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The intention is to cover the fundamentals in electromagnetic scattering by single small particles.
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1 Introduction to scattering theory

[Lecture 0]
Each scattering problem depends in the detailed characteristics of the scattering particle: its size,
shape, and refractive index. The size is usually described by the size parameter

x =
2πa

λ
, (1)

where a is a typical radial distance in the particle and and λ is the wavelength of the original
electromagnetic field. In the size dependence of scattering, only the ratio a/λ is meaningful.
Shape is described by suitable elongation, roughness, or angularity parameters. The constitutive
material is characterized by the complex-valued refractive index

m = n+ in′, (2)

where the real and imaginary parts n and n′ are responsible for refraction and absorption of
light, respectively. The time dependence of the fields has been chosen to be exp(−iωt) so that, in
physically relevant cases, the imaginary part of the refractive index needs to be non-negative.

1.1 Electromagnetic formulation of the problem

Electromagnetic scattering and absorption is here being assessed from the view point of classical
electromagnetics. The natural foundation is provided by Maxwell’s equations

∇ ·D = ρ,

∇×E = −∂B
∂t

,

∇ ·B = 0,

∇×H = j +
∂D

∂t
, (3)

where E is the electric field, B is the magnetic flux density, D is the electric displacement, and
H is the magnetic field. ρ and j are, respectively, the densities of free charges and currents. In
order for the charge and current densities to determine the fields unambiguously, constitutive
relations describing the interaction of matter and fields are introduced,

j = σE,

D = εE,

B = µH, (4)

where σ is the electric conductivity, ε is the electric permittivity, and µ is the magnetic perme-
ability. In what follows, it is assumed that there are no free charges or currents and that the time
dependence of the fields is of the harmonic type exp(−iωt). Maxwell’s equations then reduce to
the form

∇ · εE = 0,

∇×E = iωµB,

∇ ·H = 0,

∇×H = −iωεE, (5)
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so that the fields E andH fulfil the vector wave equations vektoriaaltoyhtälöt

∇2E + k2E = 0,

∇2H + k2H = 0, (6)

where k2 = ω2m2/c2 andm is the relative refractive index of the scatterer,m2 = εµ/ε0µ0.

Denote the internal field of the particle by (E1,H1). The external field (E2,H2) is the superpo-
sition of the original field (Ei,H i) and the scattered field (Es,Hs),

E2 = Ei + Es,

H2 = H i + Hs. (7)

In what follows, let us assume that the original field is a plane wave,

Ei = E0 exp[i(k · x− ωt)],

H i = H0 exp[i(k · x− ωt)],H0 =
1

ωµ0
k ×E0, (8)

where k is the wave vector of the medium surrounding the particle. Since there are no free
currents according to our hypothesis, the tangential components of the fields E andH are con-
tinuous across the boundary between the particle and the surrounding medium:

(E2 −E1)× n = 0,

(H2 −H1)× n = 0, (9)

at the boundary with an outward normal vectorn. It is our fundamental goal to solveMaxwell’s
equations everywhere in space with the boundary conditions given.

1.2 Amplitude scattering matrix

Let us place an arbitrary particle in a plane wave field according to the figure (cf. Bohren &
Huffman). The propagation directions of the original and scattered fields ez and er define a
scattering plane, and the original field is divided into components perpendicular and parallel to
that plane,

Ei = (E0⊥ei⊥ + E0‖ei‖) exp[i(kz − ωt)] = Ei⊥ei⊥ + Ei‖ei‖. (10)

In the radiation zone, that is, far away from the scattering particle, the scattered field is a trans-
verse spherical wave (cf. Jackson),

Es =
exp(ikr)

−ikr
A, er ·A = 0, (11)

so that

Es = Es⊥es⊥ + Es‖es‖, (12)

where

es⊥ = −eφ,
es‖ = eθ. (13)
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Due to the linearity of the boundary conditions, the amplitude of the scattered field depends
linearly on the amplitude of the original field. In a matrix form,[

Es⊥
Es‖

]
=

exp[i(kr − kz)]
−ikr

[
S1 S4

S3 S2

] [
Ei⊥
Ei‖

]
, (14)

where the complex-valued amplitude-scattering-matrix elements Sj (j = 1, 2, 3, 4) generally de-
pend on the scattering angle θ and the azimuthal angle φ. Since only the relative phases are
important, the amplitude scattering matrix has seven free parameters.

1.3 Stokes parameters and scattering matrix

In the medium surrounding the particle, the time-averaged Poynting vector S can be divided
into the Poynting vectors of the original field, scattered field, and that showing the interaction of
the original and scattered fields,

S =
1

2
Re(E2 ×H∗2) = Si + Ss + Se, (15)

where

Si =
1

2
Re(Ei ×H∗i ),

Ss =
1

2
Re(Es ×H∗s),

Se =
1

2
Re(Ei ×H∗s + Es ×H∗i ). (16)

In the radiation zone, the power incident on a surface element ∆A perpendicular to the radial
direction is

Ss · er =
k

2ωµ

|A|2

k2
∆Ω,∆Ω =

∆A

r2
(17)

and |A|2 can bemeasures as a function of angles. By placing polarizers in between the scattering
particle and the detector, we can measure the Stokes parameters of the scattered field (Bohren &
Huffman),

Is = 〈|Es⊥|2 + |Es‖|2〉,
Qs = 〈−|Es⊥|2 + |Es‖|2〉,
Us = 2ReE∗s⊥Es‖,

Vs = −2ImE∗s⊥Es‖. (18)

Thus, Is gives the scattered intensity, Qs gives the difference between the intensities in the scat-
tering plane and perpendicular to the scfattering plane, Us gives the difference between +π/4

and−π/4 -polarized intensities and, lastly, Vs gives the difference between right-handed and left-
handed circularly polarized intensities. The factor k/2ωµ0 has been omitted from the intensities;
it is not needed since, in practice, relative intensities are measured instead of absolute ones. The
Stokes parameters fully describe the polarization state of an electromagnetic field.
The scattering matrix S interrelates the Stokes parameters of the original field and the scattered
field, and can be derived from the amplitude scattering matrix:

Is =
1

k2r2
SIi, (19)
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missä Stokesin vektorit

Is = (Is, Qs, Us, Vs)
T ,

Ii = (Ii, Qi, Ui, Vi)
T . (20)

The information about the angular dependence of scattering is fully contained in the 16 elements
of the scattering matrix. For a single scattering particle, it has seven free parameters whereas,
for an ensemble of particles, all 16 elements can be free. Symmetries reduce the number of free
parameters: for example, for a spherical particle, there are three free parameters.
For an unpolarized incident field, the Stokes parameters of the scattered field are

Is =
1

k2r2
S11Ii,

Qs =
1

k2r2
S21Ii,

Us =
1

k2r2
S31Ii,

Vs =
1

k2r2
S41Ii. (21)

Thus, S11 gives the angular distribution of scattered intensity and the total degree of polarization
is

Ptot =

√
S2

21 + S2
31 + S2

41

S11
. (22)

Scattering polarizes light.

1.4 Extinction, scattering and absorption

Let us assume that medium surrounding the scattering particle is non-absorbing. The total or
extinction cross section is then the sum of the absorption and scattering cross sections:

σe = σs + σa, (23)

where

σe = − 1

Ii

∫
A
dASe · er,

σs =
1

Ii

∫
A
dASs · er, (24)

when A is a spherical envelope of radius r containing the scattering particle.
Let the original field be of ex-polarized form E0 = Eex. In the radiation zone,

Es ∝
exp[ik(r − z)]
−ikr

XE, er ·X = 0,

Hs ∝
k

ωµ
er ×Es, (25)

where the vector scattering amplitudeX is related to the amplitude scattering matrix as follows:

X = (S4 cosφ+ S1 sinφ)es⊥ + (S2 cosφ+ S3 sinφ)es‖. (26)
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By making use of the asymptotic forms of the scattered field shown above and ex-polarized
original field, the so-called optical theorem can be derived: extinction depends only on scattering
in the exact forward direction,

σe =
4π

k2
Re[(X · ex)θ=0]. (27)

In addition,

σs =

∫
4π
dΩ

dσs
dΩ

, (28)

where the differential scattering cross section is

dσs
dΩ

=
|X|2

k2
. (29)

The extinction, scattering, and absorption efficiencies are defined as the ratios of the correspond-
ing cross sections to the geometric cross section of the particleA⊥ as projected in the propagation
direction of the original field:

qe =
σe
A⊥

,

qs =
σs
A⊥

,

qa =
σa
A⊥

. (30)

For an unpolarized original field, the cross sections are

σe =
1

2
(σ(1)
e + σ(2)

e ),

σs =
1

2
(σ(1)
s + σ(2)

s ), (31)

where the indices 1 and 2 refer to two polarization states of the original field perpendicular to
one another.

