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1. Introduction

The guidelines concern basic principles and metluddsirvey sampling. This includes sur-

vey planning, survey quality, sampling and estioratiand nonresponse. The approach is
non-technical; only necessary technical materiadsiacluded. The methods are illustrated

with practical examples, and references to statistoftware are given when relevant.

Because a comprehensive treatment of the variquecesof survey sampling is not possible
in some brief guidelines, we have concentratedadactd topics we believe are of impor-
tance for readers. We have aimed at a practicdleguiended for experts whose practical ex-
perience in survey sampling is limited but who haeene background knowledge in basic
statistics. For further information on topics caaand extensions, we refer to selected litera-
ture.

The guidelines are organized as follows. Chaptis@usses survey planning and reporting. A
number of basic concepts and definitions are giaésg including survey quality. Basic sam-
pling techniques are introduced in Chapter 3. Waeudis methods such as simple random
sampling, systematic sampling and cluster samplihg. use of auxiliary information plays a
key role in modern survey sampling, and methodsim@issed such as PPS sampling, strati-
fied sampling and model-assisted methods includitip and regression estimation. Sample
size determination is treated and illustrated. @drag covers nonresponse and discusses re-
weighting and imputation methods. A brief summarysaftware available for survey sam-
pling and analysis is included in Chapter 5. Weehaeluded a comprehensive list of refer-
ences on current survey sampling literature in @raf. Chapter 7 includes a list of selected
links to web materials relevant to the area.

2. Survey planning and reporting

2.1. Basic concepts and definitions
Definition of a survey

A survey refers to any form of data collection. sAmple survey is more restricted in scope:
the data collection is based on a sample, a sabdetal population - i.e. not total count of
target population which is calledcansus. However, in sample surveys some sub-populations
may be investigated completely while the most sopdtations are subject to selected sam-
ples. In the subsequent chapters the ®mvey is devoted to sample surveys.

Descriptive surveys versus analytical surveys

Descriptive surveys, including censuses, are typical in statisticdices. They tend present
information on parameters like totals, averageproportions at the total population level or
some well-defined sub-populations. In surveys whieeeemphasis is aamalysis, the interest

is focused on connections and interdependencesbatphenomena. The parameters of in-
terest are connected with statistical models, sisclnear models, and are represented by cor-
relation or regression coefficients. However, itngportant for both types of surveys to esti-
mate the unknown parameters as reliably as possible



Social surveys vs. Business surveys

In social surveys the focus is related with persamg households: e.g. population statistics,
labour force participation, wages and salaries,sbbald consumption, poverty and income
distribution, education, cultural activities, héadind other interested topics.

In business surveys the focus is related with pnsas, establishments and/or other business
units like the local kind of activity units, includy farms. The interest may vary from produc-
tion composition and amount to investment planspleyment, use of energy, output waste
etc.

Social surveys and business surveys differ fronh edber also in other aspects. In official
statistics business surveys are often mandatorievgbcial surveys tend to be voluntary; the
data collection modes are more versatile in s@ualeys; even the sampling designs can be
different.

2.2. Overall survey design

In recent years many textbooks have been publisihesurvey methodology. Groves et al.
(2004) provide a good overview on the whole prodes®s the design to the analysis and in-
terpretation. In addition there is a number of gpediterature on various data collection
modes, testing questionnaires and questions, iateing strategies etc.

Operational phases of a survey are described g.@undgren (1999). It includes various
tasks from the definition of the main objectiveatadcollection strategy, processing of data,
production of results, evaluation of quality tilichiving. All tasks are important to guarantee
the various uses of data and their quality. Theleesaare recommended to obtain more in-
formation from appropriate literature like Lybergad (1997), or Biemer & Lyberg (2003).

Planning Operation Ewaluation

— -

Frame creation

Operational framewark . Checking survey outputs
Sampling

Data colledion

Data processin
& o Evaluate feedback

Specify survey contents metadata

Data preparation

Estimation and analysis

Establish survey Publication and »
procedures dissemination Auditing

Archiving

l l i

DOCUMENTATION

l I l

METADATA

Figure 1. Flow chart of survey process (see e.g. Statifiitand)
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2.3. Reporting of survey quality

The users should be reported with appropriate mébion on survey quality, preferably from
all stages of the survey process. It has beend#itma to report of survey quality by distin-
guishing various sources of error which may ocawind) the many stages of survey opera-
tions. For example, Biemer & Lyberg (2003) descfidowing types of errors: Specification,
Frame, Nonresponse, Measurement, Processing, anpli8g error. Some may be born ran-
domly but unfortunately various sources tend tooihtice systematic errors.

Sampling errors

Standard errors for the estimable parameters, gitent estimates are the oldest quality
measures. They (and other estimates derived frosethke coefficients of variation or con-
fidence intervals) were introduced during the nssurvey methodology in 1940s.

Measurement errors

Besides the sampling errors the other types of®mwere introduced quite early. The first UN
recommendations on reporting survey quality wexemialready in 1950s and the measure-
ment errors were already included. However, thdempntation of systematic reporting took
much longer.

Total survey error

The total survey error of a paramefeis measured by the mean square error (MSE),ura. s
of the variance and squared bid4SE(d) = E(8-6)* =V () + Bias*(6) .

Sampling variance is derived from the sampling glesthe other components affecting its

estimate are sample size, the variability of theapeeter of interest and sampling weights.
Sampling error, i.e. square root of sampling varggns a random error by definition. Bias is

the difference between the true value and the eapec of the estimator, and when nonzero
it represents systematic error. Unfortunately thBBVestimation requires repeated sampling
and thus cannot easily be carried out with largdessurveys. Some subtle methods have,
however, been suggested to evaluate the total @eere.g. Lessler & Kalsbeek 1992).

The quality dimensions and standards of the Eum#atistical System provide a good
frame to report on quality. The quality dimensi@me Relevance, Accuracy, Timeliness and
Punctuality, Comparability, Coherence, and Acceliyibtand Clarity. Relevance describes
how the statistical survey meets the user needsepirements. Accuracy contains the tradi-
tional measures on survey quality (like standardsre, confidence intervals and coefficients
of variation etc.). Timeliness and punctuality measthe freshness of data and the results.
Comparability and coherence are related with varioums of comparisons: different sources
describing the same phenomenon, comparability efsgime survey over various domains,
like geographical areas, comparability over time. &tinally, Accessibility and clarity de-
scribe the various form data are available andltesiisseminated, metadata and other user
support etc.

Furthermore, a list of quality indicators have beenstructed to make the follow-up easier
for those surveys which are repeated more or exadarly.

The Eurostat Quality website presents all relexdoduments on quality reporting and also
some current practices and guidelines on the iggtre//ec.europa.eu/eurostat/quality
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The International Monetary Fund (IMF) and Organ@atfor Economic Co-operation and
Development (OECD) have created own standards wdmiehalso widely used especially in
the field of economic statistics (see Internatidiahetary Fund 2003).

2.4. Sampling frame issues
Population and frame

Target population is the population we theoretically are interestedit is assumed to be
fixed (and finite).

Frame population is the population we can obtain.
Survey populationis the intersection of those above.

Those three populations do not quite coincide b&edlie frame population tends to contain
some erroneous elements called coverage errorewBeé present some typical reasons for
coverage errors:

* time lags between the moment the sample frame weasex! and it was actually
used

« failure to include new births in the frame

« failure to include or exclude elements which haweed (physical removals,
enterprises which have changed their industry etc.)

« failure to remove deaths and similar out-of-scdeenents

Overcoveragemeans that our sampling frame contains elementshadio not belong to our
target population. Overcoverage can normally leaded during the field-work.

Undercoverageis a much more problematic phenomenon since d@fteannot be detected
and assessed in a reliable manner.

There may be no realistic way to include all pdssilifferences between the target
population and the ultimate sampling frame but ¢hikisown should be included. Kish (1965)
advocated a stratum of surprises to include thases

Sometimes no good frame exists for the target @djou and one has to find other solutions
described below.

Multiple frames

Multiple frames may occur if the target populatman be compiled from several independent
sources. Use of many frames is not uncommon inldewve countries but can also used in
developed societies when new phenomena are inatsdig

Clustered frames

It may well happen that there is not a good poputatrame for the ultimate sampling units,

or that the creation of such would be much too egpe. Then the next solution is to seek for
an alternative from the combinations of the elemgirst. seek for clustered frames.
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Consider, for example, a study of school childremen if a population frame would be
available covering all children attending the sdhpdhe field work will become much
cheaper if the schools and/or classes are seléns¢ebd of the pupils randomly over the
whole population.

