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1. Introduction  
 
The guidelines concern basic principles and methods of survey sampling. This includes sur-
vey planning, survey quality, sampling and estimation, and nonresponse. The approach is 
non-technical; only necessary technical materials are included. The methods are illustrated 
with practical examples, and references to statistical software are given when relevant.  
 
Because a comprehensive treatment of the various aspects of survey sampling is not possible 
in some brief guidelines, we have concentrated on selected topics we believe are of impor-
tance for readers. We have aimed at a practical guide intended for experts whose practical ex-
perience in survey sampling is limited but who have some background knowledge in basic 
statistics. For further information on topics covered and extensions, we refer to selected litera-
ture. 
 
The guidelines are organized as follows. Chapter 2 discusses survey planning and reporting. A 
number of basic concepts and definitions are given, also including survey quality. Basic sam-
pling techniques are introduced in Chapter 3. We discuss methods such as simple random 
sampling, systematic sampling and cluster sampling. The use of auxiliary information plays a 
key role in modern survey sampling, and methods are discussed such as PPS sampling, strati-
fied sampling and model-assisted methods including ratio and regression estimation. Sample 
size determination is treated and illustrated. Chapter 4 covers nonresponse and discusses re-
weighting and imputation methods. A brief summary of software available for survey sam-
pling and analysis is included in Chapter 5. We have included a comprehensive list of refer-
ences on current survey sampling literature in Chapter 6. Chapter 7 includes a list of selected 
links to web materials relevant to the area. 
 
 

2. Survey planning and reporting 
 
2.1. Basic concepts and definitions 
 
Definition of a survey 
 
A survey refers to any form of data collection. A sample survey is more restricted in scope: 
the data collection is based on a sample, a subset of total population - i.e. not total count of 
target population which is called a census. However, in sample surveys some sub-populations 
may be investigated completely while the most sub-populations are subject to selected sam-
ples. In the subsequent chapters the term survey is devoted to sample surveys. 
 
Descriptive surveys versus analytical surveys 
 

Descriptive surveys, including censuses, are typical in statistical offices. They tend present 
information on parameters like totals, averages or proportions at the total population level or 
some well-defined sub-populations. In surveys where the emphasis is on analysis, the interest 
is focused on connections and interdependences between phenomena. The parameters of in-
terest are connected with statistical models, such as linear models, and are represented by cor-
relation or regression coefficients. However, it is important for both types of surveys to esti-
mate the unknown parameters as reliably as possible.  
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Social surveys vs. Business surveys  
 
In social surveys the focus is related with persons and households: e.g. population statistics, 
labour force participation, wages and salaries, household consumption, poverty and income 
distribution, education, cultural activities, health and other interested topics.  
 
In business surveys the focus is related with enterprises, establishments and/or other business 
units like the local kind of activity units, including farms. The interest may vary from produc-
tion composition and amount to investment plans, employment, use of energy, output waste 
etc. 
 
Social surveys and business surveys differ from each other also in other aspects. In official 
statistics business surveys are often mandatory while social surveys tend to be voluntary; the 
data collection modes are more versatile in social surveys; even the sampling designs can be 
different. 
 
 
2.2. Overall survey design 
 
In recent years many textbooks have been published on survey methodology. Groves et al. 
(2004) provide a good overview on the whole process from the design to the analysis and in-
terpretation. In addition there is a number of specific literature on various data collection 
modes, testing questionnaires and questions, interviewing strategies etc.  
 
Operational phases of a survey are described e.g. by Sundgren (1999). It includes various 
tasks from the definition of the main objectives, data collection strategy, processing of data, 
production of results, evaluation of quality till archiving. All tasks are important to guarantee 
the various uses of data and their quality. The readers are recommended to obtain more in-
formation from appropriate literature like Lyberg et al. (1997), or Biemer & Lyberg (2003). 
 

 
Figure 1. Flow chart of survey process (see e.g. Statistics Finland) 
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2.3. Reporting of survey quality 
 
The users should be reported with appropriate information on survey quality, preferably from 
all stages of the survey process. It has been a tradition to report of survey quality by distin-
guishing various sources of error which may occur during the many stages of survey opera-
tions. For example, Biemer & Lyberg (2003) describe following types of errors: Specification, 
Frame, Nonresponse, Measurement, Processing, and Sampling error. Some may be born ran-
domly but unfortunately various sources tend to introduce systematic errors.  
 
Sampling errors 
 
Standard errors for the estimable parameters, often point estimates are the oldest quality 
measures. They (and other estimates derived from those like coefficients of variation or con-
fidence intervals) were introduced during the rise of survey methodology in 1940s.  
 
Measurement errors 
 
Besides the sampling errors the other types of errors were introduced quite early. The first UN 
recommendations on reporting survey quality were given already in 1950s and the measure-
ment errors were already included. However, the implementation of systematic reporting took 
much longer. 
 
Total survey error 
 
The total survey error of a parameter θ is measured by the mean square error (MSE), i.e. sum 

of the variance and squared bias: 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )MSE E V Biasθ θ θ θ θ= − = + . 
 
Sampling variance is derived from the sampling design, the other components affecting its 
estimate are sample size, the variability of the parameter of interest and sampling weights. 
Sampling error, i.e. square root of sampling variance, is a random error by definition. Bias is 
the difference between the true value and the expectation of the estimator, and when nonzero 
it represents systematic error. Unfortunately the MSE estimation requires repeated sampling 
and thus cannot easily be carried out with large-scale surveys. Some subtle methods have, 
however, been suggested to evaluate the total error (see e.g. Lessler & Kalsbeek 1992). 
 
The quality dimensions and standards of the European Statistical System provide a good 
frame to report on quality. The quality dimensions are Relevance, Accuracy, Timeliness and 
Punctuality, Comparability, Coherence, and Accessibility and Clarity. Relevance describes 
how the statistical survey meets the user needs and requirements. Accuracy contains the tradi-
tional measures on survey quality (like standards errors, confidence intervals and coefficients 
of variation etc.). Timeliness and punctuality measure the freshness of data and the results. 
Comparability and coherence are related with various forms of comparisons: different sources 
describing the same phenomenon, comparability of the same survey over various domains, 
like geographical areas, comparability over time etc. Finally, Accessibility and clarity de-
scribe the various form data are available and results disseminated, metadata and other user 
support etc.  
 
Furthermore, a list of quality indicators have been constructed to make the follow-up easier 
for those surveys which are repeated more or less regularly.  
 
The Eurostat Quality website presents all relevant documents on quality reporting and also 
some current practices and guidelines on the issue: http://ec.europa.eu/eurostat/quality. 
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The International Monetary Fund (IMF) and Organization for Economic Co-operation and 
Development (OECD) have created own standards which are also widely used especially in 
the field of economic statistics (see International Monetary Fund 2003). 
 
 
2.4. Sampling frame issues 
 
Population and frame 
 
Target population is the population we theoretically are interested in. It is assumed to be 
fixed (and finite).   
 
Frame population is the population we can obtain.  
 
Survey population is the intersection of those above. 
 
Those three populations do not quite coincide because the frame population tends to contain 
some erroneous elements called coverage errors. Below we present some typical reasons for 
coverage errors: 
 

• time lags between the moment the sample frame was created and it was actually 
used 

• failure to include new births in the frame  
• failure to include or exclude elements which have moved (physical removals, 

enterprises which have changed their industry etc.) 
• failure to remove deaths and similar out-of-scope elements 

 
Overcoverage means that our sampling frame contains elements which do not belong to our 
target population.  Overcoverage can normally be detected during the field-work. 
 
Undercoverage is a much more problematic phenomenon since often it cannot be detected 
and assessed in a reliable manner. 
 
There may be no realistic way to include all possible differences between the target 
population and the ultimate sampling frame but those known should be included. Kish (1965) 
advocated a stratum of surprises to include those cases. 
 
Sometimes no good frame exists for the target population and one has to find other solutions 
described below. 
 
Multiple frames 
 
Multiple frames may occur if the target population can be compiled from several independent 
sources. Use of many frames is not uncommon in developing countries but can also used in 
developed societies when new phenomena are investigated.  
 
Clustered frames 
 
It may well happen that there is not a good population frame for the ultimate sampling units, 
or that the creation of such would be much too expensive. Then the next solution is to seek for 
an alternative from the combinations of the elements, i.e. seek for clustered frames.  
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Consider, for example, a study of school children: even if a population frame would be 
available covering all children attending the schools, the field work will become much 
cheaper if the schools and/or classes are selected instead of the pupils randomly over the 
whole population. 
 
In large population and household surveys we most often deal with clusters which comprise to 
some natural combination of elements, e.g. people living in enumeration districts or 
administrative regions. 
 
Other issues 
 
Double listings of the same elements should always be removed from the frame if found. 
 
Small sub-populations may sometimes be quite impossible to reach although they are known, 
e.g. people living in remote mountainous villages. For cost and other reasons they may be re-
moved from the sampling frame. Then a difficult question arises: do the estimates from the 
reduced population reflect the properties of those from removed sub-populations? 
 
