the sampling design but are random
variates. A Horvitz-Thompson estimator is first calculated. Auxiliary data are then
incorporated into the estimation procedure by using the model-assisted GREG
estimator given by (6.2). Values of the auxiliary variable z are measurements of
age, being available for all persons in the OHC data set, which we, for this example,
assume to constitute the population of interest. Therefore, in this hypothetical
situation the domain totals T, of the study variable y also are known for all domains
d=1,...,D, and can be used when comparing the estimates of domain totals.

A simple model (1b) from Example 6.2, given by y, = B x zi + &, postulates a
uniform ratio R = T/T,(= 7.778 x 1073) for all domains. Thus, a GREG estimator
built on this P-model is of indirect type. On the basis of the SRSWOR sample
of n = 1960 elements, an estimate of the ratio R is * = tyr/tyr = 7.651 x 1073,
where tyr(= 2252.3) is the HT estimator of the total T of the study variable
y and tur(= 294357.5) is that of the total T, of the auxiliary variable z. The
predicted y-values are calculated by jy =% x zr, k=1, ...,7841. Alternative
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expressions of the estimators are summarized in (6.21). There, the sampling
weights are w, = N/n = 7841/1960 = 4.001, T, are the known domain totals of
theauxiliary variablezand tg.yr = > kes, WkZk are the corresponding HT estimates.

tanr = Zkes,; wiyr = N/n Zkesd Yk

R ) L ) R (6.21)
LaGREG—P = D _reu, Uk + Dkes, WkWk — Jr) = tanr + F(Taz — tanr),

where s; (with ny elements) and U, (with Ny elements) are the sets of the sample
and the population elements belonging in domain drespectively andd =1, ..., D.
Note that the corresponding indirect synthetic estimator is tigyn_p = > keU, U =
T+ x F, which is based on the same simple model as the GREG estimator.

In the examination of the accuracy, we use the estimated standard error s.e(Zy)
and percentage coefficient of variation c.v(ty)% = 100 x s.e(ty) /Zd of an estimator
Ed. The variance estimators used are as follows:

A n 1 o q
Vs (tanr) = N? (1 - N) (H) pdsﬁy (1 + ﬁ) , and

dy

N “ _ > n 1 A2 QId
Vsrs(tagreg-p) = N <1 Bl N) <H) P (l T ) ’

de

(6.22)

wherep; = ng/n,qq = 1 — py, variance estimatorsare §§H = Zkesd Wk — Yg)?/ (ng —
1) and §§e = Zkem ey — 29)?/(ng — 1), estimated coefficients of variation are
C.Vay = Say/Yq and c.vg = 84/€4, where 7, = Zkes,; yx/ng and ¢4 = Zkes,; ex/ng,
and residuals are ¢, = yr — I X z.

In the realized sample, domain sample sizes vary from 24 to 132 elements and
the mean size is 65. The situation thus is realistic for design-based estimation
for domain totals. We first examine the average performance of the Horvitz-
Thompson estimator fgyr and the indirect GREG _estimator ticreg—p. In the
first part of Table 6.5, a simple average measure |t — T| JT of absolute relative
difference is calculated in three domain sample size classes, where { is the mean
of the estimated domain totals {; and T is the mean of the true values T; in a
given size class. Absolute relative differences of the HT and GREG estimates tend to
decrease with increasing domain sample size, and for a given size class, the figures
closely coincide. The realized domain sample size and coefficient of variation have
a clear association for GREG and HT estimators: sample coefficients of variation
tend to decrease with increasing domain sample size, asis indicated in the average
coefficient of variation figures given in the second part of Table 6.5. On average,
estimated coefficients of variation are smaller for the GREG estimator.

Domain-wise point estimates, standard errors and coefficients of variation for
the 30 domains are given in Table 6.6 in which the domains are sorted by the
domain sample size. When compared to the HT estimator fg7, use of auxiliary
information by the model-assisted GREG estimator fgrzg_p clearly improves
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Table 6.5 Average absolute relative difference and average coefficient of variation of
Horvitz—Thompson and GREG estimates by domain sample size class.

