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Rough surfaces
• The topographic expression of a surface
• Scales can be anything, but similar to all 

scattering scenarios, what matters the most 
is the scale relative to the wavelength
• Natural surfaces have typically roughness in 

many scales; for example, an ideally fractal 
surface has the same level of roughness in 
all scales
• Quasi-deterministic shape + pseudo-

random variation
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Fresnel reflection and refraction

• Let us start from the simplest case of
no roughness
• Fresnel reflection and refraction 

coefficients define how much light 
we observe from the reflection
• The coefficients in each polarization

are a relatively simple function of the 
refractive index and the reflection 
and refraction angles
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Random surface

Vegetation canopy
Multiple layers of different materials, complex interfaces 

and diffuse scatterers

😱
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Random surfaces
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Here we focus on quasi-deterministically planar surfaces with pseudo-random 
roughness

For most natural terrains, the height variations and their correlation function 
follow Gaussian distribution or an exponential distribution

We discuss how the height variation distributions and the autocorrelation 
function (to be explained in detail) affect the observed scattering

Vegetation canopies and diffuse scatterers inside the layers are considered as 
volume scattering which is a different can of worms 
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Developing surface-scattering models

• Modeling single-particle scattering with methods such as the discrete-dipole 
approximation are for individual, customized shapes
• For rough surfaces, the approach is more statistical: We perform a mathematical 

averaging process equivalent to 
1. generating a large number of synthetic surfaces and volumes based on the 

assumed statistics, 
2. computing for each synthetic surface the scattering cross section in the 

orientation of interest, and then 
3. performing an ensemble average. 

• Step 2 is equivalent to implementing a Monte-Carlo simulation, but it is carried 
out mathematically by injecting the assumed statistical distributions into the 
scattering formulation and then calculating the mean radar cross section.
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Developing surface-
scattering models

All scattering models of terrain are, at best, 
good approximations of the true scattering 
process observable by an instrument
observing a real-life target. They serve as 
guides to explain experimental observations. 
Surface scattering models presented here are 
limited to simulating the contribution of the 
surface in specific scenarios.
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No model involving random elements is perfect –
but some models can be made better than others.



Surface-roughness parameters

• Degree of roughness (or simply roughness): a set of statistical 
parameters for characterising the surface undulations
• Standard deviation or root-mean-square of the height 

variations (“Rms height”): The vertical scale of the variations
• Correlation length: The horizontal scale of the variations
• Rms slope: The rms inclination of the surface elements
• Reference surface: The mean or unperturbed surface
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Rms height – continuous surface

A random surface whose mean is coincident with the x,y plane 
has a height distribution z(x,y) that can be characterized by a 
Gaussian probability density function given as: 

where the rms height is
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Rms height – discretized surface

If the height distribution z(x,y) is discretized to N elements, the 
rms height is

where
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Surface correlation length

• The autocorrelation function describes the correlation, or in practice, 
the lateral separation between two locations (𝑥), 𝑦)) and (𝑥!, 𝑦!):

𝜌 𝜉 = #(-",/")#(-!,/!)
&!

,

where 𝜉 = 𝑥) − 𝑥! ! + 𝑦) − 𝑦! !

• The surface correlation length is the mean lateral separation 
between two locations where the height has decreased to 1/e, i.e.,
𝜌 𝜉 = 𝑒"), so let’s define that at this point 𝜉 = 𝑙
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Surface correlation length – discretised surface

• For a discretised surface, the autocorrelation function can be written 
as

𝜌 𝜉 =
∑!"#
$%#&' "!"'%!&#

∑!"#
$ "!

( ,

where 𝜉 = 𝑗 − 1 and i and j	are integer indices of each element 
(i,j >	0)
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Surface correlation length

• The two most commonly used 
autocorrelation functions take Gaussian 
and exponential forms
• Gaussian autocorrelation function:

𝜌 𝜉 = 𝑒!"!/$!