Cut-off samples are another example related with the same problem. Normally cut-off sam-
ples are applied in business surveys where the smallest units do not contribute too much to the 
parameter of interest. However, since one part of the target population is deliberately ex-
cluded there is a chance to obtain bias in estimation. 
 
Auxiliary information 
 
Information obtained from “background” variables to be used either at the sampling stage 
(e.g. to create strata or clusters, calculate measure of size etc.) or after data collection to calcu-
late weights etc. Sometimes auxiliary data cannot be obtained from the sampling frame but 
can be available after the survey from other sources, such as official statistics. 
 
 

3. Techniques for sample selection and estimation 
 
3.1. Preliminaries 
 
In a sample survey, a probability sample is drawn from the frame population by using a speci-
fied sampling design. Typically, the sampling design consists of a combination of various 
sample selection techniques. A complex sampling design can involve clustering and stratifica-
tion and several stages of sampling. In simple cases, sampling of elements is carried out di-
rectly from the sampling frame. In all cases, some of the well-documented sample selection 
techniques are used in the sampling procedure. Good examples of relevant literature on sam-
pling techniques are Kish (1965), Cochran (1977); Lohr (1999), and Lehtonen & Pahkinen 
(2004), which is the primary source for this section. Helpful supplemental materials on survey 
sampling and estimation, including computational examples using real survey data, can be 
found in VLISS-virtual laboratory in survey sampling, representing a web extension of the 
Lehtonen and Pahkinen textbook. The application can be accessed freely at 
http://www.math.helsinki.fi/VLISS/. Many of the common sample selection techniques can be 
readily implemented by statistical software products, such as the SAS procedure 
SURVEYSELECT. 
 
The properties of sampling techniques vary with respect to statistical efficiency and certain 
practical aspects, such as suitability to a given sampling task, requirements for application and 
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user friendliness. Often the study design and time and budget constraints affect the choice of 
the sampling design in a given survey setting. An important additional aspect is the role of 
auxiliary information in a given sampling procedure. Let us first discuss the standard sample 
selection schemes from this point of view. 
 
Use of auxiliary information in sampling and estimation 
 
It is often useful to incorporate auxiliary information on the population in a sampling proce-
dure. In practice, there are different ways to obtain auxiliary information. For example, in the 
so-called register countries (e.g. Scandinavian countries), sampling frames used in official 
statistics production often include auxiliary information on the population elements, or these 
data are extracted from administrative registers and are merged with the sampling frame ele-
ments at the micro level. In other cases, aggregate-level auxiliary information can be obtained 
from different sources such as published official statistics. Use of auxiliary information in 
sampling and estimation is an expanding feature in official statistics production. Auxiliary 
information can be useful in the construction of an efficient sampling design and further, at 
the estimation stage for improved efficiency for the actual sample. To be useful, auxiliary in-
formation should be related to the variation of the study variables. 
 
In simple random sampling (SRS), the sample is drawn without using auxiliary information 
on the population. Therefore, SRS provides a reference scheme when assessing the gain from 
the use of auxiliary information in more complex designs or in improving the efficiency of 
estimation for a given sample. 
 
Auxiliary information does not play a role in standard application of systematic sampling 
(SYS). Thus, the efficiency of SYS tends to be similar than that of SRS. This also holds if 
population elements in the sampling frame are in random sort order with respect to the study 
variable. In a method called implicit stratification, auxiliary information can be used in the 
form of the list order of elements in the frame. Now, SYS can be more efficient than SRS if 
there is a certain relationship between the ordering of elements in the sampling frame and the 
values of the study variable. 
 
Sampling with probability proportional to size (PPS) is a method where auxiliary information 
has a key role. An auxiliary variable is assumed to be available as a measure of the size of a 
population element. Varying inclusion probabilities for population elements can be assigned 
using the size variable. Efficiency improves relative to SRS if the relationship between the 
study variable and the size variable is strong. PPS is often used in business surveys and in 
general, for situations where the sampling units vary with a size measure. 
 
Stratified sampling (STR) relies strongly on the use of auxiliary information. In STR, the 
frame population is first divided into non-overlapping subpopulations called strata, and sam-
pling is executed independently within each stratum. If the strata are internally homogeneous 
with respect to the study variable, i.e. if the within-stratum variation of the study variable is 
small and a large share of the total variation is captured by the variation between the strata, 
then STR can be more efficient than SRS. 
 
In cluster sampling (CLU), the population is assumed to be readily divided into naturally 
formed subgroups called clusters. A sample of clusters is first drawn from the population of 
clusters. In the next stage, all elements of the sampled clusters are taken in the element sample 
(one-stage cluster sampling), or a sample of elements is drawn from each sample cluster (two-
stage cluster sampling). If the clusters are internally homogeneous, which is usually the case, 
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then CLU is less efficient than SRS. This clustering effect can be reduced by stratifying the 
population of clusters, tending to improve efficiency. 
 
The sampling techniques introduced above can be used to construct a manageable sampling 
design for a sample survey, either using a particular method or more usually a combination of 
methods. In all methods excluding SRS, auxiliary information in the form of auxiliary vari-
ables can be incorporated in the sampling procedure. Note that the use of auxiliary informa-
tion in SRS, SYS and stratified sampling requires that the values of auxiliary variables must 
be available for every population element. Auxiliary information in cluster sampling concerns 
at least the grouping of the population elements into clusters. If additional auxiliary data are 
available on the population of clusters, these data can be used for example for stratification or 
PPS sampling purposes. 
 
Use of auxiliary information in the sampling phase is typical in descriptive surveys where the 
number of study variables is small. Efficiency gains can be obtained if the association be-
tween the study variable(s) and the auxiliary variables is strong. 
 
Auxiliary information can be used for the selected sample in the estimation phase. Use of 
auxiliary information in the estimation phase involves flexibility: the sample design can be 
kept simple and in the estimation phase, the use of auxiliary information can be tailored for 
diverse study variables. In addition, requirements for auxiliary data in standard methods are 
weaker than in the previous case, because unit-level auxiliary data only are needed for the 
sampled elements, and the auxiliary data can be incorporated at an aggregate level in the es-
timation procedure. Some of the standard methods are ratio estimation, regression estimation 
and post-stratification. All these methods use statistical models as assisting or working models 
when incorporating the auxiliary data in the estimation procedure. The methods thus are 
called model-assisted.  
 
In ratio and regression estimation, the population total of a continuous auxiliary variable is 
assumed known. The assisting model is of regression-type linear model. In ratio estimation, 
the model is without an intercept term, i.e. the intercept is assumed zero. Efficiency can im-
prove if the study variable and the auxiliary variable are correlated. But the method can be 
ineffective if there is a nonzero intercept term in the true model. In regression estimation, the 
assisting model is again of regression-type, but now with an intercept term. Efficiency can 
improve if the study variable and the auxiliary variable are correlated. 
 
Post-stratification resembles stratified sampling, but the stratification is carried out after the 
sample selection. The selected sample is divided into non-overlapping subgroups called post-
strata according to a categorical or classified auxiliary variable (or several such variables), 
and the estimation follows that of stratified sampling. Similarly as in stratified sampling, effi-
ciency can improve if the post-strata are internally homogeneous with respect to the study 
variable. Post-stratification is often used for adjusting for unit nonresponse (see Section 4.1). 
 
Thus, auxiliary information on the population can be used in the construction of the sampling 
design and, for a given sample, to improve the efficiency in the estimation phase. As a rule, 
efficiency of estimation can improve by the proper use of auxiliary information. 
 
Parameters, estimators and quality measures 
 
Let our parameter of interest be a fundamental parameter in survey sampling, the population 

total 
1

N

kk
T y

=
=∑ of study variable y. In the formula for the total, ky  are the (unknown) values 

of the study variable and N is the number of elements in the population. Many parameters 
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routinely used in survey sampling, such as means, proportions, ratios and regression 
coefficients, can be expressed as functions of totals. To have an estimate for the unknown 
population total T, a sample is drawn from the population and the sample values of the study 
variable are measured. An estimator of the population total T is denoted by ̂t . The concept 
estimator refers to a calculation formula or algorithm that is used for the sample to obtain a 

numerical value for the estimate. A simple example is the sample mean 
1

/
n

kk
y y n

=
=∑ , 

which is calculated using the n sample measurements. Using the sample mean, an estimate for 
the population total is calculated as t̂ N y= × . These derivations hold for simple sampling 
designs; more complex derivations are needed for complex sampling designs.  
 
In survey sampling, estimators are preferred that fulfil certain theoretical properties. These are 
unbiasedness, meaning that the expectation of an estimator coincides with the target 
parameter, i.e. ˆ( )E t T= , and the bias is defined as ˆ ˆ( ) ( )Bias t E t T= − . Consistency is a 
somewhat weaker property, referring to the behaviour of an estimator to better match with the 
value of the target parameter when sample size n increases, and to reproduce the target 
parameter when the sample size coincides N, the population size. Precision of an estimator 
refers to its variability and is measured by the design variance ˆ( )Var t . The smaller is the 
design variance, the better is the precision. A precise estimator is called efficient. And 
accuracy of an estimator refers to combined bias and precision properties of an estimator and 
is measured by the mean square error: 2ˆ ˆ ˆ( ) ( ) ( )MSE t Var t Bias t= + .  
 