In large population and household surveys we midshaeal with clusters which comprise to
some natural combination of elements, e.g. peoplegl in enumeration districts or
administrative regions.

Other issues
Double listings of the same elements should alviiysemoved from the frame if found.

Small sub-populations may sometimes be quite imblast reach although they are known,
e.g. people living in remote mountainous villagést cost and other reasons they may be re-
moved from the sampling frame. Then a difficult sfien arises: do the estimates from the
reduced population reflect the properties of thfose removed sub-populations?

Cut-off samples are another example related wighsime problem. Normally cut-off sam-
ples are applied in business surveys where thdeshahits do not contribute too much to the
parameter of interest. However, since one partheftarget population is deliberately ex-
cluded there is a chance to obtain bias in estonati

Auxiliary information

Information obtained from “background” variablestie used either at the sampling stage
(e.g. to create strata or clusters, calculate nmeasfisize etc.) or after data collection to calcu-
late weights etc. Sometimes auxiliary data canmoblitained from the sampling frame but
can be available after the survey from other s@yregch as official statistics.

3. Techniques for sample selection and estimation

3.1. Preliminaries

In a sample survey, a probability sample is dranemfthe frame population by using a speci-
fied sampling design. Typically, the sampling dasmpnsists of a combination of various
sample selection techniques. A complex samplinggdesan involve clustering and stratifica-
tion and several stages of sampling. In simple Gas@mpling of elements is carried out di-
rectly from the sampling frame. In all cases, sahéhe well-documented sample selection
techniques are used in the sampling procedure. @rachples of relevant literature on sam-
pling techniques are Kish (1965), Cochran (1970hrL(1999), and Lehtonen & Pahkinen
(2004), which is the primary source for this sattiblelpful supplemental materials on survey
sampling and estimation, including computationahraples using real survey data, can be
found inVLISS-virtual laboratory in survey sampling, representing a web extension of the
Lehtonen and Pahkinen textbook. The application da@ accessed freely at
http://www.math.helsinki.fi/VLISS/Many of the common sample selection techniquasea
readily implemented by statistical software producsuch as the SAS procedure
SURVEYSELECT.

The properties of sampling techniques vary wittpees to statistical efficiency and certain
practical aspects, such as suitability to a givenging task, requirements for application and

11



user friendliness. Often the study design and tme budget constraints affect the choice of
the sampling design in a given survey setting. Apartant additional aspect is the role of
auxiliary information in a given sampling procedutet us first discuss the standard sample
selection schemes from this point of view.

Use of auxiliary information in sampling and estimaion

It is often useful to incorporate auxiliary infortien on the population in a sampling proce-
dure. In practice, there are different ways to iwbgauxiliary information. For example, in the
so-called register countries (e.g. Scandinaviamts), sampling frames used in official
statistics production often include auxiliary infoation on the population elements, or these
data are extracted from administrative registers ame merged with the sampling frame ele-
ments at the micro level. In other cases, aggrelgasd auxiliary information can be obtained
from different sources such as published offictaltistics. Use of auxiliary information in
sampling and estimation is an expanding featurefficial statistics production. Auxiliary
information can be useful in the construction ofedficient sampling design and further, at
the estimation stage for improved efficiency foe tictual sample. To be useful, auxiliary in-
formation should be related to the variation of shedy variables.

In simple random sampling (SRS), the sample is drawn without using auxilisxfprmation

on the population. Therefore, SRS provides a raferescheme when assessing the gain from
the use of auxiliary information in more complexsiggms or in improving the efficiency of
estimation for a given sample.

Auxiliary information does not play a role in stand application ofsystematic sampling
(SYS). Thus, the efficiency of SYS tends to be Emihan that of SRS. This also holds if
population elements in the sampling frame are muoan sort order with respect to the study
variable. In a method callednplicit stratification, auxiliary information can be used in the
form of the list order of elements in the framewWN&YS can be more efficient than SRS if
there is a certain relationship between the ordesinelements in the sampling frame and the
values of the study variable.

Sampling with probability proportional to size (PPS) is a method where auxiliary information
has a key role. An auxiliary variable is assumetidavailable as a measure of the size of a
population element. Varying inclusion probabilities population elements can be assigned
using the size variable. Efficiency improves relatio SRS if the relationship between the
study variable and the size variable is strong. BRP&ten used in business surveys and in
general, for situations where the sampling unity véth a size measure.

Stratified sampling (STR) relies strongly on the use of auxiliary imf@tion. In STR, the
frame population is first divided into non-overlampgp subpopulations callestrata, and sam-
pling is executed independently within each stratlirthe strata are internally homogeneous
with respect to the study variable, i.e. if thehntstratum variation of the study variable is
small and a large share of the total variationaigtered by the variation between the strata,
then STR can be more efficient than SRS.

In cluster sampling (CLU), the population is assumed to be readily did into naturally
formed subgroups calledusters. A sample of clusters is first drawn from the plagion of
clusters. In the next stage, all elements of tihepdad clusters are taken in the element sample
(one-stage cluster sampling), or a sample of elements is drawn from each sawipkter tfvo-
stage cluster sampling). If the clusters are internally homogeneous, Whscusually the case,
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then CLU is less efficient than SRS. Tlalsistering effect can be reduced by stratifying the
population of clusters, tending to improve effiagn

The sampling techniques introduced above can be taseonstruct a manageable sampling
design for a sample survey, either using a pagircmethod or more usually a combination of
methods. In all methods excluding SRS, auxiliafpimation in the form of auxiliary vari-
ables can be incorporated in the sampling procedlote that the use of auxiliary informa-
tion in SRS, SYS and stratified sampling requitest the values of auxiliary variables must
be available for every population element. Auxylia@formation in cluster sampling concerns
at least the grouping of the population elements ahusters. If additional auxiliary data are
available on the population of clusters, these databe used for example for stratification or
PPS sampling purposes.

Use of auxiliary information in the sampling phaseypical indescriptive surveys where the
number of study variables is small. Efficiency garan be obtained if the association be-
tween the study variable(s) and the auxiliary \[@és is strong.

Auxiliary information can be used for the selectainple in thesstimation phase. Use of
auxiliary information in the estimation phase inxeg flexibility: the sample design can be
kept simple and in the estimation phase, the usaugiliary information can be tailored for
diverse study variables. In addition, requiremédatsauxiliary data in standard methods are
weaker than in the previous case, because unit-Bweliary data only are needed for the
sampled elements, and the auxiliary data can b@pocated at an aggregate level in the es-
timation procedure. Some of the standard methoglsadio estimation, regression estimation
and post-stratification. All these methods usadteal models as assisting or working models
when incorporating the auxiliary data in the estiora procedure. The methods thus are
calledmodel-assisted.

In ratio andregression estimation, the population total of a continuous auxiliary edfe is
assumed known. The assisting model is of regredgma linear model. In ratio estimation,
the model is without an intercept term, i.e. theeicept is assumed zero. Efficiency can im-
prove if the study variable and the auxiliary vhhaare correlated. But the method can be
ineffective if there is a nonzero intercept ternthe true model. In regression estimation, the
assisting model is again of regression-type, but mgth an intercept term. Efficiency can
improve if the study variable and the auxiliaryiahte are correlated.

Post-stratification resembles stratified sampling, but the stratiftcais carried out after the
sample selectiarnThe selected sample is divided into non-overlapgimggroups callegost-
strata according to a categorical or classified auxiliagriable (or several such variables),
and the estimation follows that of stratified saimgl Similarly as in stratified sampling, effi-
ciency can improve if the post-strata are integnalbmogeneous with respect to the study
variable. Post-stratification is often used foruating for unit nonresponse (see Section 4.1).

Thus, auxiliary information on the population canused in the construction of the sampling
design and, for a given sample, to improve theiefficy in the estimation phase. As a rule,
efficiency of estimation can improve by the propse of auxiliary information.

Parameters, estimators and quality measures

Let ourparameter of interest be a fundamental parameter in survey samplingpapelation
total T = z:j:l y, of study variablg. In the formula for the totaly, are the (unknown) values

of the study variable anl is the number of elements in the population. Mpayameters
13



routinely used in survey sampling, such as meamspagptions, ratios and regression
coefficients, can be expressed as functions ofstofeo have arestimate for the unknown
population totall, a sample is drawn from the population and thepdawalues of the study

variable are measured. Asstimator of the population total is denoted byt . The concept
estimator refers to a calculation formula or altjon that is used for the sample to obtain a
numerical value for the estimate. A simple examigldhe sample mearT/:ZE:lyk/n,

which is calculated using thresample measurements. Using the sample mean,iaragstor
the population total is calculated &s Nxy. These derivations hold for simple sampling
designs; more complex derivations are needed fopéex sampling designs.

