
1 Lecture 10

We have solved for the scattered field completely for two circular polarization states of the
original field ǫ1 ± iǫ2. We thus know the elements S

(c)
j (j=1,2,3,4) of the amplitude scatte-

ring matrix that relates the original field to the scattered field in the circular-polarization
representation.
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The amplitude scattering matrix elements of the circular-polarization representation relate
linearly to the commonly used ones of the linear-polarization representation.











S
(c)
1

S
(c)
2

S
(c)
3

S
(c)
4











=
1

2









1 1 i −i
1 1 −i i
−1 1 i i
−1 1 −i −i

















S1

S2

S3

S4









, (2)

where, in the case of Lorenz-Mie scattering (S3 = S4 = 0),
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The complete scattering matrix follows now from the elements S1, S2 in a standard manner.
The elements S

(c)
1 , S

(c)
2 , S

(c)
3 , S

(c)
4 follow from the far-zone expressions for the scattered fields,

for which the vector spherical harmonics expansions reduce to the form utlized earlier in the
expression for the differential scattering cross section. A more detailed assessment is left for
an exercise.

2 Scattering at the short-wavelength limit. Scalar dif-

fraction theory.

Traditionally, diffraction entails those deviations from geometric optics that derive from the
finite wavelength of the waves. Thereby, diffraction is connected to objects (e.g., holes, obs-
tacles) that are large compared to the wavelength. The possible geometries are described in
the figure below (see Jackson). The sources of the radiation are located in region I and we
want to derive the diffracted fields in the diffraction region II. The regions are bounded by
the interfaces S1 and S2. Kirchhoff was the first one to treat this topic systematically.

For simplicity, we will first study scalar fields, whereafter we will extend the analysis to
vector fields. Let ψ(x, t) be a scalar field, for which we assume a harmonic time dependence
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e−iωt. In essence, ψ is one of the components of the E or B fields. We assume that ψ fulfils
the scalar Helmholtz wave equation

(∇2 + k2)ψ(x) = 0

in the volume V bounded by S1 and S2. We introduce the Green’s function G(x,x′),

(∇2 + k2)G(x,x′) = −δ(x − x′)

and start from Green’s theorem
∫

V

(φ∇2ψ − ψ∇2φ)d3x′ =

∮

S

[φ
∂ψ

∂n
− ψ

∂φ

∂n
]dA′

∂ψ

∂n
≡ n′ · ∇ψ

where n′ is the unit inward normal vector of S. Let us now set ψ = G and φ = ψ so that,
with the help of the wave equations for ψ and G,

ψ(x) =

∮

S

dA′[ψ(x′)n′ · ∇′G(x,x′) −G(x,x′)n′ · ∇′ψ(x′)]

Kirchhoff’s diffraction integral follows from this relation when G is chosen to be the free-space
Green’s function describing outgoing waves,
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eikR

4πR
, R = x − x′, R = |R|

Then
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The surface S is composed of S1 and S2 and the integration can be divided into two parts. In
the proximity of S2, ψ is an outgoing wave and fulfils the so-called radiation condition

ψ → f(θ, ϕ)
eikr

r
,

1

ψ

∂ψ

∂r
→ (ik −

1

r
).

By inserting these results into the integral above, it is possible to show that the integral over
S2 vanishes at least as the inverse of the radius of the sphere when the radius approaches
infinity. There remains the integral over S1, giving the final form of the Kirchhoff integral
relation,
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In applying the integral relation, it is necessary to know both ψ and ∂ψ/∂n on the surface
S1. In general, these are not known, at least not precisely. Kirchhoff’s approach was based
on the idea that ψ and ∂ψ/∂n are approximated on S1 for the computation of the diffracted
wave. This so-called Kirchhoff’s approximation consists of the following assumptions:
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1. ψ and ∂ψ/∂n vanish everywhere else but the holes of S1

2. ψ and ∂ψ/∂n in the holes are equal to the original field values when there are no
diffracting elements in space.

These assumptions contain a serious mathemtical inconsistency: if ψ and ∂ψ/∂n are zero
on a finite surface, then ψ = 0 everywhere. In spite of the inconsistency, the Kirchhoff ap-
proximation works in an excellent way in practical problems and constitutes the basis of all
diffraction calculus in classical optics.

The mathematical inconsistencies can be removed by a proper choice of the Green’s func-
tion. In the setup of the figure below (see Jackson), (both P and P ′ are located several
wavelengths away from the hole) we obtain

ψ(P ) =
k

2πi

∫
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dA′
eikr

r

eikr′

r′
O(θ, θ′)

O(θ, θ′) =







cos θ, ;
cos θ′, ;
1
2
(cos θ + cos θ′), (Kirchhoffin approksimaatio).