In survey sampling practice, estimators are used that are unbiased or at least consistent. A 
challenge for survey statistician is for a given sampling task to obtain efficient estimators 
whose design variances are as small as possible. This is for high reliability of the results 
calculated by using the collected sample survey data. 
 
The standard error (s.e), coefficient of variation (c.v) and design effect (deff) of an estimator 
are commonly used quality measures of estimators. The quality measures are derived from the 
theoretical properties introduced above. For an estimator t̂  of population total, the measures 
are defined as follows. 
 

Estimated standard error: ˆ ˆˆs.e( ) ( )t v t= , where ˆˆ( )v t  is the estimated design variance or 

sampling variance of the total estimate t̂ . 
 
Estimated coefficient of variation or relative standard error: ˆ ˆ ˆc.v( ) . ( ) /t s e t t= , i.e. the 
estimated standard error divided by the estimate itself. Coefficient of variation is often 
expressed in percentages, 100 c.v%× . Coefficient of variation is routinely reported in official 
statistics. C.v is often used as a quality standard in the context of the ESS (see Section 3.3). 
 
Design effect (deff) (Kish 1965) measures the statistical efficiency of the sampling design 
with respect to simple random sampling (SRS) and is given by 
 

ˆˆ( )ˆdeff ( )
ˆˆ ( )SRS

v t
t

v t
= , 

 
where the numerator is the sampling variance of the total estimator under the actual (possibly 
complex) sampling design and the denominator represents the sampling variance under an 
assumption of simple random sampling of a sample of similar size. Using the design effect, 
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effective sample size is determined as eff
ˆ= / deff ( )n n t , that is, the actual sample size n divided 

by the design effect of the total estimate.  
 
The formula for deff gives rise to the following remarks: 
 
(a) deff < 1  The actual sampling design is more effective than SRS. Correspondingly, 

effective sample size is larger than the actual sample size.  
 
(b) deff = 1  The efficiency of the actual sampling design is similar to that of SRS. 
 
(c) deff > 1  The actual sampling design is less effective than SRS. In this case, effective 

sample size is smaller than the actual sample size. 
 
In survey sampling practice, a natural goal is the case (a). In this effort, the use of the 
available auxiliary information in the sampling design is beneficial. Stratified sampling and 
PPS sampling are often used for this purpose. In addition, efficiency can be improved in the 
estimation phase by incorporating auxiliary data in the estimation procedure via model-
assisted techniques. In cluster sampling, the case (c) is often encountered because of the 
internal homogeneity of the clusters with respect to the variables of interest. 
 
 
3.2. Basic sampling techniques 
 
Basic sampling techniques include simple random sampling, systematic sampling and 
sampling with probabilities proportional to size (PPS). These methods are used in sampling 
designs as the final methods for selecting the elementary or primary sampling units (PSU:s) 
and for working out randomization. A manageable sampling design for a survey often 
involves stratification, clustering and multiple stages of sampling. Stratification of the 
population into non-overlapping subpopulations is a popular technique where auxiliary 
information can be used to improve efficiency. In cluster sampling, the practical aspects of 
sampling and data collection are the main motivation for the use of auxiliary information in 
the sampling design.  
 
3.2.1. Simple random sampling 
 
Simple random sampling (SRS) is often regarded as the basic form of probability sampling. 
SRS is applicable to situations where there is no previous information available on the popu-
lation structure. Simple random sampling directly from the frame population ensures that each 
population element has an equal probability of selection. Thus, SRS is an equal-probability 
sampling design. 
 
As a basic sampling technique, simple random sampling can be included as an inherent part of 
a sampling design. In addition, simple random sampling sets a baseline for comparing the rel-
ative efficiency of a sampling design by using the design effect statistic introduced above.  
 
In simple random sampling of n elements, every element k in the population frame of N 
elements has exactly the same inclusion probability, that is, /k n Nπ π= = . Recall that 

inclusion probability is the probability of a population element to be included in a n element 
sample. An inclusion probability is assigned for every population element before carrying out 
the sampling procedures. Inclusion probabilities depend on the sampling design and are by 
definition greater than zero for all population elements. 
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In practice, SRS can be performed either without replacement (SRS-WOR) or with 
replacement (SRS-WR). WOR type sampling refers to the case where a sampled element is 
not replaced in the population; this also means that a population element can be sampled only 
once. In a WR scheme, a sampled element is replaced in the population. In both cases, the 
inclusion probability /n Nπ =  remains, and the only difference is in the variance formula of 
the statistic of interest. As a general rule, WOR-type SRS is more efficient that WR-type SRS, 
that is, the variance in SRS-WOR tends to be smaller than that in a SRS-WR counterpart. This 
property also holds for the other sampling designs and explains the frequent use of without 
replacement type designs in survey sampling practice. 
 
Under SRS, an estimator of the target parameter T can be written simply as  
 

1
ˆ /

n

kk
t N y n Ny

=
= =∑ , 

 

where 
1

/
n

kk
y y n

=
=∑  is the sample mean. Alternatively, by using the SRS inclusion 

probabilities π , the estimator can be expressed in the form  
 

1 1 1
ˆ / /( / )

n n n

k k k kk k k
t y y n N w yπ

= = =
= = =∑ ∑ ∑ , 

 
where /kw N n=  is the sampling weight, i.e. the inverse inclusion probability. Note that in 

SRS, the sampling weights are equal for all sample elements. In more complex designs to be 
addressed, the sampling weights can vary between elements (as in PPS sampling) or groups of 
elements (as in stratified sampling). 
 

Using the estimated total, the population average or mean 
1

/
N

kk
Y y N

=
=∑  can be estimated 

by ˆ /y t N= . Note that we assumed here a known population size N, which is a realistic 

assumption in practice. But if N is unknown at the estimation stage, an estimator 
1

ˆ n

kk
N w

=
=∑  

can be used for the population size. 
 
For an estimator ̂t  of population total under SRS-WOR, the sampling variance of ̂t  is given 
by  

2 2ˆˆ ˆ( ) (1 / )(1/ )v t N n N n s= − , 
 

where 2 2

1
ˆ ( ) /( 1)

n

kk
s y y n

=
= − −∑  is the sample variance of the study variable y. The quantity 

(1 / )n N−  in the sampling variance formula is called the finite population correction (fpc). 
Note that if the sampling fraction /n N  is small, as is the case in typical sampling designs for 
persons or households, practical importance of the fpc is minor, because fpc is close to one. 
But this is not necessarily so in sampling designs for business surveys where sampling 
fractions can be much larger. 
  
For SRS-WR, the only difference in the sampling variance ˆˆ( )v t  is that the fpc is given by 
(1 1/ )N− . This difference also indicates better efficiency for the SRS-WOR design: the 

design effect of ̂t  under SRS-WR is ˆdeff ( ) (1 1/ ) /(1 / ) 1t N n N= − − > , assuming that sample 
size n is larger than one and smaller than population size N. Note that we used SRS-WOR as 
the reference SRS design in the deff formula; this is a natural choice but sometimes, SRS-WR 
is put in this role in certain statistical software. 
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To summarize, if the sampling fraction (n/N) is small the fpc for SRS-WOR will be close to 1. 
And vice versa: if the sample size n approaches the population size N, the variance estimate 

ˆˆ( )v t  will reduce. Thus, in a census the sampling variance is zero. 
 
In practice SRS is executed with an appropriate piece of software. For example, the SAS pro-
cedure SURVEYSELECT can be used for both SRS-WR and SRS-WOR. In real life sam-
pling with SRS we mostly deal with the without-replacement type SRS design.  
 
Example. Bernoulli sampling provides an example of an SRS-WOR type sampling scheme. 
In this method, the sample size is not fixed in advance but is a random variate whose expecta-
tion is n, the desired sample size. This property leads to a variation in the sample size with the 
expected value Nπ and variance N(1 − π)π, where π stands for the inclusion probability. The 
randomness in the sample size is relatively unimportant in large samples. 
 
Let us briefly introduce the technique. To carry out Bernoulli sampling, we need to carry out 
the following steps: 
 
Step 1. Fix the value of the inclusion probability π, where 0 < π < 1, so that the expected 
sample size will be Nπ, the product of the population size and the inclusion probability. If the 
desired sample size is n, then π = n/N.  
 
Step 2. Append three variables, let say PROB, IND and UNI, to the sampling frame data set. 
PROB is set equal to the chosen value of π, and IND is set to zero, for all N population ele-
ments. For UNI, a value from a uniform distribution over the range (0, 1) is drawn independ-
ently for each population element, starting from the first element. A pseudo random number 
generator can be used in generating the random numbers. 
 
Step 3. The decision rule for inclusion of a population element in the sample is the following. 
The kth population element is included in the sample if UNI < π, and correspondingly, we set 
IND = 1 for the selected element (otherwise, the value of IND remains zero). 
 
Step 4. Treat all population elements sequentially by using Step 3. 
 