2 Plane waves

[Lecture 1 and 2]
The electromagnetic plane wave

E = E0e
ik·x−iωt

H = H0e
ik·x−iωt (32)

can, under certain conditions, fulfil Maxwell’s equations. The physical fields correspond to the
real parts of the complex-valued fields. The vectors E0 and H0 above are constant vectors and
can be complex-valued. Similarly, the wave vector k can be complex-valued:

k = k′ + ik′′, k′,k′′ ∈ Rn (33)
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Inserting (33) into equation (32), we obtain

E = E0e
−k′′·xeik

′·x−iωt

H = H0e
−k′′·xeik

′·x−iωt (34)

In Eq. (34), E0e
−k′′·x andH0e

−k′′·x are amplitudes and k′ · x− ωt = φ is the phase of the wave.

An equation of the form k · x =constant defines, in the case of a real-valued vector k, a planar
surface, whose normal is just the vector k. Thus, k′ is perpendicular to the planes of constant
phase and k′′ is perpendicular to the planes of constant amplitude. If k′ ‖ k′′, the planes coincide
and the wave is homogeneous. If k′ ∦ k′′, the wave is inhomogeneous. A plane wave propagating in
vacuum is homogeneous.

In the case of plane waves, Maxwell’s equaitons can be written as

k ·E0 = 0

k ·H0 = 0

k ×E0 = ωµH0

k ×H0 = −ωεE0 (35)

The two upmost equations are conditions for the transverse nature of the waves: k is perpendic-
ular to both E0 andH0. The two lowermost equations show that E0 andH0 are perpendicular
to each other. Since k,E0, andH0 are complex-valued, the geometric interpretaion is not simple
unless the waves are homogeneous.
It follows from Maxwell’s equations (35) that, on one hand,

k × (k ×E0) = ωµk ×H0 = −ω2εµE0 (36)

and, on the other hand,

k × (k ×E0) = k(k ·E0)−E0(k · k) = −E0(k · k), (37)

so that

k · k = ω2εµ. (38)

Plane waves solutions are in agreement with Maxwell’s equations if

k ·E0 = k ·H0 = E0 ·H0 = 0 (39)

and if

k′2 − k′′2 + 2ik′ · k′′ = ω2εµ. (40)

Note that ε and µ are properties of the medium, whereas k′ and k′′ are properties of the wave.
Thus, ε and µ do not unambiguously determine the details of wave propagation.
In the case of a homogeneous plane wave (k′‖k′′),
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k = (k′ + ik′′)ê, (41)

where k′ and k′′ are non-negative and ê is an arbitrary real-valued unit vector.

According to Eq. (38),

(k′ + ik′′)2 = ω2εµ =
ω2m2

c2
, (42)

where c = 1/
√
ε0µ0 is the speed of light in vacuum andm is the complex-valued refractive index

m =

√
εµ

ε0µ0
= mr + imi, mr,mi ≥ 0. (43)

In vacuum, the wave number is ω/c = 2π/λ, where λ is the wavelength. The general homoge-
neous plane wave takes the form

E = E0e
− 2πmis

λ ei
2πmrs
λ
−iωt (44)

where s = e · x. The imaginary and real parts of the refractive index determine the attenuation
and phase velocity v = c/mr of the wave, respectively.

3 Poynting vector

Let us study the electromagnetic field E, H that is time harmonic. For the physical fields (the
real parts of the complex-valued fields), the Poynting vector

S = E ×H (45)

describes the direction and amount of energy transfer everywhere in the space.

Let n be the unit normal vector of the planar surface element A. Electromagnetic energy is
transferred through the planar surface with power S ·n A, where S is assumed constant on the
surface. For an arbitrary surface and S depending on location, the power is

W = −
∫
A
S · ndA, (46)

where n is the outward unit normal vector and the sign has been chosen so that positive W
corresponds to absorption in the case of a closed surface.
The time-averaged Poynting vector

〈S〉 =
1

τ

∫ t+τ

t
S(t′)dt′ τ >> 1/ω (47)

is more important than the momentary Poynting vector (cf. measurements).
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The time-averaged Poynting vector for time-harmonic fields is

〈S〉 =
1

2
Re{E ×H∗} (48)

and, in what follows, this is the Poynting vector meant even though the averaging is not always
shown explicitly.
For a plane wave field, the Poynting vector is

S =
1

2
Re{E ×H∗} = Re

{
E × (k∗ ×E∗)

2ωµ∗

}
, (49)

where

E × (k∗ ×E∗) = k∗(E ·E∗)−E∗(k∗ ·E). (50)

For a homogeneous plane wave,

k ·E = k∗ ·E = 0 (51)

and

S =
1

2
Re

{√
εµ

µ∗

}
|E0|2e−

4πIm(m)z
λ êz. (52)

4 Stokes parameters

Consider the following experiment for an arbitrary monochromatic light source (see Bohren &
Huffman p. 46). In the experiment, we make use of a measuring apparatus and polarizers with
ideal performance: the measuring apparatus detects energy flux density independently of the
state of polarization and the polarizers do not change the amplitude of the transmitted wave.

Denote

E = E0e
ikz−iωt, E0 = E⊥ê⊥ + E‖ê‖

E⊥ = a⊥e
−iδ⊥

E‖ = a‖e
−iδ‖ a⊥, a‖ ≥ 0, δ⊥, δ‖ ∈ R (53)

Experiment I
No polarizer: the flux density is proportional to

|E0|2 = E‖E
∗
‖ + E⊥E

∗
⊥ (54)

Experiment II
Linear polarizers ‖ and ⊥:
1) ‖: the amplitude of the transmitted wave is E‖ and the flux density is E‖E∗‖
2) ⊥: the amplitude of the transmitted wave is E⊥ and the flux density is E⊥E∗⊥
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The difference of the two measurements is I‖ − I⊥ = E‖E
∗
‖ − E⊥E

∗
⊥.

Experiment III
Linear polarizers +45◦ ja −45◦: The new basis vectors are

{ ê+ =
1√
2

(ê‖ + ê⊥)

ê− =
1√
2

(ê‖ − ê⊥)

and

E0 = E+ê+ + E−ê−

E+ =
1√
2

(E‖ + E⊥)

E− =
1√
2

(E‖ − E⊥).

1) +45◦: the amplitude of the transmitted wave is E+ and the flux density is
E+E

∗
+ = 1

2(E‖E
∗
‖ + E‖E

∗
⊥ + E⊥E

∗
‖ + E⊥E

∗
⊥)

2) −45◦: the amplitude of the transmitted wave is E− and the flux density is
E−E

∗
− = 1

2(E‖E
∗
‖ − E‖E

∗
⊥ − E⊥E∗‖ + E⊥E

∗
⊥)

The difference os the measurements is I+ − I− = E‖E
∗
⊥ + E⊥E

∗
‖ .

Experiment IV
Circular polarizers R and L:

êR =
1√
2

(ê‖ + iê⊥) êR · ê∗R = 1

êL =
1√
2

(ê‖ − iê⊥) êL · ê∗L = 1 êR · ê∗L = 0

and

E0 = ERêR + ELêL

ER =
1√
2

(E‖ − iE⊥)

EL =
1√
2

(E‖ + iE⊥).

1) R: the amplitude of the transmitted wave isER and the flux density isERE∗R = 1
2(E‖E

∗
‖−

iE∗‖E⊥ + iE∗⊥E‖ + E⊥E
∗
⊥)

2) L: the amplitude of the transmitted wave is EL and the flux density is ELE∗L = 1
2(E‖E

∗
‖ +

iE∗‖E⊥ − iE
∗
⊥E‖ + E⊥E

∗
⊥)
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The difference of the measurements is IR − IL = i(E∗⊥E‖ − E∗‖E⊥).

With the help of Experiments I-IV, we have determined the Stokes parameters I , Q, U , and V :

I = E‖E
∗
‖ + E⊥E

∗
⊥ = a2

‖ + a2
⊥

Q = E‖E
∗
‖ − E⊥E

∗
⊥ = a2

‖ − a
2
⊥

U = E‖E
∗
⊥ + E⊥E

∗
‖ = 2a‖a⊥ cos δ

V = i(E‖E
∗
⊥ − E⊥E∗‖) = 2a‖a⊥ sin δ δ = δ‖ − δ⊥ (55)

5 Scattering of light at the plane interface between two media

[Lecture 3]

Two kinds of features can be distinguished in the reflection and refraction of light at the plane
interface between two media:
i) Kinematical properties:
a) the angle of reflection coincides with the angle of incidence
b) the angle of refraction relates to the angle of incidence and the refractive indices of the media
via Snel’s law
ii) Dynamical properties:
a) the intensitities of reflected and refracted radiation
b) phase shifts and polarization

The kinematical properties follow from the wave nature of the phenomena and the existence of
the boundary conditions. The dynamical properties depend fully of the characteristics of the
waves and their boundary conditions.
The coordinate systems and symbols are defined in Fig. 1. The original plane wave (wave vector
k, angular frequency ω) is incident on the interface from the medium µ, ε (refractive indexm =√
εµ/ε0µ0). The refracted plane wave propagates in the medium µ′, ε′ (m′ =

√
ε′µ′/ε0µ0) with

wave vector kt and the reflected plane wave in the medium µ, εwith wave vector kr.

The kinematics are described by the angles of incidence θi, reflection θr, and refraction θt. As-
sume first that µ, ε, µ′, ε′ and therefor alsom andm′ are real-valued.

