
1 Introduction to scattering theory

(lecture 0)

Each scattering problem depends in the detailed characteristics of the scattering particle: its
size, shape, and refractive index. The size is usually described by the size parameter

x =
2πa

λ
, (1)

where a is a typical radial distance in the particle and and λ is the wavelength of the original
electromagnetic field. In the size dependence of scattering, only the ratio a/λ is meaningful.
Shape is described by suitable elongation, roughness, or angularity parameters. The consti-
tutive material is characterized by the complex-valued refractive index

m = n + in′, (2)

where the real and imaginary parts n and n′ are responsible for refraction and absorption
of light, respectively. The time dependence of the fields has been chosen to be exp(−iωt)
so that, in physically relevant cases, the imaginary part of the refractive index needs to be
non-negative.

1.1 Electromagnetic formulation of the problem

Electromagnetic scattering and absorption is here being assessed from the view point of clas-
sical electromagnetics. The natural foundation is provided by Maxwell’s equations

∇ · D = ρ,

∇× E = −
∂B

∂t
,

∇ · B = 0,

∇× H = j +
∂D

∂t
, (3)

where E is the electric field, B is the magnetic flux density, D is the electric displacement, and
H is the magnetic field. ρ and j are, respectively, the densities of free charges and currents. In
order for the charge and current densities to determine the fields unambiguously, constitutive
relations describing the interaction of matter and fields are introduced,

j = σE,

D = ǫE,

B = µH , (4)
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where σ is the electric conductivity, ǫ is the electric permittivity, and µ is the magnetic
permeability. In what follows, it is assumed that there are no free charges or currents and
that the time dependence of the fields is of the harmonic type exp(−iωt). Maxwell’s equations
then reduce to the form

∇ · ǫE = 0,

∇× E = iωµB,

∇ · H = 0,

∇× H = −iωǫE, (5)

so that the fields E and H fulfil the vector wave equations vektoriaaltoyhtälöt

∇2E + k2E = 0,

∇2H + k2H = 0, (6)

where k2 = ω2m2/c2 and m is the relative refractive index of the scatterer, m2 = ǫµ/ǫ0µ0.
Denote the internal field of the particle by (E1, H1). The external field (E2, H2) is the

superposition of the original field (Ei, H i) and the scattered field (Es, Hs),

E2 = Ei + Es,

H2 = H i + Hs. (7)

In what follows, let us assume that the original field is a plane wave,

Ei = E0 exp[i(k · x − ωt)],

H i = H0 exp[i(k · x − ωt)], H0 =
1

ωµ0
k × E0, (8)

where k is the wave vector of the medium surrounding the particle. Since there are no free
currents according to our hypothesis, the tangential components of the fields E and H are
continuous across the boundary between the particle and the surrounding medium:

(E2 − E1) × n = 0,

(H2 − H1) × n = 0, (9)

at the boundary with an outward normal vector n. It is our fundamental goal to solve
Maxwell’s equations everywhere in space with the boundary conditions given.
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1.2 Amplitude scattering matrix

Let us place an arbitrary particle in a plane wave field according to the figure (cf. Bohren &
Huffman). The propagation directions of the original and scattered fields ez and er define a
scattering plane, and the original field is divided into components perpendicular and parallel
to that plane,

Ei = (E0⊥ei⊥ + E0‖ei‖) exp[i(kz − ωt)] = Ei⊥ei⊥ + Ei‖ei‖. (10)

In the radiation zone, that is, far away from the scattering particle, the scattered field is a
transverse spherical wave (cf. Jackson),

Es =
exp(ikr)

−ikr
A, er · A = 0, (11)

so that

Es = Es⊥es⊥ + Es‖es‖, (12)

where

es⊥ = −eφ,

es‖ = eθ. (13)

Due to the linearity of the boundary conditions, the amplitude of the scattered field depends
linearly on the amplitude of the original field. In a matrix form,

[

Es⊥

Es‖

]

=
exp[i(kr − kz)]

−ikr

[

S1 S4

S3 S2

] [

Ei⊥

Ei‖

]

, (14)

where the complex-valued amplitude-scattering-matrix elements Sj (j = 1, 2, 3, 4) generally
depend on the scattering angle θ and the azimuthal angle φ. Since only the relative phases
are important, the amplitude scattering matrix has seven free parameters.