Average absolute relative Average coefficient
difference (%) of variation (%)
Size class HT estimator GREG estimator HT estimator GREG estimator
-39 10.6 10.2 30.8 24.7
40-79 2.0 3.4 23.5 19.8
80— 3.2 3.7 16.0 13.6
All 1.8 1.7 23.0 19.0

accuracy. In all 30 domains, estimated standard errors of the GREG estimator are
smaller than those of the HT estimator. In most domains, estimated coefficients of
variation are smaller for the GREG estimator, as expected.

Let us complete the example by considering briefly the relationship of the
GREG estimator and the corresponding model-dependent indirect SYN estimator
tisyn—p = Tz x 7 in the context of the realized sample. By the expression (6.21) for
the GREG estimator, we obtain for example in the first domain (m; = 41):

tigrEG—P = Z Or + Z wi(Yx — Jr)
kEUl kGSl

=45.43 4 4.001 x (—0.5974) = 43.04,

where the sum of predicted values jjy in the first domain is calculated as Zkel}l U =

Ti, x T = 5937 x 0.0076515 = 45.43. This is the synthetic estimate t;syn_p for
the first domain. And, for example, for domain d =19 (m9 = 115) we obtain
tiogric—p = 160.00 and t1ogyn_p = 138.09, whereasthe true valueis Ty = 165. The
bias-adjustment term of the GREG estimator thus happens to adjust successfully
the bias of the SYN estimator for these domains. But this does not necessarily
hold for all domains. In fact, the GREG estimator is more successful than the
SYN estimator in 17 out of 30 domains because in several domains, the bias
correction affects to a correct direction but too strongly. In the estimation of the
accuracy of the SYN estimator, an estimated mean squared error (MSE) should
be used because the SYN estimator is not design unbiased. We will consider the
relationship of the GREG and SYN estimators for domain totals in more detail in
Section 6.4 and further, in the web extension of the book.

6.4 FURTHER COMPARISON OF ESTIMATORS

In this section, we examine further the properties of model-dependent estimators
and model-assisted estimators for domain totals using Monte Carlo simulation
methods. For this exercise, we again use the OHC Survey data set. To examine
empirically the theoretical properties (bias and accuracy) of the different SYN and
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Table 6.6 Estimates of the total number of chronically ill persons in domains calculated
for an SRSWOR sample (n = 1960) from the OHC data set. Domain sample sizes ny, domain
sizes Ny, population totals Ty, and point estimates, standard error estimates and coefficient
of variation estimates (%) for HT and GREG estimators, by domain sample size class.

Estimate Coefficient of
Domain of total Standard error variation (%)

d ng Ny Tq  tar  tacree s-e(tanr) s-e(tucree) cv(tamr) c.v(ticrec)

Domain sample size n;< 40

20 24 101 31 32.0 31.6 9.77 713 30.5 22,5
10 26 81 27 32.0 25.6  10.83 8.05 33.8 31.5
18 26 129 36 20.0 27.2 7.60 6.95 38.0 25.5
23 31 156 57 44.0 53.2  10.82 9.10 24.6 171
8 35 141 29 24.0 24.5 8.57 7.88 35.7 32.2
30 36 146 34 32.0 33.8 9.86 8.56 30.8 25.3
3 37 133 29 36.0 326 10.77 8.73 29.9 26.8
16 37 165 45 52.0 54.8 1214 9.15 233 16.7
Domain sample size 40 < n; < 80
1 41 181 33 40.0 43.0 10.80 9.15 27.0 21.3
21 43 153 48 64.0 55.3  14.55 10.93 22.7 19.8
6 45 188 52 24.0 26.6 8.51 7.67 35.5 28.9
28 51 194 74 88.0 85.4 16.61 11.65 18.9 13.6
24 53 200 55 56.0 557 13.21 11.06 23.6 19.9
22 57 242 96 112.0 115.0 17.79 13.08 15.9 11.4
15 58 252 61 60.0 66.4 13.20 11.90 22.0 17.9
11 59 187 47 52.0 39.5  13.30 10.89 25.6 27.6
13 69 305 89 80.0 88.5 15.10 12.86 18.9 14.5
12 73 311 95 56.0 659 12.85 11.40 229 17.3
4 76 295 65 68.0 681 14.39 12.17 21.2 17.9
7 78 292 52 40.0 36.3 11.09 10.17 27.7 28.0
Domain sample size n; > 80
2 84 352 86 76.0 78.6  14.95 13.49 19.7 17.2
5 86 323 66 76.0 70.5 1531 13.62 20.1 19.3
26 89 364 124 1240 1260 19.07 15.72 154 12.5
29 90 365 128 124.0 1245 19.12 15.10 154 12.1
25 91 339 114 112.0 101.6 18.68 14.81 16.7 14.6
17 99 426 139 176.0 1833 2211 16.72 12.6 9.1
9 103 366 89 88.0 79.3  16.66 13.82 18.9 17.4
19 115 490 165 152.0 160.0 20.81 17.13 13.7 10.7
14 116 447 130 136.0 1284 20.31 16.28 14.9 12.7
27 132 517 197 176.0 173.8 2294 17.51 13.0 10.1