• Exponential autocorrelation function:
𝜌 𝜉 = 𝑒!|"|/$

where l is the correlation length.
• These can be generalized to x-exponential:

𝜌 𝜉 = 𝑒!(|"|/$)"
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𝜌 𝑙 = 𝑒+, ≈ 0.37
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U
laby et al. (2014)



Rms slope

• The ensemble-averaged slope of a two-dimensional height distribution 
z(x) at location x is given by

𝑍() = lim
*(→,

[𝑧 𝑥 + Δ𝑥 − 𝑧 𝑥 ])

Δ𝑥)

= 2ℎ) lim
*(→,

1 − 𝜌 Δ𝑥
Δ𝑥)

where s is the rms height and 𝜌 Δ𝑥 is the correlation function. 
Expanding about Δ𝑥=0 in Taylor series, we can approximate

≈ −ℎ)𝜌-- 0 ,
The rms slope is then 𝑠./0 = 𝑍() 1/) = −ℎ)𝜌-- 0 1/) = tan 𝜃./0. 
Note: 𝜌-- 0 < 0
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Rms slope – discretised surface

• For a discretized surface, we can also calculate the rms variance using a 
sum over the N discretised elements:

𝑍() =
1
𝑁
?
231

4

[𝑧 𝑥2 + Δ𝑥 − 𝑧 𝑥2 ])

This is the square of the Rms or Allan deviation.
Then the rms slope is, which depends here on the chosen step size Δ𝑥:

𝑠./0 Δ𝑥 = 5"!
#
!

*(
= tan 𝜃./0

An effective slope is sometimes defined more simply as ℎ/𝑙 (e.g., Campbell 
and Garvin, 1993).
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Rayleigh roughness 
criterion
• How to define the limit for a 

smooth surface?
• Similar to single particles, we can 

define a Rayleigh scattering limit, 
here based on the phase difference 
between the rays reflected from 
the opposite extremes being small 
enough (< 𝜋/2):

ℎ <
𝜆

8 cos 𝜃
where h is the maximum height 
difference. The Rms height can be 
used as well for a random surface.
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Δ𝜑 = 2𝑘ℎ cos 𝜃

The phase difference between 
the rays from A vs. B is:



Roughness at different profile lengths

• In natural surfaces, the Rms height can be measured using different profile 
lengths (L), and the results would depend on the selected length so that

ℎ 𝐿 = ℎ,𝐿6

where ℎ, is the Rms height at a selected scale (e.g., N wavelengths). H is the 
Hurst exponent (a.k.a. Hausdorff dimension), a value in the range [0,1].
• If the Rms height is scalable according to this equation, the surface is called 

fractal or self-affine.
• 𝐻 = 0: ℎ 𝐿 is constant; a uniform distribution
• 𝐻 = 0.5: Brownian surface (the most common one in the nature)
• 𝐻 = 1: a “self-similar” surface, in which case the horizontal and vertical 

dimensions scale at the same rate.
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Roughness at different profile lengths

• The Rms slope is correspondingly scalable 
by s Δ𝑥 = 𝑠5Δ𝑥,+6
• The correlation length depends on the 

profile length, so it is not scalable nor 
unique for self-affine surfaces!
• Effective aperture (the annotated values 

in the image) describes the size of the 
region contributing to the coherent near-
nadir echo*:

𝑟788 =
9

:;!<"
!=>?!@

,/(C6)
(In [λ])

[Shepard et al. 1999, Icarus]
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*where the annular constructive interference becomes less than 𝑒#$ (𝑛 = 1: 0.37, 𝑛 = 5: 0.01)
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𝐻 = 0.5, ℎ = 0.04

It’s periodic!