In survey sampling, estimators are preferred thifit tertain theoretical properties. These are
unbiasedness, meaning that the expectation of an estimator cides with the target

parameter, i.e.E({) =T, and the bias is defined aBias(t) = E(f)-T . Consistency is a
somewhat weaker property, referring to the behawwdan estimator to better match with the
value of the target parameter when sample sizecreases, and to reproduce the target
parameter when the sample size coincideshe population sizePrecision of an estimator

refers to its variability and is measured by tlesign variance Var (). The smaller is the

design variance, the better is the precision. Acipee estimator is calledfficient. And
accuracy of an estimator refers to combined bias and pigctigroperties of an estimator and

is measured by the mean square erkd®E(f) =Var (f) + Bias?(f) .

In survey sampling practice, estimators are usetl dhe unbiased or at least consistent. A
challenge for survey statistician is for a givemnpling task to obtain efficient estimators
whose design variances are as small as possibis.igfior high reliability of the results
calculated by using the collected sample surveg.dat

The standard error (s.e),coefficient of variation (c.v) anddesign effect (deff) of an estimator
are commonly used quality measures of estimatdrs.gliality measures are derived from the

theoretical properties introduced above. For amesor { of population total, the measures
are defined as follows.

Estimated standard error: s.ef )=V ), where ¥(f) is the estimated design variance or
sampling variance of the total estimaté.

Estimated coefficient of variation or relative standard error: c.v(f)=se()/t, i.e. the
estimated standard error divided by the estimatelfit Coefficient of variation is often
expressed in percentagd90x c.v%. Coefficient of variation is routinely reported afficial
statistics. C.v is often used as a quality standatde context of the ESS (see Section 3.3).

Design effect (deff) (Kish 1965) measures thsatistical efficiency of the sampling design
with respect to simple random sampling (SRS) argiven by
deff () =—AL_,
Vs (1)

where the numerator is the sampling variance otdted estimator under the actual (possibly
complex) sampling design and the denominator reptssthe sampling variance under an
assumption of simple random sampling of a samplsiraflar size. Using the design effect,
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effective sample size is determined as,, =n/deff {), that is, the actual sample sizelivided
by the design effect of the total estimate.

The formula for deff gives rise to the followingmarks:

(@) deff <1l The actual sampling designnmwere effective than SRS. Correspondingly,
effective sample size is larger than the actualptasize.

(b) deff =1  The efficiency of the actual samplaggsign is similar to that of SRS.

(c)deff>1  The actual sampling designlass effective than SRS. In this case, effective
sample size is smaller than the actual sample size.

In survey sampling practice, a natural goal is thse (a). In this effort, the use of the
available auxiliary information in the sampling dgsis beneficial. Stratified sampling and

PPS sampling are often used for this purpose. diitiad, efficiency can be improved in the

estimation phase by incorporating auxiliary datathe estimation procedure via model-

assisted techniques. In cluster sampling, the ¢asés often encountered because of the
internal homogeneity of the clusters with respedhe variables of interest.

3.2. Basic sampling techniques

Basic sampling techniques includemple random sampling, systematic sampling and
sampling with probabilities proportional to size (PPS). These methods are used in sampling
designs as the final methods for selecting the etgary orprimary sampling units (PSU:s)
and for working out randomization. A manageable @arg design for a survey often
involves stratification, clustering and multipleagés of samplingStratification of the
population into non-overlapping subpopulations isp@pular technique where auxiliary
information can be used to improve efficiency.closter sampling, the practical aspects of
sampling and data collection are the main motivafmr the use of auxiliary information in
the sampling design.

3.2.1. Simple random sampling

Smple random sampling (SRS) is often regarded as the basic form of pritibakampling.
SRS is applicable to situations where there is mrewipus information available on the popu-
lation structure. Simple random sampling directbnf the frame population ensures that each
population element has an equal probability of gada. Thus, SRS is aegual-probability
sampling design.

As a basic sampling technique, simple random saigu@ian be included as an inherent part of
a sampling design. In addition, simple random sargets a baseline for comparing the rel-
ative efficiency of a sampling design by using design effect statistic introduced above.

In simple random sampling of elements, every elemektin the population frame of
elements has exactly the same inclusion probapithgt is, 77z = 77=n/N. Recall that
inclusion probability is the probability of a poptibn element to be included inneelement
sample. An inclusion probability is assigned foegvpopulation element before carrying out
the sampling procedures. Inclusion probabilitiepetel on the sampling design and are by
definition greater than zero for all populationretnts.
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In practice, SRS can be performed either withoytlagement (SRS-WORpr with
replacement (SRS-WR). WOR type sampling referdiéodase where a sampled element is
not replaced in the population; this also meansdh@opulation element can be sampled only
once. In a WR scheme, a sampled element is replactite population. In both cases, the
inclusion probability77=n/N remains, and the only difference is in the varafarmula of
the statistic of interest. As a general rule, W@QPRetSRS is more efficient that WR-type SRS,
that is, the variance in SRS-WOR tends to be smié that in a SRS-WR counterpart. This
property also holds for the other sampling desiging explains the frequent use of without
replacement type designs in survey sampling practic

Under SRS, an estimator of the target paranietan be written simply as
t=N>" v /n=Ny,

where sz::lyk/n is the sample mean. Alternatively, by using theSSRclusion
probabilities 77, the estimator can be expressed in the form

t= ZE:lYkHTZZE:lW I(n/'N) ZZE:]_kak ,

where w, = N/n is thesampling weight, i.e. the inverse inclusion probability. Note tlat

SRS, the sampling weights are equal for all saraf@ments. In more complex designs to be
addressed, the sampling weights can vary betwesnegits (as in PPS sampling) or groups of
elements (as in stratified sampling).

Using the estimated total, the population averagmeanyY :z:'zlyk/N can be estimated
by y=t/N. Note that we assumed here a known population Njzerhich is a realistic

assumption in practice. Buthf is unknown at the estimation stage, an estimétGTZEzlwk
can be used for the population size.

For an estimatof of population total under SRS-WOR, the samplingarece oft is given
by
v(t) =N?@-n/N)(1/n)&,

where § = Z:=1(yk -y)?/(n-1) is the sample variance of the study variabl&he quantity

(I-n/N) in the sampling variance formula is called fir@te population correction (fpc).

Note that if the sampling fraction/ N is small, as is the case in typical sampling desigr
persons or households, practical importance ofghés minor, because fpc is close to one.
But this is not necessarily so in sampling desifprsbusiness surveys where sampling
fractions can be much larger.

For SRS-WR, the only difference in the samplingiaraze V(f) is that the fpc is given by
(1-1/N). This difference also indicates better efficierfoy the SRS-WOR design: the
design effect off under SRS-WR isleff ({) = (1- 1/N)/(1-n /N )> 1, assuming that sample

sizen is larger than one and smaller than populatioa NizZNote that we used SRS-WOR as
the reference SRS design in the deff formula; ighes natural choice but sometimes, SRS-WR
is put in this role in certain statistical software
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To summarize, if the sampling fraction'l{l) is small the fpc for SRS-WOR will be close to 1.
And vice versa: if the sample simeapproaches the population sidethe variance estimate

v(t) will reduce. Thus, in a census the sampling vaean zero.

In practice SRS is executed with an appropriategpad software. For example, the SAS pro-
cedure SURVEYSELECT can be used for both SRS-WR $R8-WOR. In real life sam-
pling with SRS we mostly deal with the without-repément type SRS design.

Example. Bernoulli sampling provides an example of an SRS-WOR type samplingraeh

In this method, the sample size is not fixed inaade but is a random variate whose expecta-
tion isn, the desired sample size. This property leadsviariation in the sample size with the
expected valu®lz and varianceN(1 — z)z, wherer stands for the inclusion probability. The
randomness in the sample size is relatively unitambin large samples.

Let us briefly introduce the technique. To carry Bernoulli sampling, we need to carry out
the following steps:

Step 1 Fix the value of the inclusion probability where 0< 7 < 1, so that the expected
sample size will bé&\z, the product of the population size and the inoluprobability. If the
desired sample size s thenz = n/N.