All 1960 7841 2293 22523 2254.8 69.42 66.88 3.1 3.0
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GREG estimators for domains, we make the following conventions. First, similarly
as in Example 6.2, we consider the OHC data set as a frame population of size 7841
elements, such that the necessary auxiliary data are included at micro-level in
the data set. Secondly, we construct for the population frame data set a domain
structure involving 60 domains in total. This is because we want to consider
also domains with a small sample size. Finally, we will draw a large number of
independent SRSWOR samples of 1000 elements from the constructed artificial
frame population under an unplanned domain structure. We study the bias and
accuracy of estimators on the basis of the average figures calculated over the
simulated samples.

We assume (according to the principles presented in Box 6.1) that the con-
structed OHC frame population of N = 7841 persons and D = 60 domains includes
unique identification keys, domain membership indicators, inclusion probabil-
ities for all elements k € U for a SRSWOR sample of n = 1000 elements and
values of the auxiliary z-variable age (in years). The binary response variable
Yy to be measured from the sample elements is chronic illness (value O: No,
1: Yes).

P-models and D-models are used for the indirect SYN and GREG estima-
tors based on linear models of the general form y, = By + upg + Bizx + €. In
the mixed D-model case, model parameters are estimated by restricted maxi-
mum likelihood (REML) and generalized least squares (GLS), and predictions
Ik = /§0 + ligg + ,3121(, k € U, are calculated. For a fixed-effects P-model, estima-
tion is based on ordinary least squares (OLS), and predictions are calculated
as fjy = bo + blzk, k € U. Residuals are calculated as &, = yy — Ijx, k € s, in both
cases. By micro-merging these data in the frame population U (see Table 6.3), the
data are successfully completed for domain estimation.

Domain totals to be estimated are given by

:Zyk, d=1,...,D.

kEUd

The indirect estimators to be used are the following:

fdgyw = Z Ux, d=1,...,D (synthetic estimator), and

keUy
tigre = Y _ Ok + Y wilye — B, d=1,....D
kEUd kesd

(generalized regression estimator).

In these formulas, the predicted values ji, k € U, and observed y-data yy,
sampling weights wj and residuals &, k € s, provide the materials for the
calculation of estimates for domain totals. The indirect estimators use fixed-
effects P-models and mixed D-models. For the synthetic estimators f4gyn_p and
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tavisyn—p. only the predictions jjx are used. And for the GREG estimators tigreg_p
and tavereG—p, predicted values Uk, observed y-data yy, sampling weights wy and
residuals ¢, = yy — Ijx are used. In the SRSWOR case considered here, the weights
wy = N/n are constants, and the sum of residuals over the whole sample data set
is ) s & = 0. Note that this does not necessarily hold for the domains because
we work with indirect estimators of domain totals.

We compare the bias and accuracy of the various estimators by using estimates
ti(sy) from the K repeated Monte Carlo samples s,;v=1,2, ..., K. For each
domain d =1, ..., D, the following Monte Carlo summary measures of bias and
accuracy are computed. We use two measures of accuracy, the relative root mean
squared error (RRMSE) and the median absolute relative error (MdARE), because
for a binary response variable there is sometimes a difference in the conclusions
drawn from the two measures.