Backscattering by smooth surfaces

• The amplitude of an EM wave’s near-nadir 
backscattering from a circular, smooth, dielectric 
surface area can be written as

𝐸 =
𝑖𝐸,𝑅𝐴
𝜆𝑧 𝑒!278

2𝐽1(𝑘𝑟, sin 𝜃)
𝑘𝑟, sin 𝜃

• 𝐸, is the incident electric field amplitude
• 𝑅 ≈ 𝑅9 is the Fresnel reflection coefficient
• 𝑟, is the radius of the circular area
• 𝜃 is the incident angle
• z is the distance of the plane from the observer
• 𝐽1(𝑘, 𝑟, 𝜃) is the first-order Bessel function
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Backscattering by rough surfaces

• Roughness randomises the phases of the received set 
of EM waves
• The scattered electric field is modified by a phase 

density function Φ, so that
A𝐸12345 = A𝐸672285 Φ(𝑘, ℎ, 𝜃)

• The phase density function is defined by the slope 
probability density function of the surface; the latter 
characterises the probability that an element is 
pointing to a direction that enables a Fresnel reflection 
from the illumination source to the observer. 
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Backscattering by rough surfaces

• The power received by the detector is 
P = )

!9
A𝐸 A𝐸∗ ! [W/m2] 

(where 𝜂 is impedance of free space.
• Backscatter coefficient (𝜎;) is defined as the ratio of 

power density scattered from that surface to the power
density scattered from a perfect isotropic conducting 
scatterer of the same area, at the same distance, and 
under the same illumination and viewing conditions:

𝜎; = 𝑃/𝑃1<=, where 𝑃1<= =
>!?#!

@9A#!
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𝜃
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[Elachi 1987, Ulaby et al. 1981]



Surface scattering models 
Small perturbation model, Kirchhoff model
• Serious efforts to develop mathematical models for randomly rough 

surfaces began in the 1950s
• The first one, developed by Rice (1951) for slightly rough surfaces 

whose rms heights and correlation lengths are both smaller than the 
incident wavelength, became known as the small perturbation 
model. It assumes that kh <	0.3, kl <	3, and h/l	<	0.3
• Beckman and Spizzichino (1963) developed the Kirchhoff model to 

describe EM scattering by surfaces with gentle undulations whose 
average horizontal dimensions are large compared to the wavelength 
(kl ≥	3). 
• kh ≥	3 would be a geometric optics model
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Surface scattering models 
Hagfors and Gaussian models
• In 1960s-1980s, several models were published, inspired by the newly 

emerging radar observations to model the backscattering efficiency of 
the Moon and other planetary bodies
• Hagfors’ model (Hagfors, 1964) used Gaussian height distribution and 

exponential autocorrelation function to model empirically the radar 
scattering of the Moon
• Gaussian model was published by Simpson and Tyler (1982) utilizing 

Gaussian autocorrelation function in addition to the Gaussian height 
distribution
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Surface scattering models 
Hagfors, Gaussian, and cosine models
• Hagfors model:

𝜎$ 𝜃 =
𝑅𝐶
2 (cos%𝜃 + 𝐶sin&𝜃)'(/&

• Gaussian model:
𝜎$ 𝜃 = 𝑅𝐶 sec%𝜃 𝑒'*+,-'.

• Cosine model:
𝜎$ 𝜃 = 𝑅(𝐶 + 1)cos&*𝜃

Hagfors defined R as the Fresnel reflection coefficient at normal incidence for an ideally
smooth interface. C is the roughness factor related to the slope, the rms height, and the 
correlation function as 

𝑠/01 =
4𝜋ℎ&

𝑙𝜆 = 1/ 𝐶

The same interpretation cannot be valid for all the scattering models!
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Surface scattering models 
Shepard’s Hurst-exponent model

𝜎; 𝐻 = 16𝜋B 𝑅C !× )
Ê+;

(

exp −4𝜋!𝑠>
!𝑟̂!Fcos!𝜃 𝑟̂𝐽; 4𝜋𝑟̂ sin 𝜃 𝑑𝑟̂

!