Step 2 Append three variables, let say PROB, IND and Ubdlithe sampling frame data set.
PROB is set equal to the chosen value,adind IND is set to zero, for dl population ele-
ments. For UNI, a value from a uniform distributiover the range (0, 1) is drawn independ-
ently for each population element, starting frora finst element. A pseudo random number
generator can be used in generating the random ensmb

Step 3 The decision rule for inclusion of a populatidaneent in the sample is the following.
Thekth population element is included in the samplNfl < z, and correspondingly, we set
IND = 1 for the selected element (otherwise, theie@af IND remains zero).

Step 4 Treat all population elements sequentially byngsstep 3.

When Steps 1 to 4 are completed, the sum of IND theesampling frame appears to be close
(or, equal) to the desired sample sizd he elements having IND = 1 constitute the Belinou
sample. The procedure can be easily programmegkiomple with Excel, SAS or SPSS.
Appendix 1. contains a short example of Bernoalingling.

3.2.2. Systematic sampling

Systematic sampling (SYS) is a widely used sampling technique in situret where the sam-
pling frame is an ordinary electronic (or manuatladbase, such as a population register, a
register of business firms or farms, or a listdi®ls. SYS also is an equal probability sam-
pling design because the inclusion probability piopulation element in amelement sample
ist=n/N.

Steps in the selection of a systematic sample e@iements from a population df elements
are the following:

1. Define the sampling intervgl= N/n, where an integey is assumed.

17



2. Select a random integamwith an equal probability of §/between 1 and (a pseu-
do random number generator for uniform distributbver the range (1, q) of e.g. Ex-
cel, SAS, SPSS can be used).

3. Select elements numbermd + g, a +2q, a +3q,...,a + (n—1)q in the sample

Thus, with an integeq, SYS results in an element sample. lfj is not an integer, all sam-
pling intervals can be defined as of equal lengitept one.

In practice, there are several ways of selectimystiematic sample. The one we introduced
above represents an example of SYS sampling wighrandom start. Alternatively, two, or
more generallym, independent systematic samples can be taken tistngrocedure above.
The size of each SYS sample is thém elements and the length of the sampling interval is
mx(q. This technique is suitable if variance estimatisrio be carried out using so-called

replication techniques (see Wolter 2007).

Further, a systematic sample can be drawn by tigé#tie elements in the sampling frame as a
closed loop. Beginning from the randomly select&égerA from [1, N], the selection pro-
ceeds successively by drawing eleméxtsqg, A + 2q, ... , till the end of the frame, and then
the selection continues from the beginning of ttaenke. The loop will be closed wherele-
ments have been drawn. These random start metbadgd the selection of a SYS sample of
n elements, and the techniques are equivalent wéiexs to the estimation.

In statistical software products, such as the SAf8gdure SURVEYSELECT, there are ad-
vanced sampling algorithms for SYS that use fraetiontervals to provide exactly the speci-
fied sample size.

For SYS, there is no known analytical variancenestor for the design variance, even for
such a simple estimator as the total. Thereforpraagimate variance estimators are used in
practice (see e.g. Wolter 2007; Lehtonen and Pahka®04, Section 2.4).

Estimation under systematic sampling depends orknbg/ledge on the sorting order of the
sampling frame:

1. If the sorting order of the sampling frame canalssumed random with respect to the study
variables and all auxiliary variables, estimatioithwSYS will correspond to that of SRS-
WOR. Thus, formulas derived for SRS can be used.

2. If the sampling frame is sorted by an auxiligeyiable (or, several such variables), SYS
sampling will produce a sample which tends to migorrectly the structure of population
with respect to the variables used in sorting. i8grthe frame before SYS sampling is called
implicit stratification. For example, in some cases it is a good ideartdts® frame according
to the regional population structure. Then a syatemsample will retain the appropriate pop-
ulation distribution across regions. Additional easre those where the population is already
stratified or a trend exists that follows the p@tign ordering, or there is a periodic trend (all
these situations can also be reached by appromaatang procedures). Periodicity may be
harmful in some cases, especially if harmonic ¥emacoincides with the sampling interval.
The estimation under implicit stratification compesds to the estimation under stratified
sampling.

Systematic sampling, including implicit stratificat, can be carried out for example with the
SAS procedure SURVEYSELECT.
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Example. Let us consider SYS sampling o= 200 elements from a populationf= 2000
elements. The sampling intervalgs: N/n = 2000/200 = 10. We next draw a random integer
between 1 and 10, let= 7. The SYS sample of= 200 elements consists of population ele-
ments numbered 7, 17, 27,...,1997. The inclusion gty for every population element is
77, =mm=n/N=200/2000= 0..and the constant sampling weight for the samplechents

is w, =w=10.
3.2.3. Sampling with probability proportional to size

In sampling with probability proportional to size (PPS), the inclusion probability depends on
the size of the population element. Reduction inavee can then be expected if the size

measure and the study variable are closely reléttéslassumed that the valug of the aux-

iliary size variablez is known for every population eleméatTypical size measures are vari-
ables that physically measure the size of a populaiement. In business surveys, for exam-
ple, the number of employees in a business firmlmmised as a measure of size, and in a
school survey the total number of pupils in a sth®@lso a good size measure. PPS sam-
pling can be very efficient, especially for theimsition of the total, if a good size measure is
available.

In PPS sampling, the inclusion probability of aremeént in an element sample is
7. =np, =nZ,/T,, whereT, = z:j:lzk is the sum of size measures overthelement popu-

lation and p, is called thesingle-draw selection probability. In PPS, the inclusion probabili-
ties 7z, vary between elements and thus, PPS is an unemplaiplity sampling design.

A PPS sample can be drawn either without or witlagement. Calculation of the inclusion
probabilities is easier to manage under WR typepsiag because the population remains
unchanged after each draw. In PPS-WOR, the populatianges after each draw and the in-
clusion probabilities must be re-calculated for tmaining elements.

The basic principles of estimation under PPS samgmre introduced here only briefly. Un-
der PPS-WOR, an unbiased estimator of the popul&ti@l T is given by

€2 20V = 2 Y 7%
where w, =1/7z,_is the sampling weight. The estimator is calleglHorvitz-Thompson (HT)

estimator or expansion estimator. The HT estimator is design unbiased and is vepufar in
practice. An estimator of the variance of the eatad total is

O(f) = ZEzlzrzl(WkWI — Wy )ykyl )

where w, =1/7z, . The variance estimator of the HT estimator corstahe second-order in-
clusion probabilitiesrz, (i.e. probabilities to include both elemedtsnd| in the sample),

whose computation is often impractical, especitilylarge samples. Therefore, approxima-
tions are often used in practice. One alternagve i

(f) = N2@/m) X" (v, /(Np,) - V)2 /(n-1),
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which corresponds to a with-replacement PPS sclveémeee the second-order inclusion prob-
abilities are zero, because the draws are mutiralgpendent.

There are different versions of PPS sampling sceeamailable for practical purposes. Exam-
ples are theumulative total method with replacement or without replacemesystematic PPS

sampling with unequal probabilities andPoisson sampling. For example, Poisson sampling as
a without-replacement type design resembles Belingarpling where the sample size is a
random quantity; the difference is in the calcalatof the inclusion probabilities. Despite of
the property of a random sample size, Poisson sagh[d sometimes considered attractive
because the second-order inclusion probabilitiesiae to 7z, = 7777 which simplifies the

calculation of the sampling variance. The book gviBer & Hanif (1983) provides a good
source for the various PPS methods. The most cotynmed PPS techniques are imple-
mented in the SAS procedure SURVEYSELECT.

3.2.4. Stratified sampling and allocation technique

In stratified sampling (STR) the target population is divided into noredapping subpopula-
tions calledstrata. These are regarded as separate populations ahwhmpling of elements
can be performed independently. Within the stratame of the basic sampling techniques,
SRS, SYS or PPS, are used for drawing the sampéeofents. Stratification involves flexi-
bility because it enables the application of défgrsampling techniques for each stratum.

In general, there are several reasons for the papubf stratified sampling:

1. For administrative reasons, many frame populatiare readily divided into natural sub-
populations that can be used in stratification. &ample, strata are identified if a country is
divided into regional administrative areas thatrasa-overlapping.

2. Stratification allows for flexible stratum-wisese of auxiliary information for both sam-
pling and estimation. For example, PPS techniguebeaused in sampling within the stratum,
and ratio or regression estimation can be usethéoselected sample, depending on the avail-
ability of additional auxiliary information in th&ratum.

3. Stratification can involve improved efficiendyeiach stratum is homogeneous with respect
to the variation of the study variables. Hence, within-stratum variation will be small,
which is beneficial for efficiency.