(i) Absolute relative bias (ARB), defined as the ratio of the absolute value of bias

to the true value:
1 X
E Z td(sv) - Td

v=1

/Td-

(ii) Relative root mean squared error (RRMSE), defined as the ratio of the root
MSE to the true value:

1 K
= D (Galsy) = T}/ Ta.

v=1

(iii) Median absolute relative error (MdARE) is defined as follows. For each
simulated sample s,; v =1, 2, ..., K, the absolute relative error is calculated
and a median is taken over the K samples in the simulation:

Median

ta(sy) — Tal/Tq).
overv:l,...,K{'d(S‘) al/Ta}

A summary of the features of the experimental design used in this simple
exercise is given in Table 6.7.

A summary of the results for the simple models (1a) and (2a) is presented in
Part A of Table 6.8 and for the more complex models (1b) and (2b) in PartB of
the table. The results indicate that the bias, measured by the average of absolute
relative bias ARB, of the GREG estimators GREG-P and MGREG-D is negligible
for all models and in all size classes. The bias for the SYN-type estimators varies
with the model choice. The bias of SYN-P is substantial for the extremely simple
fixed-effects P-model (1a), and the bias decreases when the more realistic fixed-
effects model (1b) is used. A similar effect is noticed for the mixed models (2a)
and (2b), which provides the smallest bias figures for SYN estimators. Especially
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Table 6.7 Summary of technical details of Monte Carlo experiments.

Population:

OHC Survey frame
population of size
N = 7841 persons

Sample size: n = 1000
persons

Number of domains:
D = 60 areas

Number of simulated
samples:
K = 500 independent
SRSWOR samples
(unplanned domain
structure)

Response variable y:
Chronic illness (binary;
0 = No, 1= Yes)

Auxiliary z-data:
Domain membership
indicators
Age (in years)

Models:

(1a) Linear fixed-effects
P-model with intercept
only:

Y = Po + &k

(1b) Linear fixed-effects
P-model with age as the
predictor:

Y = Po + Pz + ¢k

(2a) Linear mixed D-model
with random intercepts:

Yk = Bo + Uoa + &k

(2b) Linear mixed D-model
with age as the predictor:
Yk = Bo + Uoa + Pz + &k

Target parameters:

Domain totals T of
chronically ill people,
d=1,...,60

Estimators of domain
totals:

SYN estimators:

tisyn—p using a linear
fixed-effects P-model
LamsyN—D using a two-level
linear D-model

GREG estimators:
’idGREG—P using a linear
fixed-effects P-model
L IMGREG—D using a two-level
linear D-model
Measures of performance:
Averages calculated over
domain size classes of:
ARB Absolute relative bias
RRMSE Relative root mean
squared error
MdAARE Median absolute
relative error

in small domains, the accuracy is better for SYN estimators when compared to
GREG estimators, in all model types and with both measures RRMSE and MdARE.
But as soon as the domain sample size increases, the difference in accuracy tends
to decrease.

The results in Table 6.8 also indicate that the model improvement, that is, mov-
ing from a ‘weak’ model towards a ‘stronger’ model, is much more prominent for
SYN-type estimators than for GREG-type estimators. Note that for this estimation
exercise we needed an access to the micro-merged frame population and sample
data set. An access to these data is provided by the web extension of the book.

6.5 CHAPTER SUMMARY AND FURTHER READING

In this chapter, we concentrated on design-based model-assisted estimation for
domains. This approach is frequently used, for example, in the production of official
statistics. We made several assumptions for the treatment of estimation for domain
totals. In particular, we assumed that in a given statistical infrastructure, registers
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Table 6.8 Simulation results for SYN and GREG estimators for domain totals of chroni-
cally ill people with different model choices (K = 500 independent SRSWOR samples with

n = 1000 elements in each).
A. Fixed-effects P-model y; = ) + ¢, and mixed D-model y; = By + ups + &.