Based on what has already been described before, we can write the incident, reflected, and re-
fracted fields as follows:

Ei = E0ie
iki·x−iωt

Bi =
√
εµ

ki ×Ei
ki

(56)

Er = E0re
ikr·x−iωt

Br =
√
εµ

kr ×Er
kr

(57)
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Et = E0te
ikt·x−iωt

Bt =
√
ε′µ′

kt ×Et
kt

(58)

The lengths of the wave vectors are

|ki| = |kr| = ki = kr = ω
√
εµ

|kt| = kt = ω
√
ε′µ′ (59)

The boundary conditions are to be valid at the interface z = 0 at all times. Therefor, the spatial
dependences of the fields need to coincide at the interface and, in particular, the arguments of
the phase factors

(ki · x)z=0 = (kr · x)z=0 = (kt · x)z=0 (60)

independently of the detailed properties of the boundary conditions. It follows, first, that the
wave vectors must be confined to a single plane. Second, it follows that θi = θr and, third, we
obtain Snel’s law

ki sin θi = kt sin θt

⇔ m sin θi = m′ sin θt. (61)

According to the boundary conditions of electromagnetic fields, the normal components of D
and B and the tangential components of E and H must be continuous across the boundary.
Then, at the interface z = 0, we have

n̂ · [ε(E0i + E0r)− ε′E0t] = 0

n̂ · [ki ×E0i + kr ×E0r − kt ×E0t] = 0

n̂ × [E0i + E0r −E0t] = 0

n̂ × [
1

µ
(ki ×E0i + kr ×E0r)−

1

µ′
(kt ×E0t)] = 0 (62)

Let us divide the scattering problem into two cases: first, the incident field is linearly poalrized
so that the electric field is perpendicular to the plane defined by ki and n̂; second, the electric
field is within that plane. An arbitrary elliptic polarization can be treated as a linear sum of the
results following for the two cases defined above.
First, let the elctric field be perpendicular to the plane of incidence (see Fig. 2). The choice of
B-vectors guarantees a positive flow of energy in the direction of the wave vectors. With the help
of the third and fourth boundary conditions above, we obtain

E0i + E0r − E0t = 0√
ε

µ
(E0i − E0r) cos θi −

√
ε′

µ′
E0t cos θt = 0 (63)
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Denote the Fresnel coefficients by

r⊥ =
E0r

E0i
, t⊥ =

E0t

E0i
.

Then,

1 + r⊥ − t⊥ = 0√
ε

µ
(1− r⊥) cos θi −

√
ε′

µ′
t⊥ cos θt = 0 (64)

and it follows that

t⊥ = 1 + r⊥√
ε

µ
cos θi −

√
ε′

µ′
cos θt = (

√
ε

µ
cos θi +

√
ε′

µ′
cos θt)r⊥ (65)

and, furthermore, we obtain, for the Fresnel coefficients,

r⊥ =

√
ε
µ cos θi −

√
ε′

µ′ cos θt√
ε
µ cos θi +

√
ε′

µ′ cos θt

t⊥ =
2
√

ε
µ cos θi√

ε
µ cos θi +

√
ε′

µ′ cos θt
(66)

Second, let the electric field be within the plane of incidence (see Fig. 3). Again, based on the
third and fourth boundary conditions above, we have

(E0i − E0r) cos θi − E0t cos θt = 0√
ε

µ
(E0i + E0r)−

√
ε′

µ′
E0t = 0 (67)

Denote the Fresnel coefficients by

r‖ =
E0r

E0i
, t‖ =

E0t

E0i
.

Then,

(1− r‖) cos θi − t‖ cos θt = 0√
ε

µ
(1 + r‖)−

√
ε′

µ′
t‖ = 0 (68)

and we obtain the following pair of equations,
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t‖ =
cos θi
cos θt

(1− r‖)√
ε

µ
−

√
ε′

µ′
cos θi
cos θt

= −
(√ ε

µ
+

√
ε′

µ′
cos θi
cos θt

)
r‖ (69)

allowing for the Fresnel coefficients to be explicitly solved for:

r‖ =

√
ε′

µ′ cos θi −
√

ε
µ cos θt√

ε′

µ′ cos θi +
√

ε
µ cos θt

t‖ =
2
√

ε
µ cos θi√

ε′

µ′ cos θi +
√

ε
µ cos θt

(70)

In the case of a plane wave normally incident on the interface (θi = 0), we obtain

r‖ = −r⊥ =

√
ε′

µ′ −
√

ε
µ√

ε′

µ′ +
√

ε
µ

→ m′ −m
m′ +m

,µ = µ′

t‖ = t⊥ =
2
√

ε
µ√

ε′

µ′ +
√

ε
µ

→ 2m

m′ +m
,µ = µ′ (71)

The Fresnel coefficients derived above are also valid for complex-valued ε, µ, ε′, and µ′. Usually,
for visible light, µ = µ′ = µ0. The generalization of Snel’s law for complex m′ is left for an
exercise. In addition, the derivation of the 4 × 4 reflection and refraction matrices relating the
Stokes parameters of incident, reflected, and refracted light is left for an exercise.
In the case of incident electric field polarized in the plane of incidence, we can find the so-called
Brewster angle, at which there is no reflected wave. Let µ = µ′. At the Brewster angle,

m′ cos θiB = m

√
1− m2

m′2
sin2 θiB

(
m′

m
)2 cos2 θiB = 1− (

m

m′
)2 sin2 θiB

(
m′

m
)2 = 1 + tan2 θiB − (

m

m′
)2 tan2 θiB

tan2 θiB =
(m

′

m )2 − 1

1− ( mm′ )2
= (

m′

m
)2

The physical solution is

θiB = arctan(
m′

m
) (72)
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As a rule for other angles of incidence, too, the reflected light tends to be polarized perpendicular
to the plane of incidence.
Total internal reflection can occur when m > m′ (the incident wave is ”internals”). If m > m′,
θt > θi0 according to Snel’s law and

θi0 = arcsin
m′

m
(73)

When the angle of incidence is θi0, the refracted wave is propagating parallel to the interface and
there is no energy flow across the interface. Thus, all the incident energy is reflected back. When
θi > θi0, sin θt > 1 and θt must be a complex-valued angle that has a purely imaginary cosine,

cos θt = i

√
(

sin θi
sin θi0

)2 − 1 (74)

The refracted wave is of the form

eikt·x = eikt(x sin θt−z cos θt)

= e
−kt

√
(

sin θi
sin θi0

)2−1|z|
e
ikt(

sin θi
sin θi0

)x (75)

and, thus, attenuates exponentially in the medium m′ and propagates only in the direction of
the interface.

6 Electromagnetic field by a localized source

[Lecture 4]
Consider the electromagnetic fields caused by time-dependent charge and current densities lo-
calized in a constrained region of space. Here we will mainly study the fields by an electric
dipole. Later, the analysis is extended to the full multipole expansion.
Assume harmonic time dependence e−iωt—arbitrary time dependences can be dealt with using
Fourier analysis of their components. The charge density ρ and current density j are

ρ(x, t) = ρ(x)e−iωt

j(x, t) = j(x)e−iωt

and the physical quantities correspond to the real parts of the comelx quantities. The electro-
magnetic potentials and fields are also time-harmonic and the sources are assumed to be located
in an otherwise empty space.
Let us start from the vector potentialA in Lorentz gauge,

A(x, t) =
µ0

4π

∫
d3x′

∫
dt′

j(x′, t′)

|x− x′|
δ
(
t′ +
|x− x′|

c
− t
)

and, by writingA(x, t) = A(x)e−iωt, we obtain

A(x) =
µ0

4π

∫
d3x′j(x′)

eik|x−x
′|

|x− x′|
, k =

ω

c
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The magnetic field is, according to definitions,H = 1
µ0
∇×A and, outside the source region, the

electric field equals E = iζ0
k ∇×H, where ζ0 =

√
µ0/ε0 is the impedance of free space.

When the current density j(x′) is given, the electromagnetic field can be calculated from the
integral above, at least in principle. Let us study the casewhere the source region (size d) is much
smaller than the wavelength: d� λ = 2πc/ω. We can distinguish three regimes of interest:

(i) Near zone (static regime): d� r � λ

(ii) Intermediate zone (induction regime): d� r ∼ λ

(iii) Far zone (radiation regime): d� λ� r

In the near zone (i) kr � 1 and the exponential part of the integrand for the vector potential
can be set to unity, and the inverse distance can be presented using series of spherical harmonics
Ylm:

lim
kr→0

A(x) =
µ0

4π

∑
l,m

4π

2l + 1

Ylm(θ, ϕ)

rl+1

∫
d3x′j(x′)(r′)lY∗lm(θ′, ϕ′)

We can see that the near fields vary harmonically in time but are static in their character: nowave
solution follows for the spatial dependence. Above, we have made use of the relation

1

|x− x′|
= 4π

∑
l,m

1

2l + 1

rl<

rl+1
>

Y∗lm(θ′, ϕ′)Ylm(θ, ϕ)

In the far zone (iii), kr � 1 and the exponential part of the vector potential varies strongly and
dictates the character of the vector potential. We can approximate

|x− x′| ≈ r − n̂ · x′, n̂ =
x

|x|
=

x

r

When the leading term is desired in kr, the inverse distance can be replaced by r. The vector
potential is of the form

lim
kr→∞

A(x) =
µ0

4π

eikr

r

∫
d3x′j(x′)e−ikn̂·x

′

Therefor, the vector potential behaves like an outgoing spherical wave (eikr/r) with angular de-
pendence. It can be shown that the electromagnetic field is also of the form of a spherical wave
and thus is a radiation field. (Note that this part of the analysis is vlid for localized source regions
of arbitrary size.)
Now that kd� 1 the integral can further be developed into series:

lim
kr→∞

A(x) =
µ0

4π

eikr

r

∑
n

(−ik)n

n!