The obliquity factor O(θ, θ′) assumes less significance than the phase factors, which partly
explains the success of the Kirchhoff approximation.

3 Vector Kirchhoff integral relation

The scalar Kirchhoff integral relation is an exact relation between the scalar fields on the
surface and at infinity. In a corresponding way, the vector Kirchhoff integral relation is an
exact relation between the E,B fields on the surface S and the diffracted or scattered fields
at infinity. Such a relation is interesting in itself and it is a correct guess that the relation
carries practical significance, too.

In what follows, we derive the vector relation for the electric field E, starting from the
generalization of Green’s theorem already appearing in the scalar case for all components of
the E-field,

E(x) =

∮

S

dA′[E(n′ · ∇′G) −G(n′ · ∇′)E],

when x ∈ V and V is the volume bounded by S. Again, n′ is the unit normal vector pointing
into the volume V . Since G is singular at x′ = x and we make use of vector calculus valid for
smooth functions, we assume that S is composed of the outer surface S ′ and an infinitesimally
small inner surface S ′′ so that the point x′ = x is left out from volume V (but the point is
inside S ′′). In such a case, the left-hand side of the previous equation disappears, but the
integration over S ′′ on the right-hand side returns −E(x) when the radius of S ′′ goes to zero.
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The vector relation can now be written in the form

0 =

∮

S

dA′[2E(n′ · ∇′G) − n′ · ∇′(GE)]

and, with the help of the divergence theorem ja divergenssiteoreeman

∫

V

dV ′∇ · A =

∮

S

dA′A · n,

the latter term can be transformed to a volume integral

0 =

∮

S

dA′2E(n′ · ∇′G) +

∫

V

dV ′∇′2(GE)

Now
∇2A = ∇(∇ · A) −∇× (∇× A)

∫

V

dV∇φ =

∮

S

dAnφ, (n ulkonormaali)

∫

V

dV∇×A =

∮

S

dA(n× A)

and the volume integral can be returned back to a surface integral

0 =

∮

S

dA′[2E(n′ · ∇′G) − n′(∇′ · (GE)) + n′ × (∇′ × (GE))]

When the ∇-operations are carried out for GE and use is made of Maxwell’s equations
∇′ · E = 0,∇′ × E = iωB, one obtains

0 =

∮

S

dA′[iω(n′ · B)G+ (n′ ×E) ×∇′G+ (n′ · E)∇′G]

and, furthermore,

E(x) =

∮

S

dA′[iω(n′ · B)G+ (n′ × E) ×∇′G+ (n′ · E)∇′G]

where the volume bounded by S now again includes the point x.
As in the case of the scalar relation, we can now derive the vector Kirchhoff integral

relation

E(x) =

∮

S1

dA′[iω(n′ · B)G+ (n′ × E) ×∇′G+ (n′ · E)∇′G],

where the integration extends over S1 only.
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Finally, we derive a relation between the scattering amplitude and the near fields. For the
fields in the vector Kirchhoff integral relation, we choose the scattered fields Es,Bs, that is,
the total fields E,B minus the original fields Ei,Bi. If the observation point is far away from
the scatterer, both the Green’s function and the scattered electric field can be given in their
asymptotic forms

G(x,x′) =→
1

4π

eikr

r
e−ik·x′

Es(x) →
eikr

r
F(k,k0)

where k is a wave vector pointing in the direction of the observer, k0 is the wave vector of
the original field, and F(k,k0) is the vector scattering amplitude. In this limit, ∇′G = −ikG
and we obtain an integral relation for the scattering amplitude,

F(k,k0) =
i

4π

∮

S1

dA′e−ik·x′

[ω(n′ · Bs) + k × (n′ × Es) − k(n′ · Es)]

The relation depends explicitly on the direction of k and the dependence on k0 is implicit in
Es and Bs. Since k · F = 0, we can reduce the relation to

F(k,k0) =
1

4πi
k ×

∮

S1

dA′e−ik·x′

[
ck × (n′ ×Bs)

k
− n′ × Es]

Alternatively, one may want the scattering amplitude in direction k for a specific polarization
state ǫ∗,

ǫ∗ · F(k,k0) =
i

4π

∮

S1

dA′e−ik·x′

[ωǫ∗ · (n′ × Bs) + ǫ∗ · (k × (n′ ×Es))]

These integral relations are useful in scattering problems entailing short wavelengths and in
the derivation of the optical theorem.
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