When Steps 1 to 4 are completed, the sum of IND over the sampling frame appears to be close 
(or, equal) to the desired sample size n. The elements having IND = 1 constitute the Bernoulli 
sample. The procedure can be easily programmed for example with Excel, SAS or SPSS.  
Appendix 1. contains a short example of Bernoulli sampling. 
 
3.2.2. Systematic sampling 
 
Systematic sampling (SYS) is a widely used sampling technique in situations where the sam-
pling frame is an ordinary electronic (or manual) data base, such as a population register, a 
register of business firms or farms, or a list of schools. SYS also is an equal probability sam-
pling design because the inclusion probability of a population element in an n element sample 
is /n Nπ = . 
 
Steps in the selection of a systematic sample of n elements from a population of N elements 
are the following: 
 

1. Define the sampling interval q = N/n, where an integer q is assumed. 
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2. Select a random integer a with an equal probability of 1/q between 1 and q (a pseu-
do random number generator for uniform distribution over the range (1, q) of e.g. Ex-
cel, SAS, SPSS can be used). 
 
3. Select elements numbered a, a + q, a +2q, a +3q,..., a + (n−1)q in the sample. 

 
Thus, with an integer q, SYS results in an n element sample. If q is not an integer, all sam-
pling intervals can be defined as of equal length except one.  
 
In practice, there are several ways of selecting a systematic sample. The one we introduced 
above represents an example of SYS sampling with one random start. Alternatively, two, or 
more generally m, independent systematic samples can be taken using the procedure above. 
The size of each SYS sample is then n/m elements and the length of the sampling interval is 
m q× . This technique is suitable if variance estimation is to be carried out using so-called 
replication techniques (see Wolter 2007).  
 
Further, a systematic sample can be drawn by treating the elements in the sampling frame as a 
closed loop. Beginning from the randomly selected integer A from [1, N], the selection pro-
ceeds successively by drawing elements A + q, A + 2q, … , till the end of the frame, and then 
the selection continues from the beginning of the frame. The loop will be closed when n ele-
ments have been drawn. These random start methods lead to the selection of a SYS sample of 
n elements, and the techniques are equivalent with respect to the estimation. 
 
In statistical software products, such as the SAS procedure SURVEYSELECT, there are ad-
vanced sampling algorithms for SYS that use fractional intervals to provide exactly the speci-
fied sample size n.  
 
For SYS, there is no known analytical variance estimator for the design variance, even for 
such a simple estimator as the total. Therefore, approximate variance estimators are used in 
practice (see e.g. Wolter 2007; Lehtonen and Pahkinen 2004, Section 2.4).  
 
Estimation under systematic sampling depends on the knowledge on the sorting order of the 
sampling frame: 
 
1. If the sorting order of the sampling frame can be assumed random with respect to the study 
variables and all auxiliary variables, estimation with SYS will correspond to that of SRS-
WOR. Thus, formulas derived for SRS can be used. 
 
2. If the sampling frame is sorted by an auxiliary variable (or, several such variables), SYS 
sampling will produce a sample which tends to mirror correctly the structure of population 
with respect to the variables used in sorting. Sorting the frame before SYS sampling is called 
implicit stratification. For example, in some cases it is a good idea to sort the frame according 
to the regional population structure. Then a systematic sample will retain the appropriate pop-
ulation distribution across regions. Additional cases are those where the population is already 
stratified or a trend exists that follows the population ordering, or there is a periodic trend (all 
these situations can also be reached by appropriate sorting procedures). Periodicity may be 
harmful in some cases, especially if harmonic variation coincides with the sampling interval. 
The estimation under implicit stratification corresponds to the estimation under stratified 
sampling. 
 
Systematic sampling, including implicit stratification, can be carried out for example with the 
SAS procedure SURVEYSELECT. 
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Example. Let us consider SYS sampling of n = 200 elements from a population of N = 2000 
elements. The sampling interval is q = N/n = 2000/200 = 10. We next draw a random integer a 
between 1 and 10, let a = 7. The SYS sample of n = 200 elements consists of population ele-
ments numbered 7, 17, 27,…,1997. The inclusion probability for every population element is 

/ 200 / 2000 0.1k n Nπ π= = = =  and the constant sampling weight for the sampled elements 

is 10kw w= = .  

 
3.2.3. Sampling with probability proportional to size 
 
In sampling with probability proportional to size (PPS), the inclusion probability depends on 
the size of the population element. Reduction in variance can then be expected if the size 
measure and the study variable are closely related. It is assumed that the value kZ  of the aux-

iliary size variable z is known for every population element k. Typical size measures are vari-
ables that physically measure the size of a population element. In business surveys, for exam-
ple, the number of employees in a business firm can be used as a measure of size, and in a 
school survey the total number of pupils in a school is also a good size measure. PPS sam-
pling can be very efficient, especially for the estimation of the total, if a good size measure is 
available.  
 
In PPS sampling, the inclusion probability of an element in a n element sample is 

/k k k znp nZ Tπ = = , where 
1

N

z kk
T Z

=
=∑  is the sum of size measures over the N element popu-

lation and kp  is called the single-draw selection probability. In PPS, the inclusion probabili-

ties kπ  vary between elements and thus, PPS is an unequal probability sampling design. 

 
A PPS sample can be drawn either without or with replacement. Calculation of the inclusion 
probabilities is easier to manage under WR type sampling, because the population remains 
unchanged after each draw. In PPS-WOR, the population changes after each draw and the in-
clusion probabilities must be re-calculated for the remaining elements.  
 
The basic principles of estimation under PPS sampling are introduced here only briefly. Un-
der PPS-WOR, an unbiased estimator of the population total T  is given by  
 

1 1
ˆ /

n n

k k k kk k
t w y y π

= =
= =∑ ∑ , 

 
where 1/k kw π=  is the sampling weight. The estimator is called the Horvitz-Thompson (HT) 

estimator or expansion estimator. The HT estimator is design unbiased and is very popular in 
practice. An estimator of the variance of the estimated total is  
 

( ) 1 1
ˆˆ ( )

n n

k l kl k lk l
v t w w w y y

= =
= −∑ ∑ , 

 
where 1/kl klw π= . The variance estimator of the HT estimator contains the second-order in-

clusion probabilities klπ  (i.e. probabilities to include both elements k and l in the sample), 

whose computation is often impractical, especially for large samples. Therefore, approxima-
tions are often used in practice. One alternative is 
 

( ) 2 2

1
ˆˆ (1/ ) ( /( ) ) /( 1)

n

k kk
v t N n y Np y n

=
= − −∑ , 
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which corresponds to a with-replacement PPS scheme where the second-order inclusion prob-
abilities are zero, because the draws are mutually independent. 
 
There are different versions of PPS sampling schemes available for practical purposes. Exam-
ples are the cumulative total method with replacement or without replacement, systematic PPS 
sampling with unequal probabilities and Poisson sampling. For example, Poisson sampling as 
a without-replacement type design resembles Bernoulli sampling where the sample size is a 
random quantity; the difference is in the calculation of the inclusion probabilities. Despite of 
the property of a random sample size, Poisson sampling is sometimes considered attractive 
because the second-order inclusion probabilities reduce to kl k lπ π π=  which simplifies the 

calculation of the sampling variance. The book by Brewer & Hanif (1983) provides a good 
source for the various PPS methods. The most commonly used PPS techniques are imple-
mented in the SAS procedure SURVEYSELECT. 
 
3.2.4. Stratified sampling and allocation techniques 
 
In stratified sampling (STR) the target population is divided into non-overlapping subpopula-
tions called strata. These are regarded as separate populations in which sampling of elements 
can be performed independently. Within the strata, some of the basic sampling techniques, 
SRS, SYS or PPS, are used for drawing the sample of elements. Stratification involves flexi-
bility because it enables the application of different sampling techniques for each stratum.  
 
In general, there are several reasons for the popularity of stratified sampling: 
 
1. For administrative reasons, many frame populations are readily divided into natural sub-
populations that can be used in stratification. For example, strata are identified if a country is 
divided into regional administrative areas that are non-overlapping. 
 
2. Stratification allows for flexible stratum-wise use of auxiliary information for both sam-
pling and estimation. For example, PPS technique can be used in sampling within the stratum, 
and ratio or regression estimation can be used for the selected sample, depending on the avail-
ability of additional auxiliary information in the stratum. 
 
3. Stratification can involve improved efficiency if each stratum is homogeneous with respect 
to the variation of the study variables. Hence, the within-stratum variation will be small, 
which is beneficial for efficiency. 
 
4. Stratification can guarantee representation of small subpopulations or domains in the sam-
ple if desired. This means that inclusion probabilities can vary between strata. The variation is 
controlled by the so-called allocation techniques. 
 
In stratified sampling, the population is divided into H non-overlapping subpopulations of size 

1N , 2N ,…, hN ,..., HN  elements such that their sum is equal to N. For stratification, auxiliary 

information is required in the sampling frame. Regional, demographic and socioeconomic va-
riables are typical stratifying variables. A sample is selected independently from each stratum, 
where the stratum sample sizes are 1n , 2n ,…, hn ,..., Hn  elements, and their sum is equal to n, 

the overall sample size.  
 