4. Stratification can guarantee representatiomuadlissubpopulations or domains in the sam-
ple if desired. This means that inclusion probébgican vary between strata. The variation is
controlled by the so-calleallocation techniques.

In stratified sampling, the population is dividedia H non-overlapping subpopulations of size
N,, N,,..., N,,..., N, elements such that their sum is equdlitd-or stratification, auxiliary

information is required in the sampling frame. Regil, demographic and socioeconomic va-
riables are typical stratifying variables. A samiglselected independently from each stratum,
where the stratum sample sizes gren,,..., n,,..., N, elements, and their sum is equahto

the overall sample size.

There are alternative strategies to determinewtratample sizes for a given survey. In some
cases, the overall sample sizés first fixed and then allocated to the strathisTis typical in
cases where the strata themselves are not of $htgre. producing statistics for the separate
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strata is not the primary aim). If the survey inxgd statistics production for each stratum
(e.g. aregional area or industrial group), thes important to ascertain large enough stratum
sample sizes. In this case, the stratum sample Bjzare first determined (see Section 3.3).

The most common allocation techniques for definting stratum sample sizes gmeopor-
tional allocation, equal allocation, optimal or Neyman allocation and power or Bankier allo-
cation. To give an idea of allocation, let us introducietby the three first mentioned methods
(Bankier allocation requires more detailed addioinformation on the population distribu-
tion within strata, see for example Lehtonen & Raék 2004, Section 3.1).

Proportional allocation is the simplest allocation scheme and is widelydusepractice. It
presupposes knowledge of the stratum sizes, shesdampling fractiom, /N, is constant
for each stratum. The number of sample elements stratumh is given by n, =nxW,,
whereW, =N, /N is the stratum weight, amlis the specified overall sample size. Propor-
tional allocation guarantees an equal share o$dneple in all the strata and involves an equal
probability sampling design where the inclusion badoility 7z, = 77=n/N of population
element k in stratum h is constant. Thus, the sampling weight also is castant
W, =w=N/n, and the design is callesif-weighted.

Equal allocation provides an equal sample sipg=n/H for each stratum, whetd is the
number of strata. If the stratum sizBlg vary, inclusion probabilities also vary and areegi
by 7, =n,/N,=n/(HxN,) for elementk in stratumh. Thus, sampling weights are
w, =H XN, /n. If all stratum sizesN, are equal, thenvz, =7=n/N and an equal-
probability design is obtained.

Optimal or Neyman allocation is usable if the population standard deviati&@sfor individ-

ual strata of the study variabjeare known or a reliable figure is available. lagice, close
approximations to the true standard deviations bmynade from experience gained in past
surveys. Thus, Neyman allocation is often usedomtiouous business surveys. The stratum
sample sizes are first calculated. The number wipga unitsn, in stratumh under optimal

allocation is calculated as

N, S,
H

hlehS“

n,=n

The overall sample size is then the sum of stratum sample sizes. In optatacation, a
stratum which is large or has a large within-strateariance has more sampling units than a
smaller or more internally homogeneous stratum.

The three allocation schemes are illustrated iexample below. Allocation under STR sam-
pling is further illustrated, with additional comptional examples, in the VLISS application,
the web extension of Lehtonen & Pahkinen (2004).

In stratified sampling, an estimatorof population totall, is the sum of stratum total estima-
tors, given byt = z:zlfh , wheref, =>"" v, /7, =" Wy, is the Horvitz-Thompson
estimator of the stratum totd], . Because the samples are drawn independently éach
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stratum, the sampling variance ofis the sum of within-stratum variance4t, ), that is,
V(f):ZhH:1\7(fh)- Because in STR sampling, the sampling variandg depends on the

within-stratum variances, it is a good idea to twyconstruct internally homogeneous strata
with respect to the study variabje

For example, assuming SRS-WOR in each stratum, toh& estimator is given by
f=ZhH:1Nh/nhz:":1ykh , whereN, /n, is the stratum-specific sampling weight. With psop

tional allocation this simplifies aé=Y"" N,/n.Y>"" y, =N/n>" > v, because the

weights N, /n, are equal to constarii /n. This reflects the self-weighting property of pro-
portional allocation.

Estimation under stratified sampling is discussedniore detail in standard sampling text-
books; good sources are Kish (1965) and Lohr (1998atified sampling can be carried out
for example with the SAS procedure SURVEYSELECT johallows for several discrete
variables as stratification variables.

Example. As a simple example, consider STR sampling withpprtional, equal and Neyman
allocation schemes. A stratified SRS-WOR sample 200 elements is drawn from a popu-
lation of N = 2000 elements (Table 1).

There areH = 5 strata in the population. In proportional edton, a 10% sample is drawn
from each stratum, involving a constant samplinggivew,, =w=2000/200= 1( for every

sample element. In equal allocation, a samplenof 200/5= 4C elements is drawn from
each stratum, involving varying sampling weightg = N, /n, for each stratunh. For Ney-
man allocation, we assume that reliable knowledyesa the population standard deviation

(Std. Dev.) ofy, is available, and that figure is equal to alb&trexcept Stratum 3, whose
standard deviation is larger indicating larger &aoin for the study variable. Stratum-wise
sample sizes are calculatedgs= N, S, /6400C, h = 1,...,5. This allocation scheme provides
larger relative sample size for Stratum 3 and spwadingly, smaller sampling weight, when

compared to the other strata. In those strataw#ights are nearly equal resembling propor-
tional allocation.

Table 1. Proportional, equal and Neyman allocation schefoe$STR sampling oh = 200
elements from ai = 2000 element population.

Proportional Equal Neyman
allocation allocation allocation
Sam-
Stratum Sample| Sampling| Sample| Sampling| Std. Sample| pling
Stratum| size size weight size weight | Dev. size | weight
h Nh Nh / N nh th nh th Sn Nh% nh th
1 500 0.25 50 10 40 12.5 2( 10000 31 161
2 100 0.05 10 10 40 2.5 2( 2000 b6 167
3 800 0.40 80 10 40 20.0 5( 40000 12p 6.4
4 200 0.10 20 10 40 5.0 2( 4000 13 15,4
5 400 0.20 40 10 40 10.0 2( 8000 26 160
All 2000 1.00 200 200 64000 200
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3.2.5. Cluster sampling

To carry outcluster sampling, a sample of clusters (naturally formed groups afyation
elements such as clusters of employees in estai#ists, clusters of pupils in schools and
clusters of people in households) is first dravamfrthe population of clusters by using one of
the basic sampling techniques (SRS, SYS or PPS)jed{er, the population of clusters can
be stratified before sample selection.olre-stage cluster sampling, all elements of the sam-
pled clusters are included in the element sampléwd-stage cluster sampling, an element-
level sample is drawn from the sampled clustersiding again the chosen basic sampling
techniques.

An important advantage in cluster sampling is th@aampling frame at the element level is
not needed for the whole population. The only regfaents are for cluster-level sampling
frames and, in two-stage cluster sampling, framesdmpling of elements from the sampled
clusters. Cluster-level frames are often accessibleexample, for establishments, schools,
villages, farms, blocks or block-like units in d@ygietc. Auxiliary information in cluster sam-
pling therefore concerns not only the grouping e population elements into clusters but
also the properties of the clusters needed ifiBtaion is used. Stratification is typical in
multi-stage sampling designs employed for exampléusiness surveys. For example, the
frame population of business firms can be stratifig type of industry or by size group be-
fore sampling of the individual firms.

In two-stage cluster sampling designs, PPS sampdirgpmetimes used for the first-stage
units, that is, the clusters (for example regiamaits from the population of regions, enter-
prises from a business register, etc.). An equabadility or self-weighting sampling design
is obtained if the elements are sampled from thepéad clusters with an equal sample size.

Cluster sampling is often motivated by cost effigy, that is, the low cost of data collection
per sample element. This is especially true forutepons that have a large regional spread.
Using cluster sampling, the traveling costs of iviavers can be substantially reduced as the
workload for an interviewer can be regionally pladnThecost efficiency of cluster sampling
can therefore be high. But there are also certeawllacks of cluster sampling that concern
statistical efficiency. If each cluster closely rons the population structure, we would attain
efficient sampling such that standard errors oinestes would not exceed those of simple
random sampling. However, in practice, clustersl tenbe internally homogeneous, and this
intra-cluster homogeneity increases standard errors and thus decretaiesical efficiency.

Cluster sampling is discussed at practical and rterienical level in standard sampling text-
books. A good example is Kish (1965). Textbook epionen & Pahkinen (2004, Chapters 5,
7-9) gives several real-world examples on this phamon, and further illustrations can be
found in the web extension VLISS-virtual laboratarysurvey sampling.