• 𝑅C is the Fresnel reflection coefficient
• 𝑠> is the rms slope in the wavelength scale
• 𝑟̂ = 𝑟GHH as defined on slide 20
• 𝐽;(4𝜋𝑟̂ sin 𝜃) is the zeroth-order Bessel function
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[Shepard et al. 1999, Icarus]

Pros:
+ Self-affine surfaces are more realistic than
those using one value for h and l
+  A better physical handling for roughness

Cons:
- The Fresnel reflection component is questionable 

(constrained to near-nadir scattering)
- Shadowing not included
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• Rms slope 𝑠 ∈ 0.4,0.7 ≈ [22°, 35°]
(shade from dark to light)

• Electric permittivity 𝜀 = 3 (solid 
lines) or 𝜀 = 5 (dashed lines)

A set of examples of 
𝜎! 𝐻 = 0.5 in log scale (on 
the right) and in linear scale 
(below) using different s and 𝜀



Surface scattering models 
Integral equation model (IEM)
• In 1992, Adrian Fung published an improved attempt to be less 

constrained to small perturbations: the integral equation 
model (IEM)
• He continued this effort with his colleagues by publishing in 

2002 the Bidirectional or Improved integral equation model 
(IEM-B / I2EM)
• To be presented as published in Fung & Chen (2010), Microwave 

Scattering and Emission models for Users.
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Surface scattering models 
Integral equation model (IEM)
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Surface scattering models 
Integral equation model (IEM)
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where

k: the wavenumber
Rv, Rh: Fresnel reflection 
coefficients in vertical and 
horizontal polarizations



Surface scattering models 
Integral equation model (IEM)
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And



Surface scattering models 
Integral equation model (IEM)
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The cross-polarisation term 
for multiple scattering (zero 
for first-order scattering):

There are various 
options for 
shadowing functions. 
For example, B. Smith 
(1967), IEEE Trans. 
On Antennas and 
Propagation, 15



Surface scattering models
Scattering matrix representation (bidirectional)
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Here,

(𝛿 = ℎ)

(𝑓() , 𝐹() on slide 33)

[Fung et al. 1994, Fa et al. 2011]



Surface scattering models 
Integral equation model (I2EM / IEM-B)
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Fung & Chen (2010), Microwave Scattering and Emission models for Users, Chapter 4, p. 161-166.



Surface scattering models 
Integral equation model (I2EM / IEM-B)
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• The model is available as a Python code through GitHub (part of a package)
• https://github.com/ibaris/pyrism

• Includes the following radar models:
• Rayleigh: the extinction coefficients in terms of Rayleigh scattering.
• Mie: the extinction coefficients in terms of Mie scattering.
• Dielectric Constants: the dielectric constants of different materials.
• I2EM: RADAR soil scattering model to compute the backscattering coefficient (VV 

and HH polarized).
• Emissivity: Calculate the emissivity for single-scale random surface (Bistatic and 

Monostatic)
• and a number of optical models for: Leaf reflectance, canopy reflectance,

simple Lambertian soil reflectance, and volume scattering functions and 
interception coefficients for given solar zenith, viewing zenith, azimuth and 
leaf inclination angle.

https://github.com/ibaris/pyrism


Scattering model applications

• One practical application for the scattering models is shape modeling of 
asteroids
• Needs a simpler model than IEM or I2EM
• Most commonly used model is the cosine model, although Hagfors and 

Gaussian models are also options at least in a widely used software SHAPE
• Cosine model: 𝑅(𝐶 + 1)cosCV𝜃
• R and C are fitting parameters
• I2EM can be used later for help in interpretation (does not include a 

volume scattering component)
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Surface scattering models 
Fitting cosine law to I2EM models
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C=4,	R=0.1

→
4𝜋ℎ&

𝑙𝜆 = 0.5

C=2, R=0.1

→
4𝜋ℎ&

𝑙𝜆 = 0.707

- High h and l
- Fitted C nearly 
double the 
expected

- Low h and l
- Fitted C close 
to the expected

- High h and l
- Fitted C more 
than double the
expected

- Low h and l
- Fitted C equals 
the expected