Average over domains of

Domain Estimate Absolute Relative Median absolute
sample Domain of relative root relative Domain
size totalin  domain  bias MSE error sample
Estimator class population total ARB% RRMSE% MdARE% size
SYN-P 0-10 17.5 13.7 36.9 37.4 37.0 5.6
11-20 37.0 34.4 50.3 50.7 50.3 14.1
21— 62.4 78.8 43.6 44.2 43.6 32.4
All 38.2 41.2 43.5 44.0 43,5 16.9
MSYN-D 0-10 17.5 14.9 251 33.0 27.9 5.6
11-20 37.0 35.7 22.7 333 25.0 14.1
21— 62.4 66.3 11.6 26.0 17.4 32.4
All 38.2 38.2 20.0 30.9 23.6 16.9
GREG-P 0-10 17.5 17.5 2.4 55.2 39.5 5.6
11-20 37.0 37.0 1.6 40.7 27.8 14.1
21— 62.4 62.4 1.1 31.1 20.8 32.4
All 38.2 38.2 1.7 42.8 29.7 16.9
MGREG-D 0-10 17.5 17.3 2.6 53.5 38.9 5.6
11-20 37.0 37.0 1.9 39.5 27.3 14.1
21— 62.4 62.5 1.1 30.3 20.2 32.4
All 38.2 38.2 1.9 41.5 29.1 16.9
B. Fixed-effects P-model y; = By + Bizr + ¢x and mixed D-model y; = By + uog + Bizx + &x.
SYN-P 0-10 17,5 18.0 27.0 28.1 271 56
11-20 37.0 36.6 19.6 20.8 19.7 14.1
21- 62.4 62.0 121 13.9 12,5 32.4
All 38.2 38.1 19.8 21.2 20.0 16.9
MSYN-D 0-10 17.5 18.0 259 27.5 26.4 5.6
11-20 37.0 36.6 17.7 20.2 18.5 14.1
21— 62.4 62.1 9.7 14.4 11.6 32.4
All 38.2 38.2 18.1 20.9 19.1 16.9
GREG-P 0-10 17.5 17.5 2.7 53.0 38.5 5.6
11-20 37.0 37.0 1.4 38.9 26.5 14.1
21— 62.4 62.5 1.1 30.0 20.2 32.4
All 38.2 38.2 1.8 41.0 28.7 16.9
MGREG-D 0-10 17.5 17.5 2.7 52.8 38.4 5.6
11-20 37.0 37.0 1.5 38.8 26.4 14.1
21— 62.4 62.5 1.0 29.8 20.2 32.4

All 38.2 38.2 1.8 40.8 28.6 16.9
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are available as frame populations and sources of micro-level and aggregate-level
auxiliary data, and unique identification keys are available in order to merge
the data from a sample survey with data from a statistical register. We believe
that fulfilling these conditions can provide much flexibility for sampling design
and estimation for domains. For example, the data can then be aggregated at
higher levels of the population if desired. The use of unit-level data and unit-level
modelling can be beneficial for both design-based model-assisted estimation and
model-dependent estimation for domains. It appeared that careful and realistic
modelling is especially important in model-dependent estimation for domains.
This was demonstrated by a small-scale simulation study. The materials discussed
in the examples of this chapter will be worked out further in the web extension of
the book.

In practice, design-based model-assisted estimation is most often used for
domains whose sample size is reasonably large. For small domains, methods
of small-area estimation are used instead. For the estimation for domains, it
is recommended to define, if possible, the intended domains as strata in the
sampling phase, and to use a suitable allocation scheme, such that a reasonably
large sample size is attained for all domains. And in the estimation phase it is
advisable to incorporate strong auxiliary data into the estimation procedure by
using carefully chosen models.

Supplementing the references mentioned earlier in this chapter, design-based
model-assisted estimation for domains is discussed, for example, in Estevao et al.
(1995) and Estevao and Sidrndal (1999). Lehtonen and Veijanen (1998) discuss
nonlinear GREG estimators, such as a multinomial logistic GREG estimator.

In addition to Rao (2003), model-dependent methods for small area estimation
are presented in Ghosh andRao (1994) and Rao (1999). You and Rao (2002) discuss
pseudo EBLUP estimators involving survey weights. Underlying models and their
features is a prominent theme in recent literature (Ghosh et al. 1998; Marker 1999;
Moura and Holt 1999; Prasad and Rao 1999; Feder et al. 2000). There is extensive
recent literature on small area estimation from a Bayesian point of view, including
empirical Bayes and hierarchical Bayes techniques (Datta et al. 1999; Ghosh and
Natarajan 1999; You and Rao 2000). Some recent publications relate frequentist
and Bayesian approaches in small area estimation (Singh et al. 1998). Valliant
et al. (2000) discuss small-area estimation under a prediction approach.