Example. PISA 2000 Survey. The efficiency in cluster samglis measured witbesign ef-
fect estimates. The design effect statistic was inttedun Section 3.2. For a sample méan

deff is given bydeff (Y) = V(Y) /Vs (Y), WwhereV(y) is the variance estimate calculated under
the actual cluster sampling design angd.(y) is the counterpart from simple random sam-

pling. For cluster samples, design effect estimtged to be larger than one, indicating poorer
efficiency relative to simple random sampling. @spondingly, theffective sample size de-
creases:n, =n/deff becomes smaller than the original sample sizié deff is larger than

one. Effective sample size gives the SRS sampgethiat produces equal precision than the
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actual cluster sample of sireelements. We illustrate these properties by ameia taken
from Lehtonen & Pahkinen (2004, Section 9.4).

The data are from the OECD’s Programme for Intéonat Student Assessment (PISA).The
first PISA Survey was conducted in 2000 in 28 OE@BPmber countries and 4 non-OECD
countries. We discuss here the area of readingdiye We selected from the PISA database
the following countries: Brazil, Finland, Germanyungary, Republic of Korea, United
Kingdom and United States. The survey data set ftseee 7 countries comprised a total of
1388 schools and 32,101 pupils.

Stratified two-stage cluster sampling was used ostnPISA countries. The first stage con-
sisted of sampling of individual schools with systgic PPS sampling. The number of stu-
dents in a school was used as the measure ofrsRB$ sampling. In most cases, the popula-
tion of schools was stratified before sampling agiens. In the second stage, samples of stu-
dents were selected within the sampled schoolsegttal probability.

The study variablg is the student’s combined reading literacy scazalesl so that the mean
over the participating countries is 500 and thaddad deviation is 100. In Table 2, selected
descriptive statistics are given The design efemounts for weighting, stratification and
clustering. The deff figures indicate a strong ®usg effect for most countries.

The effective sample sizes of students are cakdlby dividing the number of sample stu-
dents by the design effect estimate. The effecdample size is the equivalent sample size
needed to achieve the same precision in estimédtgmple random sampling from a student
population without any clustering were used. If tfeservations are not independent from
each other, as is the case here, the effectiveleasige decreases: the higher the design ef-
fect, the smaller the effective sample size. Thotighnominal sample sizes of students are
large (several thousands) in all countries, somthefeffective sample sizes are quite small
(only a few hundred). Design-effect estimates aislicate that standard errors calculated un-
der an (erroneous) assumption of simple random kagnpould be much smaller than the

(correct) design-based standard error estimatemmt countries, tending to lead to unreli-
able statistical conclusions.

Table 2. Descriptive statistics for combined reading litgracore in the PISA 2000 Survey
by country (in alphabetical order).

Number of
Effective sample] observations in data set
Standard| Design size of
Country Mean | error effect students Students | Schools
Brazil 402.9 3.82 8.33 476 3961 290
Finland 550.7 2.15 2.79 1600 4465 147
Germany 497.4 5.68 13.47 305 4108 18
Hungary 485.7 6.02 20.00 231 4613 184
Republic of Korea| 526.6 3.66 12.99 351 4564 144
United Kingdom 531.4 4.08 14.08 564 7935 328
United States 517.0 5.16 6.98 354 245% 112
All 500.0 3881 32101 1388
Data source: OECD PISA database, 2001.
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3.3. Sample size determination

Survey statisticians face very often questions @ to determine the appropriate sample size
for a sample survey. There is no simple answer #nu, the statistician must ask about the
needs, like:

l. Which are the most important study variables, dwedparameters to be estimated?

Il. Is there any guess about the (statistical) didfiobwof the study variables?

[l What is the level of precision one would like tovldor the parameter estimates?

IV.  What are the most important domains where the astsnmust be provided and how

precisely?
V. Are there any specific questions which must be rtake to account, e.g. special
populations to be covered, certain analysis todsaed out, methodology used etc.?
VI. What will be the anticipated nonresponse rate?

VIl.  What are the financial and time constramts

All these questions (and actually many others) khba considered before a proper sampling
design including the sample size can be made. if$tenfisunderstanding among non-survey
practitioners is that the population size mattd3g. and large the population size does
influence the sample size — except that the sasipe cannot exceed the population Size.

Example. Community Labour Force Survey. The Council RegofatNo 577/98 lays down
the basic principles to be obeyed in calculatiothefsample size. For simplicity we take only
the first paragraph of Article 3:

Article 3
Representativeness of the sample

1. For a group of unemployed peopl e representing 5% of the working age population the rela-
tive standard error for the estimation of annual averages (or for the spring estimates in the
case of an annual survey in the spring) at NUTS Il level shall not exceed 8% of the sub-
population in question.

Regions with less than 300 000 inhabitants shall be exempt from this requirement.
Thus one must consider various aspects beforecthalacalculation:

1. Working age population? - Often consideredgesd 15 or more. Sometimes 15-74.

2. Proportion of unemployed of that population @t#eough young people, say less than 20
or retired most often do not belong to labour force

3. Sampling variance to be estimated accordingeapplied sampling design.

4. NUTS Il domains.

Sample allocation

The Regulation requires that the sample size caiom must begin at NUTS Il regions, i.e. at
geographical domains. Generally, NUTS Il regiong &ery different in size between
countries and even within countries. Thus it is adbad idea to apply stratified sampling
where the strata consist of NUTS Il regions.

! However, in some multinational surveys the natisaaple sizes can be adjusted to reflect diffezerud the
population size. That is the case in EU-SILC, fxaraple.
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For example, in Finland there are five NUTS Il tegs. The population size for 15-74 year
old people was in 2006:

Region number Major Region Population (15-74
1 Southern Finland 1,987,000
2 Western Finland 999,000
3 Eastern Finland 496,000
4 Northern Finland 470,000
5 Autonomous Territory of Aland 20,000
Islands

Since the smallest NUTS Il region (no. 5) has papaoih which is smaller than 300,000 it is
not necessary to begin calculation from there tamfthe second smallest region (no. 4).

The yearly average of the number of unemployed 2@5000. Since the total population is
about 4 million, the proportion is about 5 per cehpopulation - by chance it is exactly the
proportion mentioned in the regulation. Furthermassume that proportion of unemployed is
roughly equal in all regions.

Stratified simple random sampling
We start the calculation of sample size from thepéeé random sampling of elements, i.e.

individual persons. The regulation states thatcthefficient of variation may not exceed 8 per
cent. Thus for each NUTS Il region (except the tast) one has to obey the condition:

cv(p)= Vép) = 0.0¢

Our parameter estimate, proportion of unemployedhfthe working age population igs =

0.05 and we assume it is roughly equal in all NUM@&gions. Since unemployment indicator
is a dichotomous variable with values [0,1] we applybinomial distribution to approximate
the sampling variance:

V(p)= p(1-p)/n

It must be plugged into the formula above:

cv(p) =P _ Y r‘)(l—ﬁ PN _ 4 o6

Next we must raise the two components to the seponer and rearrange:
p(1- p)/n=0.08 p?
Thus

_ p@-p)_ 0.05< 0.95 _ 0.95
n= = = = 2,969
0.08p> 0.08x 0.05 0.08 0.05
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Thus the sample size would be roughly 3,000. Intextg one must consider other issues.
Namely,

1. What is the anticipated nonresponse rate?
2. Can we apply the sampling design in this casshould we consider some other design?

The above sample size was calculated with an agsum@f 100% response. In real life it
should be inflated by the anticipated nonrespoase and possible undercoverage problems
in the sampling frame. Consider, for example, tihas about 15% in comparable social
surveys. The inflated sample size would be abd&a@,

Next question is whether to use equal or propoali@ilocation (see section 3.2.4qual
allocation will yield approximately the same precision to stHata. Hence the sample size for
the whole country would be more than 14,000 indiaid (4 x 3,500 = 14,000 + specifically
chosen sample size for th8 BUTS Il region).

For proportional allocation the sample size must be fixed to the NUTS Il ragim 4
according to calculation above. The sampling rdtthat region is 3,500/470,000 i.e. about
0.75 per cent of the population. Using the samepsam rate the sample sizes for other
NUTS Il regions would become 14,800; 7,450; 3,700 450. Thus the total sample size will
increase to more than double: 29,600 — dependinbelast region sample size.