∫
d3x′j(x′)(n̂ · x′)n

where the magnitude for the nth term is (1/n!)
∫
d3x′j(x′)(kn̂ · x′)n and thus becomes rapidly

smaller with increasing n. In this case, the main contribution to radiation comes from the first
non-vanishing term in the sum.
In the intermediate zone (ii), all powers of kr need to be accounted for, and no simple limits can
be taken. The vector potential is thenwritten with the help of the expansion for the exact Green’s
function in the form

A(x) = µ0ik
∑
l,m

h
(1)
l (kr)Ylm(θ, ϕ)

∫
d3x′j(x′)jl(kr

′)Y∗lm(θ′, ϕ′)
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where we have made use of the expansion

eik|x−x
′|

4π|x− x′|
= ik

∞∑
l=0

jl(kr<)h
(1)
l (kr>)

l∑
m=−l

Y∗lm(θ′, ϕ′)Ylm(θ, ϕ)

where r< = min(r, r′), r> = max(r, r′), and jl and h
(1)
l are the spherical Bessel and Hankel

functions.
Again when kd� 1, the jl-functions can be approximated and the result is of the same form as
the near zone result, when the following replacement is carried out:

1

rl+1
→ eikr

rl+1
[1 + a1(ikr) + a2(ikr)2 + . . .+ al(ikr)

l]

The coefficients ai derive from the explicit expansions of the Hankel functions. This end result
allows us to see the transition from the near-zone kr � 1 static field to the far-zone kr � 1

radiation field.

7 Electromagnetic field of an electric dipole

If only the first term in kd is kept in the expansion of the vector potential, one obtains

A(x) =
µ0

4π

eikr

r

∫
d3x′j(x′)

which holds everywhere outside the source region (this follows from the intermediate-zone re-
sults above). With the help of partial integration,∫

d3x′j = −
∫
d3x′x′(∇ · j) = −iω

∫
d3x′x′ρ(x′)

where the substitution term disappears (the source region is constrained) and, according to the
continuity equation, iωρ(x′) = ∇ · j(x′). The vector potential is thus

A(x) = − iµ0ω

4π
p
eikr

r
,

where p is the electric dipole moment p =
∫
d3x′x′ρ(x′).

The electromagnetic fields are

H =
ck2

4π
(n̂× p)

eikr

r

(
1− 1

ikr

)
E =

1

4πε0

(
k2(n̂× p)× n̂

eikr

r
+
(
3n̂(n̂ · p)− p

)( 1

r2
− ik

r

)eikr
r

)
We note that the magnetic field is always transverse but that the electric field has both longitu-
dinal and transverse components.
In the far zone,

H =
ck2

4π
(n̂× p)

eikr

r
E = ζ0H× n̂
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which shows the typical form of a spherical wave.
In the near zone,

H =
iω

4π
(n̂× p)

1

r2

E =
1

4πε0

(
3n̂(n̂ · p)− p

) 1

r3

The electric field is, except for the harmonic time dependence, that of a static lectric dipole. The
field ζ0H is smaller, by a factor of kr, than the field E so, in the near zone, the field is electric in
its nature. In the static limit k → 0, the magnetic field disappears and the near zone extends to
infinity.
The power radiated by the vibrating dipole moment p as per solid angle is

dP

dΩ
=

1

2
Re(r2n̂ ·E×H∗)

=
c2ζ0

32π2
k4|(n̂× p)× n̂|2,

where n̂× p)× n̂ gives the polarization state. If all components of p are in the same phase,

dP

dΩ
=

c2ζ0

32π2
k4|p|2 sin2 θ

which is the typical radiation pattern of an electric dipole (θ is here measured from the direction
of p). Independently of the phases of the components for p:n, the total radiated power is

P =
c2ζ0k

4

12π
|p|2

8 Scattering by small spherical particles in the electric dipole ap-
proximation

Light scattering by particles clearly smaller than the wavelength can be studied in the approxi-
mation, where the incident field induces an electric dipole moment to the particle. The dipole
fluctuates in a certain phase with the incident field and thus scatters radiation in directions dif-
fering from the propagation direction of the incident field. In this case, the dipole moments can
be computed using electrostatic methods.
Assume that a monochromatic plane wave is incident on a small scatterer located in free space.
Let the propagation direction and polarization vector of the incident field be n̂0 and ε̂0:

Ei = ε̂0E0e
ikn̂0·x

Hi = n̂0 ×Ei/ζ0

where k = ω/c and the time dependence has been assumed harmonic (e−iωt). These fields in-
duce a dipole momentn p in the small particle and the particle radiates energy in (almost) all
directions. In the far zone, the scattered fields are of the form

Es =
1

4πε0
k2 e

ikr

r

(
(n̂× p)× n̂

)
Hs = n̂×Es/ζ0
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where n̂ is the dirction of the observer and r the distance from the scatterer. The power scattered
in direction n̂with polarization ε̂ per unit solid angle divided by the incident flux density is the
so-called differential cross section

dσ

dΩ
(n̂, ε̂, n̂0, ε̂0) =

r2 1
2ζ0
|ε̂∗ ·Es|2

1
2ζ0
|ε̂∗0 ·Ei|2

where the complex conjugation of the polarization vectors is important for proper treatment of
circular polarization. Furthermore,

dσ

dΩ
(n̂, ε̂, n̂0, ε̂0) =

k4

(4πε0E0)2
|ε̂∗ · p|2,

where the n̂0, ε̂0 -dependence is implicit in p. We can see that the differential and total cross
sections of the dipole scatterer are both proportional to k4:een and λ−4:een (Rayleigh’s law).
Assume that the scatterer is a small sphere (radius a) with the relative permittivity εr = ε/ε0.
According to electrostatics, the dipole moment of the sphere is

p = 4πε0

(εr − 1

εr + 2

)
a3Ei

so that
dσ

dΩ
= k4a6|εr − 1

εr + 2
|2|ε̂∗ · ε̂0|2

The polarization dependence is purely that of electric dipole scattering. The scattered radiation
is polarized in the plane defined by the dipole moment ε̂0 and the vector n̂.
For unpolarized incident radiation, the differential cross sections in different polarization states
of the scattered field are

dσ‖

dΩ
=

k4a6

2
|εr − 1

εr + 2
|2 cos2 θ

dσ⊥
dΩ

=
k4a6

2
|εr − 1

εr + 2
|2

where θ is now the scattering angle.
The degree of polarization is

P (θ) =
dσ⊥
dΩ −

dσ‖
dΩ

dσ⊥
dΩ +

dσ‖
dΩ

=
sin2 θ

1 + cos2 θ
= −S21(θ)

S11(θ)

and the differential cross section summed over the polarization states of the scattered field is

dσ

dΩ
= k4a6|εr − 1

εr + 2
|2 1

2
(1 + cos2 θ) ∝ S11(θ)

where S11(θ) and S21(θ) are elements of the scattering matrix. The total scattering cross section
is

σ =

∫
(4π)

dσ

dΩ
dΩ =

8π

3
k4a6|εr − 1

εr + 2
|2

The scattered radiation is 100% positively polarized at the scattering angle θ = 90◦. It was the
polarization characteristics of the blue sky that got Rayleigh interested in scattering by small
particles.
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9 Scattering by an ensemble of small particles in the dipole ap-
proximation

[Lecture 5]
Consider an ensemble of numerous small particles which have fixed locations in space and the
scattering amplitudes of which can be expressed in the dipole approximation. Assume presently
that the particles do not interact with each other. Since the induced dipole moments are propor-
tional to the incident field, the moments will depend on the phase factor eikn̂0·xj , where xj is
the location of the jth scatterer. When the observer is located far away from the scatterer, the
exponential part of the Green’s function results in an additional phase factor for the jth scatterer,
e−ikn̂·xj . In the dipole approximation, the ensemble of particles scatters as follows:

dσ

dΩ
=

k4

(4πε0E0)2
|
∑
j

ε̂∗ · pjeiq·xj |, q = k(n̂0 − n̂) (76)

Except for the forward-scattering direction (q = 0), scattering will depend sensitively on how
the small particles are located in space.
Assume now that all the particles are identical so that p = pj for all j and

dσ

dΩ
=

k4

(4πε0E0)2
|ε̂∗ · p|2F (q), (77)

where F (q) is the so-called structure factor,

F (q) = |
∑
j

eiq·xj |2 =
∑
j,j′

eiq·(xj−xj′ ) (78)