There are alternative strategies to determine stratum sample sizes for a given survey. In some 
cases, the overall sample size n is first fixed and then allocated to the strata. This is typical in 
cases where the strata themselves are not of interest (i.e. producing statistics for the separate 
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strata is not the primary aim). If the survey involves statistics production for each stratum 
(e.g. a regional area or industrial group), then it is important to ascertain large enough stratum 
sample sizes. In this case, the stratum sample sizes hn  are first determined (see Section 3.3). 

 
The most common allocation techniques for defining the stratum sample sizes are propor-
tional allocation, equal allocation, optimal or Neyman allocation and power or Bankier allo-
cation. To give an idea of allocation, let us introduce briefly the three first mentioned methods 
(Bankier allocation requires more detailed additional information on the population distribu-
tion within strata, see for example Lehtonen & Pahkinen 2004, Section 3.1). 
 
Proportional allocation is the simplest allocation scheme and is widely used in practice. It 
presupposes knowledge of the stratum sizes, since the sampling fraction /h hn N  is constant 

for each stratum. The number of sample elements hn  in stratum h is given by h hn n W= × , 

where /h hW N N=  is the stratum weight, and n is the specified overall sample size. Propor-

tional allocation guarantees an equal share of the sample in all the strata and involves an equal 
probability sampling design where the inclusion probability /hk n Nπ π= =  of population 

element k in stratum h is constant. Thus, the sampling weight also is a constant 
/hkw w N n= = , and the design is called self-weighted. 

 
Equal allocation provides an equal sample size /hn n H=  for each stratum, where H is the 

number of strata. If the stratum sizes hN  vary, inclusion probabilities also vary and are given 

by / /( )hk h h hn N n H Nπ = = ×  for element k in stratum h. Thus, sampling weights are 

/hk hw H N n= × . If all stratum sizes hN  are equal, then /hk n Nπ π= =  and an equal-

probability design is obtained.  
 
Optimal or Neyman allocation is usable if the population standard deviations hS  for individ-

ual strata of the study variable y are known or a reliable figure is available. In practice, close 
approximations to the true standard deviations may be made from experience gained in past 
surveys. Thus, Neyman allocation is often used in continuous business surveys. The stratum 
sample sizes are first calculated. The number of sample units hn  in stratum h under optimal 

allocation is calculated as 
 

1

h h
h H

h hh

N S
n n

N S
=

=
∑

. 

 
The overall sample size n is then the sum of stratum sample sizes. In optimal allocation, a 
stratum which is large or has a large within-stratum variance has more sampling units than a 
smaller or more internally homogeneous stratum.  
 
The three allocation schemes are illustrated in an example below. Allocation under STR sam-
pling is further illustrated, with additional computational examples, in the VLISS application, 
the web extension of Lehtonen & Pahkinen (2004).  
 
In stratified sampling, an estimator t̂  of population total yT  is the sum of stratum total estima-

tors, given by 
1

ˆ ˆH

hh
t t

=
=∑ , where 

1 1
ˆ /h hn n

h hk hk hk hkk k
t y w yπ

= =
= =∑ ∑  is the Horvitz-Thompson 

estimator of the stratum total hT . Because the samples are drawn independently from each 
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stratum, the sampling variance of t̂  is the sum of within-stratum variances ̂ˆ( )hv t , that is, 

1
ˆ ˆˆ ˆ( ) ( )

H

hh
v t v t

=
=∑ . Because in STR sampling, the sampling variance only depends on the 

within-stratum variances, it is a good idea to try to construct internally homogeneous strata 
with respect to the study variable y. 
 
For example, assuming SRS-WOR in each stratum, the total estimator is given by 

1 1
ˆ / hH n

h h khh k
t N n y

= =
=∑ ∑ , where /h hN n  is the stratum-specific sampling weight. With propor-

tional allocation this simplifies as 
1 1 1 1

ˆ / /h hH n H n

h h kh khh k h k
t N n y N n y

= = = =
= =∑ ∑ ∑ ∑ , because the 

weights /h hN n  are equal to constant /N n . This reflects the self-weighting property of pro-

portional allocation. 
 
Estimation under stratified sampling is discussed in more detail in standard sampling text-
books; good sources are Kish (1965) and Lohr (1999). Stratified sampling can be carried out 
for example with the SAS procedure SURVEYSELECT, which allows for several discrete 
variables as stratification variables. 
 
Example. As a simple example, consider STR sampling with proportional, equal and Neyman 
allocation schemes. A stratified SRS-WOR sample of n = 200 elements is drawn from a popu-
lation of N = 2000 elements (Table 1).  
 
There are H = 5 strata in the population. In proportional allocation, a 10% sample is drawn 
from each stratum, involving a constant sampling weight 2000 / 200 10hkw w= = =  for every 

sample element. In equal allocation, a sample of 200 / 5 40hn = =  elements is drawn from 

each stratum, involving varying sampling weights /hk h hw N n=  for each stratum h. For Ney-

man allocation, we assume that reliable knowledge on hS , the population standard deviation 

(Std. Dev.) of y, is available, and that figure is equal to all strata except Stratum 3, whose 
standard deviation is larger indicating larger variation for the study variable. Stratum-wise 
sample sizes are calculated as / 64000h h hn N S= , h = 1,…,5. This allocation scheme provides 

larger relative sample size for Stratum 3 and correspondingly, smaller sampling weight, when 
compared to the other strata. In those strata, the weights are nearly equal resembling propor-
tional allocation. 
 
Table 1. Proportional, equal and Neyman allocation schemes for STR sampling of n = 200 
elements from an N = 2000 element population. 
 

Proportional 
allocation 

Equal  
allocation 

Neyman 
allocation 

 
 
 
 

Stratum 
h 

 
 
 

Stratum 
size 

hN  

 
 
 

/hN N  

 
Sample 

size 

hn  

 
Sampling 
weight 

hkw  

 
Sample 

size 

hn  

 
Sampling 
weight 

hkw  

 
Std. 
Dev. 

hS  

 
 
 

h hN S  

 
Sample 

size 

hn  

Sam-
pling 

weight 

hkw  

1 500 0.25 50 10 40 12.5 20 10000   31 16.1 
2 100 0.05 10 10 40   2.5 20   2000     6 16.7 
3 800 0.40 80 10 40 20.0 50 40000 125 6.4 
4 200 0.10 20 10 40   5.0 20   4000   13 15.4 
5 400 0.20 40 10 40 10.0 20   8000   25 16.0 

All 2000 1.00 200  200   64000 200  
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3.2.5. Cluster sampling 
 
To carry out cluster sampling, a sample of clusters (naturally formed groups of population 
elements such as clusters of employees in establishments, clusters of pupils in schools and 
clusters of people in households) is first drawn from the population of clusters by using one of 
the basic sampling techniques (SRS, SYS or PPS). Moreover, the population of clusters can 
be stratified before sample selection. In one-stage cluster sampling, all elements of the sam-
pled clusters are included in the element sample. In two-stage cluster sampling, an element-
level sample is drawn from the sampled clusters by using again the chosen basic sampling 
techniques.  
 
An important advantage in cluster sampling is that a sampling frame at the element level is 
not needed for the whole population. The only requirements are for cluster-level sampling 
frames and, in two-stage cluster sampling, frames for sampling of elements from the sampled 
clusters. Cluster-level frames are often accessible, for example, for establishments, schools, 
villages, farms, blocks or block-like units in a city, etc. Auxiliary information in cluster sam-
pling therefore concerns not only the grouping of the population elements into clusters but 
also the properties of the clusters needed if stratification is used. Stratification is typical in 
multi-stage sampling designs employed for example in business surveys. For example, the 
frame population of business firms can be stratified by type of industry or by size group be-
fore sampling of the individual firms. 
 
In two-stage cluster sampling designs, PPS sampling is sometimes used for the first-stage 
units, that is, the clusters (for example regional units from the population of regions, enter-
prises from a business register, etc.). An equal probability or self-weighting sampling design 
is obtained if the elements are sampled from the sampled clusters with an equal sample size. 
 
Cluster sampling is often motivated by cost efficiency, that is, the low cost of data collection 
per sample element. This is especially true for populations that have a large regional spread. 
Using cluster sampling, the traveling costs of interviewers can be substantially reduced as the 
workload for an interviewer can be regionally planned. The cost efficiency of cluster sampling 
can therefore be high. But there are also certain drawbacks of cluster sampling that concern 
statistical efficiency. If each cluster closely mirrors the population structure, we would attain 
efficient sampling such that standard errors of estimates would not exceed those of simple 
random sampling. However, in practice, clusters tend to be internally homogeneous, and this 
intra-cluster homogeneity increases standard errors and thus decreases statistical efficiency.  
 
Cluster sampling is discussed at practical and more technical level in standard sampling text-
books. A good example is Kish (1965). Textbook by Lehtonen & Pahkinen (2004, Chapters 5, 
7−9) gives several real-world examples on this phenomenon, and further illustrations can be 
found in the web extension VLISS-virtual laboratory in survey sampling. 
 