Other main types of allocation (e.g. Neyman or poaléocation, see 3.2.4) are not easily
applied in this example since their aim is to akecthe sample optimally over the whole
population which might not fulfil the regulationg@rements on the precision over NUTS I
domains.

One-stage cluster design

In many countries the sampling frames are old onedww not amenable for selecting
individual persons or households directly for sbsiaveys, there for the LFS. In those cases
some cluster sampling design is appli€dhe-stage cluster sampling design requires that the
units to be selected contain the ultimate samplings, individual persons. The primary
sampling units (PSU) can be addresses, houses @liryvunits, for example. Whentao-
stage cluster design is applied, the first-stage sampling units aremfsome administrative
entities: municipalities, villages or census enwatien areas. The second-stage sampling
units are again addresses, houses or dwelling, @mtsthe ultimate sampling units consists of
individual persons (see section 3.2.5).

In any case, the number of primary and secondampkag units must be calculated
differently. However, the basic calculation for thlement sampling design above can serve
as an input to that purpose, too.

For simplicity we deal here with a stratified oriage cluster design, i.e. instead of
individuals we collect information from all membeo$ households, selection either from
address frame or dwelling unit frame. Furthermoeeassume that we appagual allocation
scheme in NUTS Il strata. What we need for a cludésign is the average size of clusters
and some knowledge on design effect estimate. Foather survey we can anticipate that
the design effect (see p. 12) of the number of unemployed from asiage cluster designs is
about 1.5. If we assume that the average cluster(se. average number of eligible members
which fulfil the required conditions) is 3 and ththe nonresponse rate calculated from the
individuals remains at 15% (i.e. response tate).85) we can obtain the sample size by
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CLU

x1.5=1,75(

Using the equal allocation scheme the overall sarsf@e would be over 7,000 households
(4 x 1,750 + specifically chosen sample size ferldst NUTS Il region). So the requirement
could be fulfilled with a relatively large samplézes 7,000 households contain 21,000
individuals. The fieldwork cost can, of course, tm@e smaller than that of the stratified SRS
sampling design.

Business surveys

Sample size determination for business surveysapgear much more difficult than the
example above. The distributions of main studyaldes are often very skewed which can
lead to a need of balancing various requiremerits.blasic calculation follows, of course, the
same path described above but the sampling deairgngy/pically heavily stratified element
sample designs. Stratification is often carried lmythe industry (NACE classification) and
size class.

The most influential units are often consideredcedainty units, and each of them form
technically a stratum of its own. Thus there issampling variance involved (unless some
units fail to respond). For smaller units the sampls carried out by stratified systematic
random sampling, simple random sampling or PPS kagiprhe sample size calculation
must take all the necessary information into actcamd in the case of detailed stratification,
calculation must be carried out separately for esuctum.

3.4. Use of auxiliary information in the estimationphase

In modern survey sampling practice, auxiliary imf@tion is often used to improve the effi-
ciency of estimation for a given sample, by usingglel-assisted estimation techniques. Thus,

in addition to the sampling design, estimation design enters on the scene. The concept of
estimation strategy is sometimes used referring to a combination addraging design and an
estimation design. Table 3 shows examples of gfiege including design-based strategies
where auxiliary information is used in some stregegand model-assisted strategies where
auxiliary data are incorporated in the estimatibvage, and for some strategies, also in the
sampling design.

Table 3.Examples of estimation strategies.

Auxiliary Assisting Example strategies
information model (sampling design * estima

tion design)

Design-based strategies

SRS-WOR Not usedi No explicit model SRS-WOR strategy

SYS Not used No explicit model SYS strategy

PPS Size variable No explicit model PPS strategy

STR Stratification No explicit model STR * SRS-WOR

variables

Model-assisted strategies

Ratio estimation Continuous  Regression (no intercept) SRS-WOR* Ratio estimatipn

Regression estimation Continuols Regression (with intercept) STR * Regression estimatip

Post-stratification Discretg linear ANOVA SYS * Post-stratification
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In model assisted estimation, the auxiliary dawiacorporated in the estimation procedure
of the population total by using statistical modélimear models are most often used for this
purpose, especially when the response variablé omtinuous typeRatio estimation and
regression estimation use a linear regression model, where the explanatwriables are as-
sumed continuous. In ratio estimation, the interdepm is excluded from the regression
model, whereas the intercept is included in theesgion model underlying regression esti-
mation. In practice, several continuous auxiliaayiables can be incorporated in a regression
estimation procedure. For both methods, the auyitiata consists of population totals of one
or several continuous variables, which can comm facsource such as official statistics.

In post-stratification, a linear analysis of variance or ANOVA model gd as the assisting
model, and the explanatory variables are of disdngie. The auxiliary data consists of popu-
lation cell and marginal frequencies of one or saglveategorical variables. A benefit in all
these methods is that an access to unit-leveliatkidlata on the population is not assumed.
Model parameters are estimated from the observeglsaby using the weighted least squares
(WLS) technique. Nonlinear models also can be @sedn assisting model. This is the case
especially if the study variable is binary or polytous (see e.g. Lehtonen, Sarndal &Veijanen
2005).

Ratio and regression estimation and post-stratifinaare special cases géneralized regres-
sion (GREG) estimators. The book by Sarndal, Swensson & Wretman (1998yiges the
main reference text for model-assisted survey sagpModel-assisted methods are dis-
cussed, at a more practical level, in Lehtonen &kiteen (2004). The methods are illustrated
(with computational examples) in the VLISS applicat the web extension of the book.

4. Treatment of nonresponse

During data collection we will lose information,ethmain reason being unit nonresponse.
Thus the number of responses is smaller than ihaally selected sample. If the sample size
was not inflated by the anticipated nonresponsalttadyses and findings will contain greater
risk to incorrect conclusions than originally thig

Unit nonresponse is the most common reason forimgisdata. The classification below
shows how they affect the data to be analyzed.t@&kibook by Groves et al. (2002) gives a
through presentation of those effects and the w@aake them into account in analysis.

Type of missingness: Effect on data set:
- unit nonresponse The whole data vector remainsyempt
(or all items were rejected)
- item nonresponse One of more items empty/are sgject
- sub-unit/partial nonresponse All data from one arenmultimate cluster ele-
ments missing, e.g. one or two family members
refuse, data accepted from others

Unit nonresponse
All survey organisations keep track on the magmtadd distribution of response and nonre-

sponse. However, despite efforts there is no stdisial way of calculating those entities (see
e.g. Lynn et al. 2003). Typically, nonresponseclassified into following categories in
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household surveys: Non-contacts, Refusals and @¢lasons. In addition, the coverage errors
should be distinguished whenever possible.

In business surveys — which are often compulsotite-coverage issues tend to be more
dominant than in household surveys. In some cadgespeises refuse to respond because they
may feel their competitors can somehow dig outtefria market information. Statistical
agencies strive to ensure that the most dominaetmises will respond in any case to pre-
serve the credibility of the results.

4.1. Reweighting to adjust for unit nonresponse

If respondents and nonrespondents were distribgiéte randomly over the whole sample,
the nonresponse could be detectedgasrable, andone could apply a naive modek m/n
which means just replacing the sample size by theher of respondents in weighting. Thus
the only punishment would be increased samplingamae. Unfortunately such a naive model
is normally not valid and data may be distortedh® nonresponse effects, ir@n-ignorable
nonresponse. The most often applied reweighting methods ard-ginatification and ratio
estimator. Below we present also some other methods

Post-stratification

We can easilypost-stratify our data set (see Section 3.4). For nonresponsstant the best
way is to find subgroups where the response/nonresprates are as different as possible.
The idea is to find homogenous sub-groups withrésponding behaviour. The task requires
substantial amount of tabulation but once donentkighting is relatively straightforward.

Ratio estimator

The ratio estimator (see 3.4) may as well be used after data colleaither directly for
estimating the study variabje or by weighting. We need the totals of continugasable(s)
either at population or domain level, and the pomding observatiork for each
respondent.

Ratio estimator yields good results for a studyialde y only if there is a strong positive
correlation betweerx andy. Note that ratio estimator is biased by definitibrthe true
regression line does not go through origin.

Empirical response homogeneity groups (RHG)

Empirical response homogeneity groups (RHG), often called as weighting classes mean that
the sample elements are divided into mutually ¢hsjsub-groups according to the response
probabilities. It is technically similar to postatification but operates only with sample-level
information — not population information.

Assume SRS-WOR design and that the respondingopéne sample can be divided accord-
ing RHG’s intoL categories:

I, =

_:|3
O
©
n
P
T
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Thus the final modified weight isy, =a, 7/ kKOG, wherea is the design weight ang;
refers to response homogeneity grbup

Derivation of good unbiased variance estimatortherweighting class estimator is very tedi-
ous and thus will be omitted here.