If the small particles are located in random positions, the terms j 6= j′ will cause a negligible
contribution to the sum. Only the terms j = j′ are significant and F (q) = N , where N is the
number of scatterers. In this case, the total scattering is the incoherent superposition of the
individual contributions.
If the small particles are regularly located in space, the structure factor disappears almost ev-
erywhere except for the proximity of the forward-scattering direction. Therefor, large regular
arrays of small particles do not scatter (for example, individual transparent crystals of rock salt
and quartz).
Consider scatterers located in a regular cubic lattice. The structure factor can be calculated ana-
lytically, since ∣∣∣∣∣∣

∑
j

eiq·xj

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
N1−1∑
j1=0

eiq1j1a
N2−1∑
j2=0

eiq2j2a
N3−1∑
j3=0

eiq3j3a

∣∣∣∣∣∣
2

=

∣∣∣∣(1− eiq1N1a

1− eiq1a
)(

1− eiq2N2a

1− eiq2a
)(

1− eiq3N3a

1− eiq3a
)

∣∣∣∣2
= N2[(

sin2 1
2N1q1a

N2
1 sin2 1

2q1a
)(

sin2 1
2N2q2a

N2
2 sin2 1

2q2a
)(

sin2 1
2N3q3a

N2
3 sin2 1

2q3a
)], (79)

where a is the lattice constant (distance between the lattice points) and whereN1,N2, andN3 are
the numbers of lattice points in each direction hilapisteiden so that the total number of lattice
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points equals N = N1N2N3 (this was utilized to obtain the final result above). The components
of the vector q in each direction are q1, q2, and q3.
We note that, at short wavelengths (ka ≥ π), the structure factor has peaks when the Bragg
condition is fulfilled: qia = 0, 2π, 4π . . ., where i = 1, 2, 3 . . .. This is typical in X-ray diffraction.
At long wavelengths, only the peak qia = 0 is relevant, since max |qia| = 2ka << 1. In this limit,
the structure factor is a product of three sin2 xi/x

2
i -type factors (xi = 1

2Niqia), and scattering is
confined to the region qi ≤ 2π/Nia, corresponding to the angles λ/L, where L is the size of the
lattice.

10 Volume integral equation for scattering

In a uniformmedium, the electromagneticwave propagates undisturbed andwiythout changing
its direction of propagation. If there are fluctuations in the medium depending on space or time,
the wave is scattered, and part of its energy is redirected. If the fluctuations in the medium are
small, scattering is weak and one may utilize methods based on perturbation series.
Consider a uniform isotropic medium with electric permittivity εm and magnetic permeability
equal to the permeability of vacuum, µm = µ0. Fluctuations in the medium result in D 6= εmE

in some constrained region. Let us start from Maxwell’s equations in sourceless space:

∇ ·B = 0 , ∇×E = −∂B
∂t

∇ ·D = 0 , ∇×H =
∂D

∂t

Then
∇× (D−D + εmE) = −εm

∂B

∂t
, (80)

so that
∇× (∇×D) = ∇× [∇× (D− εmE)]− εm

∂

∂t
µ0∇×H. (81)

Moreover, after further manipulation,

−∇2D = ∇×∇× (D− εmE)− εmµ0
∂2

∂t2
D,

which can be written in the form

∇2D− εmµ0
∂2D

∂t2
= −∇×∇× (D− εmE),

that is the exact wave equation for the D-field derived without any approximations. Later, the
right-hand side of the equation is treated as a small perturbation.
If the right-hand side of the equation were known, the solution of the wave equation could be
written an a suitable integral of it. Although the right-hand side is usually unknown, the integral
form is useful, since it allows the derivation of important approximations.
Assume again harmonic time dependence e−iωt, in which case

(∇2 + k2)D = −∇×∇× (D− εmE)

k2 = µ0εmω
2, (82)
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where εm is the permittivity corresponding to the angular frequency ω. The solution of the
undisturbedproblem is obtained by setting the right-hand side equal to zero; denote this solution
byD(0). The formal complete solution is then, in an exact way,

D(x) = D(0)(x) +
1

4π

∫
d3x′

eik|x−x
′|

|x− x′|
∇′ ×∇′ × (D(x′)− εmE(x′)) (83)

In a scattering problem, the integral on the right-hand side is taken over a constrained region of
space andD(0) describes the incident field. Then, in the far zone,

D(x)→ D(0)(x) +
eikr

r
As, (84)

where the scattering amplitudeAs is

As =
1

4π

∫
d3x′e−ikn̂·x

′∇′ ×∇′ × (D(x′)− εmE(x′)). (85)

After some partial integration and noticing that the substitution terms diappear, one obtains

As =
k2

4π

∫
d3x′e−ikn̂·x

′{[n̂× (D(x′)− εmE(x′))]× n̂}.

The vector characteristics of the integrand can be comparedwith the field scattered by an electric
dipole: the contribution from the term D − εmE is precisely the field of the electric dipole so
that the scattering amplitude is a vector sum from all induced electric dipole moments. The
differential cross section is

dσ

dΩ
=
|ε̂∗ ·As|
|D(0)|2

, (86)

where ε̂ is the polarization vector of scattered radiation. In principle, we have solved the scat-
tering problem for an arbitrary scatterer in an exact way. The caveat is that we do not know the
field inside the scatterer.

11 Rayleigh-Gansin or Born approximation

[Lecture 6]
The integral equation derived above allows for a solution via perturbation series, where the inter-
nal field of the scatterer is first approximated by the incident field. What follows is the so-called
Rayleigh-Gans approximation or the first Born approximation based on the corresponding inte-
gral equation in quantum mechanics.
Consider purely spatial fluctuations from an otherwise uniform medium and assume, in addi-
tion, that the fluctuations are linear,D(x) = [εm + δε(x)]E(x), where δε(x) is small compared to
εm. The differenceD− εmE showing up in the integral equation is proportional to δε(x). In the
lowest order,

D− εmE ≈
δε(x)

εm
D(0). (87)

Let the incident field be a plane wave so thatD(0)(x) = ε̂0D0e
ikn̂0·x. Then

ε̂∗ ·A(0)
s

D0
=

k2

4π

∫
d3x′eiq·xε̂∗ · ε̂0

δε(x)

εm
q = k(n̂0 − n̂), (88)
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the square of which, in absolute terms, gives the differential cross section. If the wavelength is
much larger than the size of the region where δε 6= 0, the exponent in the integral can be set
to unity. This results in the dipole approximation that was treated before for a small spherical
particle.

Let us study the situationwhere the particle continues to be spherical and is located in free space.
Thus, δε 6= 0 inside a sphere of radius a. We obtain

ε̂∗ ·A(1)
s

D0
=

k2

4π
(ε̂∗ · ε̂0)

δε

ε0

∫
d3x′eiq·x

′

=
k2

4π
(ε̂∗ · ε̂0)

δε

ε0

∫ 2π

0
dϕ′

∫ π

0
dθ′ sin θ′

∫ a

0
dr′r′2eiqr

′ cos θ′

=
k2

2
(ε̂∗ · ε̂0)

δε

ε0

∫ a

0
dr′r′2/1

−1

1

iqr′
eiqr

′µ′ , µ′ = cos θ′

=
k2

4π
(ε̂∗ · ε̂0)

δε

ε0

1

iq

{
/a0r
′ 1

iq
(eiqr

′
+ e−iqr

′
)−

∫ a

0
dr′

1

iq
(eiqr

′
+ e−iqr

′
)

}
= k2 δε

ε0
(ε̂∗ · ε̂0)

(
sin qa− qa cos qa

q3

)
, q = |q| =

√
2k
√

1− n̂ · n̂0.

In the limit a→ 0, the term inside the parentheses approaches a3/3 so that, for scatterers much
smaller than the wavelength or for q approaching zero,

lim
q→0

( dσ
dΩ

)
R−G = k4a6| δε

3ε0
|2|ε̂∗ · ε̂0|2.

This is in agreement with the long-wavelength limit studied earlier. The integral
∫
S d

3x′eiq·x
′ is

commonly called the form factor.

12 Why is the sky blue?

In the present context, we can consider the blueness of the sky and redness of the sunrises and
sunsets. Assume that the atmosphere is composed of individual molecules with locations xj
and that have the dipole moment pj = ε̂0γmolE(xj), where γmol is the molecular polarizability.
Then, the fluctuations of the electric permittivity can be described with the sum

δε(x) = ε0
∑
j

γmolδ(x− xj)

The differential scattering cross section is of the form

dσ

dΩ
=

k4

16π2
|γmol|2|ε̂∗ · ε̂0|2F (q),

where F is the structure factor treated before. For randomly distributed scatterers, F (q) is di-
rectly the number of the molecules. For low-density gas, the relative permittivity is εr = ε/ε0 =

1 + Nγmol, where N is now the number of molecules in unit volume. The total scattering cross
section as per molecule is

σs ≈
k4

6πN2
|εr − 1|2 ∼=

2k4

3πN2
|m− 1|2,
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wherem is the refractive index and |m− 1| � 1.
When the radiation propagates a distance dx in the atmoshpere, the relative change in its inten-
sity is Nσdx and I(x) = I0e

−kex, where ke is the so-called extinction coefficient:

ke = Nσs ∼=
2k4

3πN
|m− 1|2

This is called Rayleigh scattering that is incoherent scattering by gas molecules and other dipole
scatterers, where each scatterer scatters radiation based on Rayleigh’s 1/λ4 -law.
The 1/λ4 -lawmeans that blue light is scattered muchmore efficiently than red light. In practice,
this shows up so that blue color predominates when looking in directions other than the light
source whereas, in the direction of the light source, red color predominates.
For visible light, λ = 0.41 − 0.65µm and, under normal conditions, m − 1 ≈ 2.78 · 10−4. When
N = 2.69 · 1019 molecules/cm3, we obtain for the mean free path 1/ke =30, 77, and 188 km at
wavelengths 0.41 µm (violet), 0.52 µm (green), and 0.65 µm (red), respectively.
Polarization reaches its maximum of 75 % at the wavelength of 0.55 µm. The deviation from 100
% derives from multiple scattering (6 %), the anisotropy of the molecules (6 %), reflection from
the surface (5 %, in particular, for green light in the case of vegetation), and aerosols (8 %).