1.3 Stokes parameters and scattering matrix

In the medium surrounding the particle, the time-averaged Poynting vector S can be divided
into the Poynting vectors of the original field, scattered field, and that showing the interaction
of the original and scattered fields,

S =
1

2
Re(E2 × H∗

2) = Si + Ss + Se, (15)
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where

Si =
1

2
Re(Ei × H∗

i ),

Ss =
1

2
Re(Es × H∗

s),

Se =
1

2
Re(Ei × H∗

s + Es × H∗
i ). (16)

In the radiation zone, the power incident on a surface element ∆A perpendicular to the radial
direction is

Ss · er =
k

2ωµ

|A|2

k2
∆Ω, ∆Ω =

∆A

r2
(17)

and |A|2 can be measures as a function of angles. By placing polarizers in between the
scattering particle and the detector, we can measure the Stokes parameters of the scattered
field (Bohren & Huffman),

Is = 〈|Es⊥|
2 + |Es‖|

2〉,

Qs = 〈−|Es⊥|
2 + |Es‖|

2〉,

Us = 2ReE∗
s⊥Es‖,

Vs = −2ImE∗
s⊥Es‖. (18)

Thus, Is gives the scattered intensity, Qs gives the difference between the intensities in the
scattering plane and perpendicular to the scfattering plane, Us gives the difference between
+π/4 and −π/4 -polarized intensities and, lastly, Vs gives the difference between right-handed
and left-handed circularly polarized intensities. The factor k/2ωµ0 has been omitted from the
intensities; it is not needed since, in practice, relative intensities are measured instead of ab-
solute ones. The Stokes parameters fully describe the polarization state of an electromagnetic
field.

The scattering matrix S interrelates the Stokes parameters of the original field and the
scattered field, and can be derived from the amplitude scattering matrix:

Is =
1

k2r2
SI i, (19)

missä Stokesin vektorit

Is = (Is, Qs, Us, Vs)
T ,

I i = (Ii, Qi, Ui, Vi)
T . (20)
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The information about the angular dependence of scattering is fully contained in the 16 ele-
ments of the scattering matrix. For a single scattering particle, it has seven free parameters
whereas, for an ensemble of particles, all 16 elements can be free. Symmetries reduce the num-
ber of free parameters: for example, for a spherical particle, there are three free parameters.

For an unpolarized incident field, the Stokes parameters of the scattered field are

Is =
1

k2r2
S11Ii,

Qs =
1

k2r2
S21Ii,

Us =
1

k2r2
S31Ii,

Vs =
1

k2r2
S41Ii. (21)

Thus, S11 gives the angular distribution of scattered intensity and the total degree of pola-
rization is

Ptot =

√

S2
21 + S2

31 + S2
41

S11
. (22)

Scattering polarizes light.

1.4 Extinction, scattering and absorption

Let us assume that medium surrounding the scattering particle is non-absorbing. The total
or extinction cross section is then the sum of the absorption and scattering cross sections:

σe = σs + σa, (23)

where

σe = −
1

Ii

∫

A

dASe · er,

σs =
1

Ii

∫

A

dASs · er, (24)

when A is a spherical envelope of radius r containing the scattering particle.
Let the original field be of ex-polarized form E0 = Eex. In the radiation zone,

Es ∝
exp[ik(r − z)]

−ikr
XE, er · X = 0,

Hs ∝
k

ωµ
er × Es, (25)
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where the vector scattering amplitude X is related to the amplitude scattering matrix as
follows:

X = (S4 cos φ + S1 sin φ)es⊥ + (S2 cos φ + S3 sin φ)es‖. (26)

By making use of the asymptotic forms of the scattered field shown above and ex-polarized
original field, the so-called optical theorem can be derived: extinction depends only on scat-
tering in the exact forward direction,

σe =
4π

k2
Re[(X · ex)θ=0]. (27)

In addition,

σs =

∫

4π

dΩ
dσs

dΩ
, (28)

where the differential scattering cross section is

dσs

dΩ
=

|X|2

k2
. (29)

The extinction, scattering, and absorption efficiencies are defined as the ratios of the
corresponding cross sections to the geometric cross section of the particle A⊥ as projected in
the propagation direction of the original field:

qe =
σe

A⊥

,

qs =
σs

A⊥

,

qa =
σa

A⊥
. (30)

For an unpolarized original field, the cross sections are

σe =
1

2
(σ(1)

e + σ(2)
e ),

σs =
1

2
(σ(1)

s + σ(2)
s ), (31)

where the indices 1 and 2 refer to two polarization states of the original field perpendicular
to one another.
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