Explicit response probability modelling

Modelling is a continuation of the tabulation infaation. Thus models can either be fit at the
individual level or at the frequency level. Theads again to divide the sample into separate
groups according to response probabilities. Howewv@nodel is used to help the task and fur-
thermore to predict the model-based response pildleah Logistic regression models (see
3..4) are most popular in this case due to theachear of phenomenon.

A good model takes the main effects of many vaesiohto account and, if necessary, also the
interactions. As a result the predicted valuessareother than the original empirical response
probabilities.

Calibration of weights

The calibration estimator is probably the mostly used reweighting methoghrassent. It is
versatile and combines the good properties of nliadethe nonresponse with the need to
have consistency of auxiliary information, i.e. a@nple estimates of chosen auxiliary infor-
mation distributions match with the population disitions. Also the sampling variance ap-
proximations are available (see e.g. Deville & $air1992; Sarndal & Lundstrém 2005).

4.2. Imputation to adjust for item nonresponse

Imputation is the main method for compensatingitke non-response. It is also applied to
correct for erroneous values found in data checKiigerefore the phase of work is often
called “editing and imputation”. The main methods gical imputation, real-donor imputa-
tion and model imputation. The European Researaem&work Programmes 4 and 5 con-
tained projects, called AUTIMP and EUREDIT whictopided a lot of tools for statistical
offices on editing and imputation.

Logical imputation is connected with editing of data. Currently kea place as a part of data
entry program: computer assisted interview progratata extract programs from administra-
tive sources and various business survey data priigrams are equipped with a set of logi-
cal checking routines which can detect errors dad give either right or “best guess” im-

puted values for the missing or incorrect ones.

Real-donor imputation relies on the responses from the same unit otaimnit. In business
surveys it has been a tradition to impute missiayes with the values from the previous
measurement of the same unit. That method is catltideck imputation. Sometimes the
previous values are multiplied by the average chasighe variable estimated from the same
industry.

If the value is borrowed from a neighbour unit -ygibally the next or previous observation —

the method ishot-deck imputation. Traditional hot-decking leads often to implausibitia-
tions and therefore it is improved with somearest neighbour imputation method where sim-
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ilar units are sought with some metrics or by clhmpsub-populations. The value may be
taken directly from the closest unit or taken dtely from a pool of similar units.

Model-donor imputation refers to the situation where some statistical ehaxlused to pre-
dict the missing (or incorrect) value. Typicallyattoccurs again in business surveys where the
acceptable responses can be used to fit the modethen just applied to the units where
there are missing values. The simplest method iake an overall or suitable domain mean.
Mean imputation cannot be regarded as good becdutsetendency of reducing the variation
very much in the case there are a lot of missingeg Imputation based on a regression or
some other statistical model yields much bettenltges$n that respect. One can also lessen the
tendency of variance reduction by adding some eximdom variation from appropriate dis-
tribution which will lead tostochastic imputation instead ofdeter ministic imputation.

In principle all the methods above deal withagle imputation case, i.e. one missing value is

imputed with one valueMultiple imputation is another approach which solves many prob-
lems by imputing one missing value with a numben@i values (see Rubin 1987, or Schafer
1997). It is statistically a sound method but tteistical offices (and often their clients) have

not yet taken the methods in their work programmes.

5. Software

Two large scale statistical programs, SAS and S&#&in specific modules for sample se-
lection and survey data analysis. In SAS the promsdare included in STAT module from
version 8 on. In SPSS there is an add-on moduleponsamples which must be purchased
separately, available from version 11 and above.

The programming language R is widely used in acétistudies and some authors have pro-
vided codes for survey sampling and analysis. Tlaweefound on different web-pages con-
taining R program codes, eWww.r-project.org/

Software for sample selection

SAS/Stat v. 8 and above Proc SurveySelect (wasicom)
SPSS/Complex Samples v. 11 and above = CSPLAN tegeith CSSELECT
(Www.spss.com)
Software for weight derivation

SAS add-on programmes: CALMAR2 (INSEE/France)
CLAN97 (Statistics Sweden)

SPSS add-on programmes: g-CALIB (Statistics Baty

BLAISE component BASCULA (Statistics Netherlahd

Software for editing and imputation

SAS/Stat v. 8 and above Proc Ml and MIANALYZE
(multi-imputation)
SAS add-on programmes: BANFF/GEIS (Statisticedda)
CONCORD, DIESIS,
QUIS (ISTAT/Italy)
IVEWARE
(www.isr.umich.edu/src/smplivel/)
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Software for “standard” estimation

SAS/Stat v. 9 and above

SAS add-on programmes:

SPSS v. 11 and above
Complex Samples

SPSS add-on programmes:

BLAISE component

SUDAAN

Software for analytical purposes

SAS/Stat v. 9 and above

SPSS v. 11 and above
Complex Samples

SUDAAN

WesVAR
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Proc Surveymeans
Proc Surveyfreq

CLAN97 (Statistics Swgden
POULPE (INSEE/France)
GES (Statistics Canada)

CSDESCRIPTIVES

CSTABULATE

g-CALIB (Statistics ety

BASCULA (Statistics Netherlaphds

(www.rti.org)

Proc Surveyreg
Proc Surveylogistic
(GLM, MIXED, NLMIXED,...)

CSGLM, CSORDINAL,
CSLOGISTIC

(www.westat.com)
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7. Web links

AUTIMP (AUTomatic IMPutation software for businesgrveys and population censuses)
see EUREDIT

EUREDIT (The Development and Evaluation of New Meth for Editing and Imputation):
http://www.cs.york.ac.uk/euredit/

Eurostat Quality site:
http://ec.europa.eu/eurostat/quality

The European Statistics Code of Practice
ESS Quality standards:
Standard Quality Report
Standard Quality Indicators
How to Make a Quality Report
Handbook on improving quality by analysis of praceariables
DESAP - self-assessment for survey managers

International Monetary Fund. Data quality assesdgrfrfamework. 2003,
http://dsbb.imf.org/vgn/images/pdfs/dars_Genframuyam f

Organisation for Economic Cooperation and Develaum@ECD PISA database, 2001:
http://pisaweb.acer.edu.au/oecd/

Organisation for Economic Cooperation and Develapm@uality framework and guidelines
for OECD statistics. 2003attp://www.oecd.org/dataoecd/26/42/21688835.pdf

Statistics Finland: Quality Guidelines for Offici@tatistics:
http://stat.fi/tk/tt/laatuatilastoissa/alku_en.html

VLISS-virtual laboratory in survey sampling:
http://www.math.helsinki.fi/VLISS/
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Appendix 1. Example of sample selection using Bernoulli sangpl

We create a sampling frame consisting 2000 elenmemdswant to select about 200 units to
the sample. The symbols are the same as usedl&n p.

Sampling fraction UNI = 200/2000 = 0.1. All elemenh the frame are assigned a pseudo
random number from Uniform distribution, PIl. Thadements with P& 0.1 are selected and
selection indicator IND is given value 1. If theitiwas not selected, IND is set O.

The program code for SAS is very simple:

Data Bernoulli;

UNI=200/2000;

/* Set the limit for selection */

Do I=1 to 2000; /* Create a frame of 2000 eleraent/
P1=Ranuni(0); [* Attach every element with adam number*/
If PI<=UNI then IND=1; /* Check whether the umtselected */
Else IND=0; [* or not */
Output;
End;
Proc Print;
Sum IND;
Run;
I UNI PI IND
1 0.1 0.83976 0
2 0.1 0.50375 0
3 0.1 0.08013 1
4 0.1 0.87756 0
5 0.1 0.13501 0
6 0.1 0.41416 0
7 0.1 0.10639 0
8 0.1 0.28283 0
9 0.1 0.16496 0
10 0.1 0.88332 0
1991 0.1 0.67351 0
1992 0.1 0.11558 0
1993 0.1 0.78235 0
1994 0.1 0.66004 0
1995 0.1 0.08314 1
1996 0.1 0.19041 0
1997 0.1 0.77828 0
1998 0.1 0.07666 1
1999 0.1 0.53644 0
2000 0.1 0.35678 0
Sum 201

In Bernoulli sampling the sample size is a randarargity and this example shows that we
received one unit too much. The simplest way t@iob& fixed sample size would be to sort
the frame by the random number and select exabyc2ses (from the beginning, end or just
at any point as long as the random numbers arefasesdlection).
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