13 Mie scattering, or scattering by a spherical particle

[Lecture 7]
An exact solution for scattering by electromagnetic waves by a spherical particle was presented
byMie and this kind of scattering is commonly called Mie scattering. Lately, the contribution by
Lorenz has also been recognized, but his solution was not based on Maxwell’s equations.
The solution of the scattering problem is composed of several fundamental stages. To start with,
the scalar Helmholtz equation is solved in spherical coordinates, introducing the spherical har-
monics and Bessel, Neumann, and Hankel special functions of fractional order (the so-called
spherical Bessel functions, etc.).
In solving the vector Helmholtz wave equation, a general expansion in electric and magnetic
multipoles is introduced and, in particular, the vector spherical harmonics. The energy and
angular distributions of multipole fields are illustrated with examples, underscoring the power
of the multipole analysis. To cope with the boundary conditions in the spherical geometry, the
original incident plane wave field must be presented as a multipole expansion.
The actual scattering problem for a spherical particle can then be solved in a straightforward
way. With the help of the multipole exansion, we can have a look at the boundary conditions
for a nonspherical particle. In this case, the coefficients of the vector spherical harmonics can no
longer be obtained analytically.

14 Scalar wave equation in spherical geometry

In order to prepare for the treatment of the vector wave equation, we consider the scalar wave
equation for scalar field Ψ(x, t),

∇2Ψ(x, t)− 1

c2

∂2

∂t2
Ψ(x, t) = 0 (89)
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We can Fourier-transform the wave equation with respect to time,

Ψ(x, t) =

∫ ∞
−∞

dωΨ(x, ω)e−iωt, (90)

in which case each Fourier-component fulfils the wave equation

(∇2 + k2)Ψ(x, ω) = 0, k2 = ω2/c2 (91)

In the case of a single small particle, it is advantageous to search for the solution of the wave
equation in the spherical coordinate system. Scattering extends to the full solid angle 4π and
the small particle is located in a constrained region near the origin. In the spherical coordinates
r, θ, ϕ, the wave equation is of the form (see Arfken, Jackson)

1

r2

∂

∂r
(r2∂Ψ

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂Ψ

∂θ
) +

1

r2 sin2 θ

∂2Ψ

∂ϕ2
+ k2Ψ = 0 (92)

The scalar wave equation can be solved by separating the variables so that the part including
the angular coordinates is represented by the scalar spherical harmonics functions and the part
including the radial dependence is represented by the spherical Bessel, Neumann, and Hankel
functions,

Ψ(x, ω) =
∑
l,m

flm(r)Ylm(θ, ϕ) (93)

The radial part (flm(r)) fulfils its differential equation independently of the indexm,

[
d2

dr2

2

r

d

dr
+ k2 − l(l + 1)

r2

]
fl(r) = 0. (94)

By writing

fl(r) =
1√
r
ul(r) (95)

we obtain [
d2

dr2
+

1

r

d

dr
+ k2 −

(l + 1
2)2

r2

]
ul(r) = 0, (96)

which is the Bessel equation with order l + 1
2 . Then, in the most general way,

flm(r) = Almjl(kr) +Blmnl(kr)

= Ãlmh
(1)
l (kr) + B̃lmh

(2)
l (kr),

h
(1)
l (x) = jl(x) + inl(x), h

(2)
l (x) = jl(x)− inl(x), (97)
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where jl, nl, h(1)
l and h(2)

l are the spherical Bessel, Neumann, andHankel functions. For example,

j0(x) =
sinx

x
,

j1(x) =
sinx

x2
− cosx

x
,

j2(x) = (
3

x3
− 1

x
) sinx− 3 cosx

x2
,

n0(x) = −cosx

x
,

n1(x) = −cosx

x2
− sinx

x
,

n2(x) = −(
3

x3
− 1

x
) cosx− 3 sinx

x2
,

h
(1)
0 (x) =

eix

ix
,

h
(1)
1 (x) = −e

ix

x
(1 +

i

x
),

h
(1)
2 (x) =

ieix

x
(1 +

3i

x
− 3

x2
). (98)

The functions jl and nl can be analytically generated using the so-called Rodriques’ formulae

jl(x) = (−x)l(
1

x

d

dx
)l(

sinx

x
) (99)

nl(x) = −(−x)l(
1

x

d

dx
)l(

cosx

x
) (100)

In the limit x << 1, l, the functions can be calculated using the leading terms of their series
expansions,

jl(x) =
xl

(2l + 1)!!

(
1− x2

2(2l + 3)
+ . . .

)
,

nl(x) = −(2l − 1)!!

xl+1

(
1− x2

2(1− 2l)
+ . . .

)
. (101)

Correspondingly, in the limit x >> l, we obtain

jl(x) ≈ 1

x
sin(x− lπ

2
),

nl(x) ≈ −1

x
cos(x− lπ

2
),

h
(1)
l (x) ≈ (−i)l+1 e

ix

x
. (102)

The functions obey the recursive relations

2l + 1

x
zl(x) = zl−1(x) + zl+1(x),

z′l(x) =
1

2l + 1
[lzl−1(x)− (l + 1)zl+1(x)],

d

dx
[xzl(x)] = xzl−1(x)− lzl(x), (103)
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where zl(x) can be any of the functions jl, nl, h(1)
l or h(2)

l . In practical numerical computations,
special attention needs to paid to numerical stability, for example, to the direction the recursive
relations are utilized. The Wronskian determinants are, pair-wise,

W (jl, nl) =
1

i
W (jl, h

(1)
l ) = −W (nl, h

(1)
l ) =

1

x2
. (104)

Thus, the general solution of the scalar wave equation in spherical coordinates can be presented
in the form

Ψ(x) =
∑
l,m

[
A

(1)
lmh

(1)
l (kr) +A

(2)
lmh

(2)
l (kr)

]
Ylm(θ, ϕ) (105)

that is, as a sum of outgoing and incoming waves.
Consider next the properties of the spherical-harmonics functions Ylm(θ, ϕ). According to the
definition,

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ,

l = 0, 1, 2, . . . ,

m = −l,−l + 1, . . . , 0, . . . , l − 1, l. (106)

The functions Pml (x) are associated Legendre functions that can be derived from the Legendre
polynomials Pl(x) by the Rodriques’ formula,

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x)

= (−1)m
1

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l. (107)

For Pml (x), it is generally true that

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x) (108)

so that
Yl,−m(θ, ϕ) = (−1)mY ∗l,m(θ, ϕ) (109)

The spherical-hamonics functions constitute a complete orthonormal set of functions,∫
4π
dΩY ∗l′,m′(θ, ϕ)Yl,m(θ, ϕ) = δll′δmm′ , (110)

with the closure relation
∞∑
l=0

l∑
m=−l

Y ∗l,m(θ′, ϕ′)Yl,m(θ, ϕ) = δ(ϕ− ϕ′)δ(cos θ − cos θ′) (111)

For example,

Y00 =
1√
4π
,

Y10 =

√
3

4π
cos θ, Y11 = −

√
3

8π
sin θeiϕ,

Y20 =

√
5

4π
(
3

2
cos2 θ − 1

2
), Y21 = −

√
15

8π
sin θ cos θeiϕ,

Y22 =
1

4

√
15

2π
sin2 θei2ϕ. (112)
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For example, the following recursive relations can be derived for the associated Legendre func-
tions:

Pm+1
l − 2mx√

1− x2
Pml + [l(l + 1)−m(m− 1)]Pm−1

l = 0

(2l + 1)xPml = (l +m)Pml−1 + (l −m+ 1)Pml+1

(2l + 1)
√

1− x2Pml = Pm+1
l+1 − P

m+1
l−1

= (l +m)(l +m− 1)Pm−1
l−1 − (l −m+ 1)(l −m+ 2)Pm−1

l+1√
1− x2Pml =

1

2
Pm+1
l − 1

2
(l +m)(l −m+ 1)Pm−1

l . (113)

Let us study the spherical wave expansion of the Green’s function corresponding to an outgoing
wave. The Green’s function fulfils the inhomogeneous wave equation

(∇2 + k2)G(x,x′) = −δ(x− x′) (114)

and is of the form
G(x,x′) =

eik|x−x
′|

4π|x− x′|
(115)

