
1 (lecture 14)

In the PM-method (point matching), the boundary conditions of the electromagnetic fields
are required in a finite number of points on the surface of the particle. In the original method,
there were as many points as unknown coefficients in the vector spherical harmonics expansion.
It was concluded that the method was numerically instable. There is, however, nothing that
prevents us from expanding the number of points and computing the coefficients using the
least-squares method. This version of the method has been noticed to be stable and is one of
the most popular numerical methods. The regime of application can be improved by expanding
the fields with a number of suitably chosen origins within the particle. PM is promising also
for scattering by Gaussian particles. It is intriguing to ponder whether “an educated guess”
can help speed up the solution of the coefficients.

The integral-equation methods are divided into a wide spectrum of different methods. In
the VIEM method (volume-integral-equation), one considers the integral equation
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By discretizing the integral on the right-hand side, one obtains a group of linear equations
for the field values at the discretization points within the volume of the particle. Solving the
equations results in the field inside the particle. Typically, again, 10-20 discretization points
are required as per wavelength so that, after a straightforward calculation, it is clear that
a group of equations with thousands of unknowns easily follows. In practice with current
computers, up to 200 million unknowns can be treated (as of December 12, 2008). Various
versions of the VIEM method have been successfully applied to Gaussian-particle scattering
(foremost DDA, discrete-dipole approximation).

In the case of VIEM, the matrix of the group of linear equations is full, which makes the
solution more difficult. When the internal field has been solved for, the same integral relation
gives the scattered field outside the particle via straightforward integration (subtracting the
original field).

DDA (discrete-dipole approximation) is a certain version of solution methods for the in-
tegral equation. DDA can be visualized in the following: the particle can be thought to be
composed of dipole scatterers interacting with each other. In practice, the VIEM methods
differ from one another in how they treat the singular self-term inside the integral, which is
essential for the accuracy of the method.

The surface-integral-equation methods (SIEM) make use of two-dimensional integral equa-
tions that seem like a reasonable starting point, in particular, for homogeneous particles.
However, the SIEM-methods are less stable than the VIEM-methods and usually require ad-
ditional regularization.

The integral equation shown above in connection to the VIEM-method is Fredholm-type
and the kernel has a singularity at r = r′. Via Fourier-transformation, handling of the singula-
rity can be improved and the integral equation can be solved numerically in the wavenumber
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(or frequency) space. Surprisingly, the disadvantage of the method is the considerable ana-
lytical work needed for each different particle. These so-called FIEM-methods have not been
very popular.

In the TMM method (transition matrix method), the analysis proceeds with the help of
vector spherical harmonics functions and the word “transition” refers to the linear matrix
relation between the original field and the scattered field. Compared to the direct vector
spherical harmonics treatment of the boundary conditions, TMM has the advantage that
a linear relation is obtained purely between the internal and original fields, reducing the
number of unknowns in the group of linear equations. After solving the group of equations,
the scattered is computed from the vector Kirchhoff integral relation. The TMM method is
an efficient method, in particular, for axially symmetric particles and useful results have been
obtained, e.g., for spheroids to compare with the implications of the SVM method. However,
TMM suffers from unpredictable convergence and instability problems and have not yet been
extensively applied to scattering by Gaussian particles. As a tool the actual T -matrix is
quite useful and, for a single particle, needs to be computed only once (independently of the
orientation). Recently, an analytical version of the T -matrix method has been developed—this
version is highly promising for studying scattering by Gaussian random particles.

In the superposition method for spheres and spheroids, scattering by particle clusters is
computed using the translation and addition rules of vector spherical harmonics functions.
The field scattered by the cluster is expressed as a superposition of the fields scattered by each
constituent particle. The partial fields depend on each other due to the mutual electromagnetic
interactions of the constituent particles. The scattering problem again manifests itself in a
solution of a group of linear equations. Currently, precise solutions can be computed for
clusters with several dozens of constituent particles, when constituent-particle size approaches
the wavelength.

2 Applications of electromagnetic scattering

In his book, van de Hulst has presented an excellent review of the applications of light scatte-
ring in various fields of science. This is recommended reading bearing in mind, in particular,
modern computational methods for nonspherical particles. Bohren and Huffman offer addi-
tional material on the applications, as well as Mishchenko et al. Finally, the publications from
the meeting series entitled Electromagnetic and Light Scattering by Nonspherical Particles:

Theory, Measurements, and Applications offer up-to-date information about the advances in
light scattering by small particles.
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