Example. PISA 2000 Survey. The efficiency in cluster sampling is measured with design ef-
fect estimates. The design effect statistic was introduced in Section 3.2. For a sample mean y , 

deff is given by ˆ ˆdeff ( ) ( ) / ( )SRSy v y v y= , where ̂ ( )v y  is the variance estimate calculated under 

the actual cluster sampling design and ˆ ( )SRSv y  is the counterpart from simple random sam-

pling. For cluster samples, design effect estimates tend to be larger than one, indicating poorer 
efficiency relative to simple random sampling. Correspondingly, the effective sample size de-
creases: eff = / deffn n  becomes smaller than the original sample size n, if deff is larger than 

one. Effective sample size gives the SRS sample size that produces equal precision than the 
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actual cluster sample of size n elements. We illustrate these properties by an example taken 
from Lehtonen & Pahkinen (2004, Section 9.4). 
 
The data are from the OECD’s Programme for International Student Assessment (PISA).The 
first PISA Survey was conducted in 2000 in 28 OECD member countries and 4 non-OECD 
countries. We discuss here the area of reading literacy. We selected from the PISA database 
the following countries: Brazil, Finland, Germany, Hungary, Republic of Korea, United 
Kingdom and United States. The survey data set from these 7 countries comprised a total of 
1388 schools and 32,101 pupils. 
 
Stratified two-stage cluster sampling was used in most PISA countries. The first stage con-
sisted of sampling of individual schools with systematic PPS sampling. The number of stu-
dents in a school was used as the measure of size in PPS sampling. In most cases, the popula-
tion of schools was stratified before sampling operations. In the second stage, samples of stu-
dents were selected within the sampled schools with equal probability. 
 
The study variable y is the student’s combined reading literacy score, scaled so that the mean 
over the participating countries is 500 and the standard deviation is 100. In Table 2, selected 
descriptive statistics are given The design effect accounts for weighting, stratification and 
clustering. The deff figures indicate a strong clustering effect for most countries.  
 
The effective sample sizes of students are calculated by dividing the number of sample stu-
dents by the design effect estimate. The effective sample size is the equivalent sample size 
needed to achieve the same precision in estimation if simple random sampling from a student 
population without any clustering were used. If the observations are not independent from 
each other, as is the case here, the effective sample size decreases: the higher the design ef-
fect, the smaller the effective sample size. Though the nominal sample sizes of students are 
large (several thousands) in all countries, some of the effective sample sizes are quite small 
(only a few hundred). Design-effect estimates also indicate that standard errors calculated un-
der an (erroneous) assumption of simple random sampling would be much smaller than the 
(correct) design-based standard error estimates for most countries, tending to lead to unreli-
able statistical conclusions. 
 
Table 2. Descriptive statistics for combined reading literacy score in the PISA 2000 Survey 
by country (in alphabetical order). 
 

 Number of 
observations in data set 

 
Country  

 
Mean  

Standard 
error  

Design 
effect  

 
Effective sample 

size of 
students  

 
Students  

 
Schools  

Brazil  402.9  3.82    8.33    476    3961   290 

Finland  550.7  2.15    2.79  1600    4465   147 
Germany  497.4  5.68  13.47    305    4108   183 

Hungary  485.7  6.02  20.00    231    4613   184 
Republic of Korea  526.6  3.66  12.99    351    4564   144 
United Kingdom  531.4  4.08  14.08    564    7935   328 
United States  517.0  5.16    6.93    354    2455   112 

All 500.0   3881 32101 1388 

Data source: OECD PISA database, 2001.  
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3.3. Sample size determination 
 
Survey statisticians face very often questions on how to determine the appropriate sample size 
for a sample survey. There is no simple answer and, thus, the statistician must ask about the 
needs, like: 
 
I. Which are the most important study variables, and the parameters to be estimated? 
II.  Is there any guess about the (statistical) distribution of the study variables? 
III.  What is the level of precision one would like to have for the parameter estimates? 
IV.  What are the most important domains where the estimates must be provided and how 

precisely? 
V. Are there any specific questions which must be taken in to account, e.g. special 

populations to be covered, certain analysis to be carried out, methodology used etc.? 
VI.  What will be the anticipated nonresponse rate? 
VII.    What are the financial and time constraints? 
 
All these questions (and actually many others) should be considered before a proper sampling 
design including the sample size can be made. The first misunderstanding among non-survey 
practitioners is that the population size matters. By and large the population size does 
influence the sample size  –  except that the sample size cannot exceed the population size. 1 
 
Example. Community Labour Force Survey. The Council Regulation No 577/98 lays down 
the basic principles to be obeyed in calculation of the sample size. For simplicity we take only 
the first paragraph of Article 3: 
 
Article 3 
Representativeness of the sample 
 
1. For a group of unemployed people representing 5% of the working age population the rela-
tive standard error for the estimation of annual averages (or for the spring estimates in the 
case of an annual survey in the spring) at NUTS II level shall not exceed 8% of the sub-
population in question. 
 
Regions with less than 300 000 inhabitants shall be exempt from this requirement. 
 
Thus one must consider various aspects before the actual calculation: 
 
1. Working age population?  -  Often considered as aged 15 or more. Sometimes 15-74. 
2. Proportion of unemployed of that population (even though young people, say less than 20 
or retired most often do not belong to labour force). 
3. Sampling variance to be estimated according to the applied sampling design. 
4. NUTS II domains. 
 
Sample allocation 
 
The Regulation requires that the sample size calculation must begin at NUTS II regions, i.e. at 
geographical domains. Generally, NUTS II regions are very different in size between 
countries and even within countries. Thus it is not a bad idea to apply stratified sampling 
where the strata consist of NUTS II regions.  

                                                 
1 However, in some multinational surveys the national sample sizes can be adjusted to reflect differences of the 
population size. That is the case in EU-SILC, for example. 
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For example, in Finland there are five NUTS II regions. The population size for 15-74 year 
old people was in 2006:  
 

Region number Major Region Population (15-74) 
1 Southern Finland 1,987,000 
2 Western Finland 999,000 
3 Eastern Finland 496,000 
4 Northern Finland 470,000 
5 Autonomous Territory of Åland 

Islands 
20,000 

 
Since the smallest NUTS II region (no. 5) has population which is smaller than 300,000 it is 
not necessary to begin calculation from there but from the second smallest region (no. 4). 
 
The yearly average of the number of unemployed was 204,000. Since the total population is 
about 4 million, the proportion is about 5 per cent of population - by chance it is exactly the 
proportion mentioned in the regulation. Furthermore assume that proportion of unemployed is 
roughly equal in all regions.  
 
Stratified simple random sampling 
 
We start the calculation of sample size from the simple random sampling of elements, i.e. 
individual persons. The regulation states that the coefficient of variation may not exceed 8 per 
cent. Thus for each NUTS II region (except the last one) one has to obey the condition: 
 

   
ˆ ˆ( )

ˆc.v( ) 0.08
ˆ

v p
p

p
= =  

 
Our parameter estimate, proportion of unemployed from the working age population is p̂  = 
0.05 and we assume it is roughly equal in all NUTS II regions. Since unemployment indicator 
is a dichotomous variable with values [0,1] we can apply binomial distribution to approximate 
the sampling variance: 
 
   ˆ ˆ ˆ ˆ( ) (1 ) /v p p p n= −  
 
It must be plugged into the formula above: 
 

   
ˆ ˆ ˆ ˆ( ) (1 ) /

ˆc.v( ) 0.08
ˆ ˆ

v p p p n
p

p p

−
= = =  

 
Next we must raise the two components to the second power and rearrange: 
 
   2 2ˆ ˆ ˆ(1 ) / 0.08p p n p− =  
 
Thus  
 

   
2 2 2 2 2
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2,969

ˆ0.08 0.08 0.05 0.08 0.05

p p
n

p

− ×= = = ≈
× ×

 

 



 
 

 27 

Thus the sample size would be roughly 3,000. In addition, one must consider other issues.  
Namely,  
 
1. What is the anticipated nonresponse rate? 
2. Can we apply the sampling design in this case, or should we consider some other design? 
 
The above sample size was calculated with an assumption of 100% response. In real life it 
should be inflated by the anticipated nonresponse rate and possible undercoverage problems 
in the sampling frame. Consider, for example, that it is about 15% in comparable social 
surveys. The inflated sample size would be about 3,500.  
 
Next question is whether to use equal or proportional allocation (see section 3.2.4). Equal 
allocation will yield approximately the same precision to all strata. Hence the sample size for 
the whole country would be more than 14,000 individuals (4 × 3,500 = 14,000 + specifically 
chosen sample size for the 5th NUTS II region).  
 
For proportional allocation the sample size must be fixed to the NUTS II region no 4 
according to calculation above. The sampling rate of that region is 3,500/470,000 i.e. about 
0.75 per cent of the population. Using the same sampling rate the sample sizes for other 
NUTS II regions would become 14,800; 7,450; 3,700 and 150. Thus the total sample size will 
increase to more than double: 29,600 – depending on the last region sample size. 
 