Let us write
G(x,x′) =

∑
lm

gl(r, r
′)Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) (116)

and insert this expression into the partial differential equation above. Then, we obtain[
d2

dr2
+

2

r

d

dr
+ k2 − l(l + 1)

r2

]
gl = − 1

r2
δ(r − r′) (117)

with the following wave solution that is finite at the origin and and outgoing wave at infinity,

gl(r, r
′) = Ajl(kr<)h

(1)
l (kr>) (118)

where r> = max(r, r′) and r< = min(r, r′) andA = ik, so that the discontinuity of the derivatiuve
is correct at r = r′. The spherical wave expansion of the Green’s function is thus

eik|x−x
′|

4π|x− x′|
= ik

∞∑
l=0

jl(kr<)h
(1)
l (kr>)

l∑
m=−l

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) (119)

[Lecture 8]
In order to solve the vector wave equation, we return one more time to the angular part of the
scalar wave equation and introduce useful auxiliary tools. The spherical harmonics are solutions
of the following equation:

−
[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

]
Ylm = l(l + 1)Ylm,

which can be written in the form (cf. quantum mechanics)

L2Ylm = l(l + 1)Ylm

where
L2 = L2

x + L2
y + L2

z
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L =
1

i
(r×∇)

so that L is ~−1 times the orbital impulse momentum operator in wave mechanics. L can be
presented conveniently using the operators L+, L−, and Lz ,

L+ = Lx + iLy = eiϕ
(
∂

∂θ
+ i cot θ

∂

∂ϕ

)
L− = Lx − iLy = e−iϕ

(
− ∂

∂θ
+ i cot θ

∂

∂ϕ

)
(120)

Lz = −i ∂
∂ϕ

(121)

L only operates on the angular variables and r · L = 0. For what follows, it is useful to notice
that, based on the recursive relations of the spherical harmonics,

L+Ylm =
√

(l −m)(l +m+ 1)Yl,m+1

L−Ylm =
√

(l +m)(l −m+ 1)Yl,m−1 (122)
LzYlm = mYlm (123)

In addition, L, L2 and ∇2 fulfil the following commutation rules:

L2L = LL2

L× L = iL (124)
Lj∇2 = ∇2Lj (125)

where
∇2 =

1

r

∂2

∂r2
(r)− L2

r2

15 Multipole expansions of electromagnetic fields

In free space, Maxwell’s equations take the form (time dependence e−iωt)

∇×E = ikζ0H, ∇×H = −ikE/ζ0 (126)
∇ ·E = 0, ∇ ·H = 0 (127)

where k = ω/c. If the E-field is eliminated, one obtains

(∇2 + k2)H = 0, ∇ ·H = 0

H = − i

kζ0
∇×E

Alternatively, eliminating theH-field yields

(∇2 + k2)E = 0, ∇ ·E = 0

E =
iζ0

k
∇×H.

Both groups of three equations are equivalent to the originalMaxwell’s equations. We attempt to
find multipole solutions for the vector fields E andH. It is clear that each Cartesian component
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ofE andH fulfil the scalar wave equation so that each component could be developed into series
in multipoles of the scalar wave equation. However, the conditions about the sourceless nature
of both E and H would be difficult to account for and it would be difficult to construct pure
multipoles for the vector wave equation.
Instead, we start from the scalar quantity r·A, whereA is a regularly behaving vector field. First,

∇2(r ·A) = r · (∇2A) + 2∇ ·A

so that
∇2(r ·E) = r · (−k2E)⇔ (∇2 + k2)(r ·E) = 0

and, in a corresponding way,
(∇2 + k2)(r ·H) = 0

Therefor, the general solution for r ·E and r ·H:n can be presented as series of basis functions of
the scalar wave equation.
We define the magnetic multipole of order (l,m) by the conditions

r ·H(M)
lm =

l(l + 1)

k
gl(kr)Ylm(θ, ϕ)

r ·E(M)
lm = 0 (128)

where gl(kr) = A
(1)
l h

(1)
l (kr) + A

(2)
l h

(2)
l (kr) (the coefficient l(l + 1)/k has been introduced for

convenience).
Now

ζ0kr ·H =
1

i
r · (∇×E) =

1

i
(r×∇) ·E = L ·E

where L is the operator showin g up when solving the scalar wave equation. When r · H =

r ·H(M)
lm , it must be true that

L ·E(M)
lm (r, θ, ϕ) = l(l + 1)ζ0gl(kr)Ylm(θ, ϕ)

and
r ·E(M)

lm = 0

SinceL only operates on the angular variables (θ, ϕ), the r-dependence ofE(M)
lm is gl(kr). In order

for L · E(M)
lm to produce a pure Ylm(θ, ϕ) angular dependence, E(M)

lm need to be prepared using
the Lz , L+, and L−-operators so that, ultimately,

E
(M)
lm = ζ0gl(kr)LYlm(θ, ϕ)

H
(M)
lm = − 1

kζ0
∇×E

(M)
lm (129)

This is the definition for the electromagnetic fields of the magnetic multipole of order (l,m).
Occasionally, this is also called the transverse electric multipole (TE).
The electromagnetic fields of an electric or transverse magnetic (TM) multipole of order (l,m)

follow from the conditions

r ·E(E)
lm = −ζ0

l(l + 1)

k
fl(kr)Ylm(θ, ϕ)

r ·H(E)
lm = 0
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and are of the form

H
(E)
lm = fl(kr)LYlm(θ, ϕ)

E
(E)
lm =

iζ0

k
∇×H

(E)
lm (130)

where the r-dependent part fl(kr) is again a combination of the spherical Hankel or Bessel and
Neumann functions.
It can be shown that the electric andmagnetic multipole fields constitute a complete vectorial set
of solutions for Maxwell’s equations in source-free space. In what follows, the terminology of
electric and magnetic multipoles is being used as, physically, the sources are the electric charge
density and the magnetic moment density, respectively.
In the consideration of vector spherical harmonics, the vector spherical harmonics functions
LYlm assume a central role. For convenience, the vector functions are normalized so that the
final vector spherical harmonics are

Xlm(θ, ϕ) ≡ 1√
l(l + 1)

LYlm(θ, ϕ)

We define X00 ≡ 0, since spherically symmetric solutions to Maxwell’s equations only exist in
source-free space at the static limit k → 0. ForXlm, the following orthogonality relations can be
ascertained, ∫

(4π)
dΩX∗l′,m′ ·Xlm = δll′δmm′∫

(4π)
dΩX∗l′,m′ · (r×Xlm) = 0

The proof is left for an exercise.
The general solution for Maxwell’s equations can now be written as an expansion of electric and
magnetic multipoles,

H =
∑
l,m

[
aE(l,m)fl(kr)Xlm −

i

k
aM (l,m)∇× gl(kr)Xlm

]

E = ζ0

∑
l,m

[
i

k
aE(l,m)∇× fl(kr)Xlm + aM (l,m)gl(kr)Xlm

]
where the coefficients aE(l,m) and aM (l,m) give the amount of electric andmagnetic multipoles
of order (l,m). The functions fl(kr) and gl(kr) are linear combinations of h(1,2)

l or jl and nl. The
coefficients aE(l,m) and aM (l,m) are determined by the sources and the boundary conditions.
Explicitly, this is seen by the scalar quantitites r ·H and r · E being sufficient to determine the
unknown coefficients:

aM (l,m)gl(kr) =
k√

l(l + 1)

∫
(4π)

dΩY ∗lmr ·H

ζ0aE(l,m)fl(kr) = − k√
l(l + 1)

∫
(4π)

dΩY ∗lmr ·E

When r ·H and r · E are known at two distances differing from one another in the source-free
region, the fields can be unambiguously determined, all the way to the mutual proportions of
the two parts in the radial dependences fl and gl.
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16 Energy in multipole fields

Consider multipole fields in the near zone kr << 1. Then, the leading contribution derives from
the Neumann function so that fl ∝ nl; assume that the coefficient of the multipole in question
differs from zero. We obtain

H
(E)
lm → −

k

l
L
Ylm
rl+1

where the factor −k/l is introduced for convenience. In order to calculate the electric field, we
must compute the curl of the right-hand side of the equation; in doing this, we make use of the
result

i∇× L = r∇2 −∇(1 + r
∂

∂r
)

The electric field is
E

(E)
lm → −

i

l
ζ0∇× L

(
Ylm
rl+1

)
and, since Ylm/rl+1 obeys the Laplace equation,

∇2 Ylm
rl+1

= 0

and, for the electric field, we obtain

E
(E)
lm → −ζ0∇

Ylm
rl+1

which is the multipole field of electrostatics. The magnetic fieldH
(E)
lm is smaller than E

(E)
lm /ζ0 by

a factor of kr so that, in the near zone, the magnetic field of the electric multipole is considerably
smaller than the electric field (cf. earlier treatment for an electric dipole moment).