Other main types of allocation (e.g. Neyman or power allocation, see 3.2.4) are not easily 
applied in this example since their aim is to allocate the sample optimally over the whole 
population which might not fulfil the regulation requirements on the precision over NUTS II 
domains. 
 
One-stage cluster design 
 
In many countries the sampling frames are old or somehow not amenable for selecting 
individual persons or households directly for social surveys, there for the LFS. In those cases 
some cluster sampling design is applied.  One-stage cluster sampling design requires that the 
units to be selected contain the ultimate sampling units, individual persons. The primary 
sampling units (PSU) can be addresses, houses or dwelling units, for example. When a two-
stage cluster design is applied, the first-stage sampling units are often some administrative 
entities: municipalities, villages or census enumeration areas. The second-stage sampling 
units are again addresses, houses or dwelling units, and the ultimate sampling units consists of 
individual persons (see section 3.2.5). 
In any case, the number of primary and secondary sampling units must be calculated 
differently. However, the basic calculation for the element sampling design above can serve 
as an input to that purpose, too.   
 
For simplicity we deal here with a stratified one-stage cluster design, i.e. instead of 
individuals we collect information from all members of households, selection either from 
address frame or dwelling unit frame. Furthermore we assume that we apply equal allocation 
scheme in NUTS II strata. What we need for a cluster design is the average size of clusters 
and some knowledge on design effect estimate. From another survey we can anticipate that 
the design effect (see p. 12) of the number of unemployed from a one-stage cluster designs is 
about 1.5. If we assume that the average cluster size (i.e. average number of eligible members 
which fulfil the required conditions) is 3 and that the nonresponse rate calculated from the 
individuals remains at 15% (i.e. response rate τ = 0.85) we can obtain the sample size by  
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Using the equal allocation scheme the overall sample size would be over 7,000 households  
(4 × 1,750 + specifically chosen sample size for the last NUTS II region). So the requirement 
could be fulfilled with a relatively large sample size: 7,000 households contain 21,000 
individuals. The fieldwork cost can, of course, become smaller than that of the stratified SRS 
sampling design. 
 
Business surveys 
 
Sample size determination for business surveys can appear much more difficult than the 
example above.  The distributions of main study variables are often very skewed which can 
lead to a need of balancing various requirements. The basic calculation follows, of course, the 
same path described above but the sampling designs are typically heavily stratified element 
sample designs. Stratification is often carried out by the industry (NACE classification) and 
size class. 
 
The most influential units are often considered as certainty units, and each of them form 
technically a stratum of its own. Thus there is no sampling variance involved (unless some 
units fail to respond). For smaller units the sampling is carried out by stratified systematic 
random sampling, simple random sampling or PPS sampling. The sample size calculation 
must take all the necessary information into account, and in the case of detailed stratification, 
calculation must be carried out separately for each stratum. 
 
3.4. Use of auxiliary information in the estimation phase 
 
In modern survey sampling practice, auxiliary information is often used to improve the effi-
ciency of estimation for a given sample, by using model-assisted estimation techniques. Thus, 
in addition to the sampling design, an estimation design enters on the scene. The concept of 
estimation strategy is sometimes used referring to a combination of a sampling design and an 
estimation design. Table 3 shows examples of strategies, including design-based strategies 
where auxiliary information is used in some strategies, and model-assisted strategies where 
auxiliary data are incorporated in the estimation phase, and for some strategies, also in the 
sampling design. 
 
Table 3. Examples of estimation strategies. 
 
 Auxiliary 

information 
Assisting 

model 
Example strategies  

(sampling design * estima-
tion design) 

Design-based strategies  

SRS-WOR  Not used  No explicit model SRS-WOR strategy 
SYS Not used No explicit model SYS strategy 
PPS  Size variable  No explicit model PPS strategy 

STR Stratification 
variables 

No explicit model STR * SRS-WOR 

Model-assisted strategies  

Ratio estimation  Continuous  Regression (no intercept) SRS-WOR* Ratio estimation  
Regression estimation  Continuous  Regression (with intercept) STR * Regression estimation 
Post-stratification  Discrete  linear ANOVA SYS * Post-stratification 
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In model assisted estimation, the auxiliary data are incorporated in the estimation procedure 
of the population total by using statistical models. Linear models are most often used for this 
purpose, especially when the response variable is of continuous type. Ratio estimation and 
regression estimation use a linear regression model, where the explanatory variables are as-
sumed continuous. In ratio estimation, the intercept term is excluded from the regression 
model, whereas the intercept is included in the regression model underlying regression esti-
mation. In practice, several continuous auxiliary variables can be incorporated in a regression 
estimation procedure. For both methods, the auxiliary data consists of population totals of one 
or several continuous variables, which can come from a source such as official statistics. 
 
In post-stratification, a linear analysis of variance or ANOVA model is used as the assisting 
model, and the explanatory variables are of discrete type. The auxiliary data consists of popu-
lation cell and marginal frequencies of one or several categorical variables. A benefit in all 
these methods is that an access to unit-level auxiliary data on the population is not assumed.  
Model parameters are estimated from the observed sample by using the weighted least squares 
(WLS) technique. Nonlinear models also can be used as an assisting model. This is the case 
especially if the study variable is binary or polytomous (see e.g. Lehtonen, Särndal &Veijanen 
2005). 
 
Ratio and regression estimation and post-stratification are special cases of generalized regres-
sion (GREG) estimators. The book by Särndal, Swensson & Wretman (1992) provides the 
main reference text for model-assisted survey sampling. Model-assisted methods are dis-
cussed, at a more practical level, in Lehtonen & Pahkinen (2004). The methods are illustrated 
(with computational examples) in the VLISS application, the web extension of the book. 
 
 

4. Treatment of nonresponse  
 
During data collection we will lose information, the main reason being unit nonresponse. 
Thus the number of responses is smaller than the originally selected sample. If the sample size 
was not inflated by the anticipated nonresponse the analyses and findings will contain greater 
risk to incorrect conclusions than originally thought.  
 
Unit nonresponse is the most common reason for missing data. The classification below 
shows how they affect the data to be analyzed. The textbook by Groves et al. (2002) gives a 
through presentation of those effects and the ways to take them into account in analysis. 
 
Type of missingness: Effect on data set: 

- unit nonresponse The whole data vector remains empty  
(or all items were rejected) 

- item nonresponse One of more items empty/are rejected 
- sub-unit/partial nonresponse All data from one or more ultimate cluster ele-

ments missing, e.g. one or two family members 
refuse, data accepted from others 

 
 
Unit nonresponse 
 
All survey organisations keep track on the magnitude and distribution of response and nonre-
sponse. However, despite efforts there is no standardised way of calculating those entities (see 
e.g. Lynn et al. 2003).  Typically, nonresponse is classified into following categories in 
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household surveys: Non-contacts, Refusals and Other reasons. In addition, the coverage errors 
should be distinguished whenever possible. 
 
In business surveys – which are often compulsory – the coverage issues tend to be more 
dominant than in household surveys. In some cases enterprises refuse to respond because they 
may feel their competitors can somehow dig out strategic market information. Statistical 
agencies strive to ensure that the most dominant enterprises will respond in any case to pre-
serve the credibility of the results.  
 
 
4.1. Reweighting to adjust for unit nonresponse 
 
If respondents and nonrespondents were distributed quite randomly over the whole sample, 
the nonresponse could be detected as ignorable, and one could apply a naive model τ = m /n 
which means just replacing the sample size by the number of respondents in weighting. Thus 
the only punishment would be increased sampling variance. Unfortunately such a naive model 
is normally not valid and data may be distorted by the nonresponse effects, i.e. non-ignorable 
nonresponse. The most often applied reweighting methods are post-stratification and ratio 
estimator. Below we present also some other methods. 
 
Post-stratification 
 
We can easily post-stratify our data set (see Section 3.4). For nonresponse adjustment the best 
way is to find subgroups where the response/nonresponse rates are as different as possible.  
The idea is to find homogenous sub-groups with the responding behaviour. The task requires 
substantial amount of tabulation but once done the weighting is relatively straightforward.  
 
Ratio estimator 
 
The ratio estimator (see 3.4) may as well be used after data collection either directly for 
estimating the study variable y, or by weighting. We need the totals of continuous variable(s) 
either at population or domain level, and the corresponding observation xk for each 
respondent. 
 
Ratio estimator yields good results for a study variable y only if there is a strong positive 
correlation between x and y. Note that ratio estimator is biased by definition if the true 
regression line does not go through origin. 
 
Empirical response homogeneity groups (RHG) 
 
Empirical response homogeneity groups (RHG), often called as weighting classes mean that 
the sample elements are divided into mutually disjoint sub-groups according to the response 
probabilities. It is technically similar to post-stratification but operates only with sample-level 
information – not population information. 
 
Assume SRS-WOR design and that the responding part of the sample can be divided accord-
ing RHG’s into L categories:  
 

( ]0,1 ,  1,...,l
l

l

m
l L

n
τ = ∈ = . 
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Thus the final modified weight is / ,  k k l lw a k Gτ= ∈ , where ak is the design weight and lG  

refers to response homogeneity group l. 
 
Derivation of good unbiased variance estimator for the weighting class estimator is very tedi-
ous and thus will be omitted here.  
 
Explicit response probability modelling 
 
Modelling is a continuation of the tabulation information. Thus models can either be fit at the 
individual level or at the frequency level. The idea is again to divide the sample into separate 
groups according to response probabilities. However, a model is used to help the task and fur-
thermore to predict the model-based response probabilities. Logistic regression models  (see 
3..4) are most popular in this case due to the character of phenomenon. 
 
A good model takes the main effects of many variables into account and, if necessary, also the 
interactions. As a result the predicted values are smoother than the original empirical response 
probabilities. 
 
Calibration of weights 
 
The calibration estimator is probably the mostly used reweighting method at present. It is 
versatile and combines the good properties of modelling the nonresponse with the need to 
have consistency of auxiliary information, i.e. the sample estimates of chosen auxiliary infor-
mation distributions match with the population distributions. Also the sampling variance ap-
proximations are available (see e.g. Deville & Särndal 1992; Särndal & Lundström 2005). 
 
 
4.2. Imputation to adjust for item nonresponse 
 
Imputation is the main method for compensating the item non-response. It is also applied to 
correct for erroneous values found in data checking. Therefore the phase of work is often 
called “editing and imputation”. The main methods are logical imputation, real-donor imputa-
tion and model imputation. The European Research Framework Programmes 4 and 5 con-
tained projects, called AUTIMP and EUREDIT which provided a lot of tools for statistical 
offices on editing and imputation. 
 
Logical imputation  is connected with editing of data. Currently it takes place as a part of data 
entry program: computer assisted interview programs, data extract programs from administra-
tive sources and various business survey data entry programs are equipped with a set of logi-
cal checking routines which can detect errors and also give either right or “best guess” im-
puted values for the missing or incorrect ones. 
  
Real-donor imputation relies on the responses from the same unit or similar unit. In business 
surveys it has been a tradition to impute missing values with the values from the previous 
measurement of the same unit. That method is called cold-deck imputation. Sometimes the 
previous values are multiplied by the average change of the variable estimated from the same 
industry. 
 
If the value is borrowed from a neighbour unit – physically the next or previous observation – 
the method is hot-deck imputation. Traditional hot-decking leads often to implausible situa-
tions and therefore it is improved with some nearest neighbour imputation method where sim-
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ilar units are sought with some metrics or by choosing sub-populations.  The value may be 
taken directly from the closest unit or taken as lottery from a pool of similar units. 
 
Model-donor imputation refers to the situation where some statistical model is used to pre-
dict the missing (or incorrect) value. Typically that occurs again in business surveys where the 
acceptable responses can be used to fit the model and then just applied to the units where 
there are missing values. The simplest method is to take an overall or suitable domain mean. 
Mean imputation cannot be regarded as good because of its tendency of reducing the variation 
very much in the case there are a lot of missing values. Imputation based on a regression or 
some other statistical model yields much better results in that respect. One can also lessen the 
tendency of variance reduction by adding some extra random variation from appropriate dis-
tribution which will lead to stochastic imputation instead of deterministic imputation. 
 
In principle all the methods above deal with a single imputation case, i.e. one missing value is 
imputed with one value. Multiple imputation is another approach which solves many prob-
lems by imputing one missing value with a number of new values (see Rubin 1987, or Schafer 
1997). It is statistically a sound method but the statistical offices (and often their clients) have 
not yet taken the methods in their work programmes. 
 
 

5. Software  
 
Two large scale statistical programs, SAS and SPSS contain specific modules for sample se-
lection and survey data analysis. In SAS the procedures are included in STAT module from 
version 8 on. In SPSS there is an add-on module Complex Samples which must be purchased 
separately, available from version 11 and above. 
 
The programming language R is widely used in academic studies and some authors have pro-
vided codes for survey sampling and analysis. Those are found on different web-pages con-
taining R program codes, e.g. www.r-project.org/. 
 
Software for sample selection 
 
 SAS/Stat v. 8 and above   Proc SurveySelect (www.sas.com) 
 SPSS/Complex Samples v. 11 and above CSPLAN together with CSSELECT 
       (www.spss.com) 
Software for weight derivation 
 
 SAS add-on programmes:   CALMAR2  (INSEE/France) 
       CLAN97 (Statistics Sweden) 
 SPSS add-on programmes:   g-CALIB (Statistics Belgium) 
 BLAISE component    BASCULA (Statistics Netherlands) 
 
Software for editing and imputation 
 
 SAS/Stat v. 8 and above   Proc MI and MIANALYZE 
       (multi-imputation) 
 SAS add-on programmes:   BANFF/GEIS (Statistics Canada) 
       CONCORD, DIESIS, 
       QUIS   (ISTAT/Italy) 
       IVEWARE    
        (www.isr.umich.edu/src/smp/ive/) 
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Software for “standard” estimation 
 
 SAS/Stat v. 9 and above   Proc Surveymeans  
       Proc Surveyfreq 
 
 SAS add-on programmes:   CLAN97 (Statistics Sweden) 
       POULPE (INSEE/France) 
       GES  (Statistics Canada) 
 SPSS v. 11 and above    CSDESCRIPTIVES 
 Complex Samples    CSTABULATE 
 
 SPSS add-on programmes:   g-CALIB (Statistics Belgium) 
  

BLAISE component    BASCULA (Statistics Netherlands) 
  
 SUDAAN     (www.rti.org) 
 
 
Software for analytical purposes 
 
 SAS/Stat v. 9 and above   Proc Surveyreg 
       Proc Surveylogistic 
       (GLM, MIXED, NLMIXED,…) 
 
 SPSS v. 11 and above    CSGLM, CSORDINAL, 
 Complex Samples    CSLOGISTIC 
 
 SUDAAN 
 
 WesVAR     (www.westat.com) 
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7. Web links 
 
AUTIMP (AUTomatic IMPutation software for business surveys and population censuses) 
   see EUREDIT 
 
EUREDIT (The Development and Evaluation of New Methods for Editing and Imputation):  
http://www.cs.york.ac.uk/euredit/ 
 
Eurostat Quality site:  
http://ec.europa.eu/eurostat/quality 
 

The European Statistics Code of Practice 
ESS Quality standards:  

Standard Quality Report 
Standard Quality Indicators 
How to Make a Quality Report 

Handbook on improving quality by analysis of process variables 
DESAP – self-assessment for survey managers 
 

International Monetary Fund.  Data quality assessment framework. 2003, 
http://dsbb.imf.org/vgn/images/pdfs/dqrs_Genframework.pdf 
 
Organisation for Economic Cooperation and Development. OECD PISA database, 2001: 
http://pisaweb.acer.edu.au/oecd/ 
 
Organisation for Economic Cooperation and Development. Quality framework and guidelines 
for OECD statistics. 2003.  http://www.oecd.org/dataoecd/26/42/21688835.pdf 
 
Statistics Finland: Quality Guidelines for Official Statistics: 
http://stat.fi/tk/tt/laatuatilastoissa/alku_en.html 
 
VLISS-virtual laboratory in survey sampling: 

http://www.math.helsinki.fi/VLISS/. 
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Appendix 1. Example of sample selection using Bernoulli sampling 
 
We create a sampling frame consisting 2000 elements and want to select about 200 units to 
the sample. The symbols are the same as used on p. 15.  
 
Sampling fraction UNI = 200/2000 = 0.1. All elements in the frame are assigned a pseudo 
random number from Uniform distribution, PI. Those elements with PI ≤ 0.1 are selected and 
selection indicator IND is given value 1. If the unit was not selected, IND is set 0.   
 
The program code for  SAS is very simple: 

Data Bernoulli;  
UNI=200/2000;   /* Set the limit for selection  */ 

Do I=1 to 2000;   /* Create a frame of 2000 elements */ 
  PI=Ranuni(0);   /* Attach every element with a random number*/
  If PI<=UNI then IND=1; /* Check whether the unit is selected */ 
  Else IND=0;   /* or not */ 
  Output; 

End; 
 

Proc Print; 
Sum IND; 
Run; 

 

 

                                                                

I UNI PI IND 

1 0.1     0.83976     0 

2 0.1     0.50375     0 

3 0.1     0.08013     1 

4 0.1     0.87756     0 

5 0.1     0.13501     0 

6 0.1     0.41416     0 

7 0.1     0.10639     0 

8 0.1     0.28283     0 

9 0.1     0.16496     0 

10 0.1     0.88332     0 

...    

1991 0.1     0.67351      0 

1992 0.1     0.11558      0 

1993 0.1     0.78235      0 

1994 0.1     0.66004      0 

1995 0.1     0.08314      1 

1996 0.1     0.19041      0 

1997 0.1     0.77828      0 

1998 0.1     0.07666      1 

1999 0.1     0.53644      0 

2000 0.1     0.35678      0 

Sum   201 

                                                               
 
In Bernoulli sampling the sample size is a random quantity and this example shows that we 
received one unit too much. The simplest way to obtain a fixed sample size would be to sort 
the frame by the random number and select exactly 200 cases (from the beginning, end or just 
at any point as long as the random numbers are used for selection). 
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