By exchanging E and H in the previous analysis, we can obtain the case of the magnetic multi-
pole,

E(E) → −ζ0H
(M), H(E) → E(M)/ζ0

Let us study the multipole fields in the far zone kr >> 1. The fields depend on the boundary
conditions set and, as an example, we study outgoing waves that are applicable to the case of
radiation by a localized source, too. Now fl(kr) ∝ h

(1)
l (kr) and

H
(E)
lm → (−i)l+1 e

ikr

kr
LYlm

and the electric field is of the form

E
(E)
lm = ζ0

(−i)l

k2

[
∇
(
eikr

r

)
× LYlm +

eikr

r
∇× LYlm

]
The asymptotic form of h(1)

l is already used in the expression of the electric field so only factors
proportional to r−1 can be conserved in the expressions. By using, again, the aforedescribed
result for∇× L, we obtain

E
(E)
lm = −ζ0(−i)l+1 e

ikr

kr

[
n× LYlm −

1

k
(r∇2 −∇)Ylm

]
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where n = r/r. The second term on the right is of the order of 1/kr and can be omitted from the
expression in parentheses in the limit kr >> 1. We obtain

E
(E)
lm = ζ0H

(E)
lm × n

whereH(E)
lm is asymptotic form given above.

The multipole fields can be utilized in the computation of the energy transported by the radia-
tion. As an example, consider the linear superposition of electric multipoles of order (l,m) with
different values ofm, when l is kept constant. The fields are of the form

Hl =
∑
m

aE(l,m)Xlmh
(1)
l (kr)e−iωt

El =
i

k
ζ0∇×Hl

The time-averaged energy density of time-harmonic fields is

u =
ε0
4

(E ·E∗ + ζ2
0H ·H∗)

In the far zone, the two terms of the energy density are equal and, in a spherical shell r, r + dr,
there is the following amount of energy:

dU =
µ0dr

2k2

∑
m,m′

a∗E(l,m′)aE(l,m)

∫
(4π)

dΩX∗lm′ ·Xlm

and, due to the orthogonality,
dU

dr
=

µ0

2k2

∑
m

|aE(l,m)|2

which is independent of r. In the general case of electric andmagneticmultipoles, the summation
goes over both l and m and |aE |2 → |aE |2 + |aM |2. In the spherical shell in the radiation zone,
the total energy is thus the incoherent sum over all multipoles.

17 Angular dependence of multipole radiation

For an arbitrary localized source distribution, the fields in the radiation zone are obtained as a
superposition

H→ eikr−iωt

kr

∑
lm

(−i)l+1

[
aE(l,m)Xlm + aM (l,m)n×Xlm

]

E→ ζ0H× n, n =
r

r

where the coefficients aE(l,m) and aM (l,m) are connected to the properties of the source. The
time-averaged power as per solid angle is

dP

dΩ
=

ζ0

2k2
|
∑
l,m

(−i)l+1

[
aE(l,m)Xlm × n + aM (l,m)Xlm

]
|2

The dimension of the expression inside the ||marks is the dimension of the magnetic field. The
directions of the vectors determine the polarization of the radiation. The angular dependence
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of the electric and magnetic multipoles of order (l,m) coincide but the polarizations are per-
pendicular to one another. It then follows that the order of the multipoles can be determined
from the angualr dependence but the electric or magnetic nature can be determined only after a
polarization measurement.

The angular dependence of a pure multipole of order (l,m) is

dP (l,m)

dΩ
=

ζ0

2k2
|a(l,m)|2|Xlm|2

Based on the definition ofXlm and the rules of calculus for L+ and L−,

dP (l,m)

dΩ
=
ζ0|a(l,m)|2

2k2l(l + 1)

[
1

2
(l−m)(l+m+ 1)|Yl,m+1|2 +

1

2
(l+m)(l−m+ 1)|Yl,m−1|2 +m2|Ylm|2

]
Examples of angular dependences |Xlm(θ, ϕ)|2 follow:
Dipole: (dipole vibrating in the direction of the z-axis)

l = 1,m = 0
3

8π
sin2 θ

(dipoles vibrating along the x- and y-axes with a phase difference π
2 )

l = 1,m = ±1
3

16π
(1 + cos2 θ)

Quadrupole:
l = 2,m = 0

15

8π
sin2 θ cos2 θ

l = 2,m = ±1
5

16π
(1− 3 cos2 θ + 4 cos4 θ)

l = 2,m = ±2
5

16π
(1− cos4 θ)

With the help of the addition rule for spherical harmonics, one can show that

l∑
m=−l

|Xlm(θ, ϕ)|2 =
2l + 1

4π

so that the vector spherical harmonics have their own addition rule. This implies that the angu-
lar dependence of radiation is isotropic when the source is composed of incoherently radiating
multipoles of order l with coefficients a(l,m) independent ofm.

The total power radiated by a pure multipole can be obtained via integration and, due to the
orthonormality,

P (l,m) =
ζ0

2k2
|a(l,m)|2

For a general source, the angular dependence follows from the coherent that has been shown
above. When computing the total power, due to the orthgonality, the interference terms do not
contribute, and the total power is the incoherent sum of the contributions from the different
multipoles:

P =
ζ0

2k2

∑
l,m

[
|aE(l,m)|2 + |aM (l,m)|2

]
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18 Vector spherical harmonics expansion for a plane wave

[Lecture 9]
In the scattering and absorption problem for localized objects, we need the vector spherical-
harmonics expansion of the electromagnetic plane wave.

Let us first derive the spherical-harmonics expansion of the scalar plane wave using the Green’s
function eikR/4πR:

eik|x−x
′|

4π|x− x′|
= ik

∞∑
l=0

jl(kr<)h
(1)
l (kr>)

l∑
m=−l

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ)

In the limit |x′| → ∞ pätee |x− x′| ≈ r′ − x′

r′ · x ja r> = r′, r< = r and h(1)
l (kr>) ≈ (−i)l+1 eikr>

kr>
.

Then,
eikr

′

4πr′
e−ik

x′
r′ ·x = ik

eikr
′

kr′

∑
lm

(−i)l+1jl(kr)Y
∗
lm(θ′, ϕ′)Ylm(θ, ϕ)

After reorganizing the terms and taking the complex conjugate,

eik·x = 4π
∞∑
l=0

iljl(kr)
l∑

m=−l
Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ)

where k id the wave vector k, θ′, ϕ′. According to the addition rule for the spherical harmonics,

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) (131)

where γ is the great-circle angle between (θ, ϕ) and (θ′, ϕ′). With the help of the addition rule,

eik·x =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos γ)

where γ is now the angle between k and x. Moreover,

eik·x =
∞∑
l=0

il
√

4π(2l + 1)jl(kr)Yl0(γ)

In what follows, we develop the corresponding expansion for a circularly polarized vector plane
wave

E(x) = (ε̂1 ± iε̂2)eikz

cB(x) = ε̂3 ×E = ∓iE(x),

where ε̂3 = êz . Since the plane wave is finite everywhere, we write its multipole expansion using
the regular radial functions jl(kr):

E(x) =
∑
lm

[
a±(l,m)jl(kr)Xlm +

i

k
b±(l,m)∇× jl(kr)Xlm

]
,
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cB(x) =
∑
lm

[
−i
k
a±(l,m)∇× jl(kr)Xlm + b±(l,m)jl(kr)Xlm

]
.

When deriving the coefficients a±(l,m) and b±(l,m), we make use of the orthogonality proper-
ties of the vector spherical-harmonics functionsXlm that we summarize in the following:∫

4π
dΩ[fl(r)Xl′m′ ]∗ · [gl(r)Xlm] = f∗l glδll′δmm′ ,

∫
4π
dΩ[fl(r)Xl′m′ ]∗ · [∇× gl(r)Xlm] = 0,

1

k2

∫
4π
dΩ[∇× fl(r)Xl′m′ ]∗ · [∇× gl(r)Xlm] = δll′δmm′{f∗l gl +

1

k2r2

d

dr
[rf∗l

d

dr
(rgl)]}.

Above, fl(r) and gl(r) are, again, linear combinations of spherical Bessel, Neumann, and Hankel
functions. The second and third relation follow from the results

i∇× L = r∇2 −∇(1 + r
∂

∂r
),

∇ =
r

r

∂

∂r
− i

r2
r× L,[

d2

dr2
+

2

r

d

dr
+ k2 − l(l + 1)

r2

]
fl(r) = 0,

and the proof is left for an exercise.
The coefficients a±(l,m) and b±(l,m) are determined via the scalar product between X∗lm and
the multipole expansions of the fields and the integration over the angular variables:

a±(l,m)jl(kr) =

∫
(4π)

dΩX∗lm ·E(x),

b±(l,m)jl(kr) =

∫
(4π)

dΩX∗lm ·B(x).

Explicitly,

a±(l,m)jl(kr) =

∫
(4π)

dΩ(ε̂1 ± iε̂2) ·
L∗Y ∗lm√
l(l + 1)

eikz =

∫
(4π)

dΩ
(L∓Ylm)∗√
l(l + 1)

eikz

where the operators L∓ have been defined earlier. Here we recognize the strength of these oper-
ators together with the analyses based on circular polarization, as it follows, in a straightforward
way, that

a±(l,m)jl(kr) =

√
(l ±m)(l ∓m+ 1)√

l(l + 1)

∫
(4π)

dΩYl,m∓1e
ikz

and, by incorporating the expansion for eikz ,

a±(l,m) = il
√

4π(2l + 1)δm,±1

b±(l,m) = ∓ia±(l,m)

The multipole expansion of the circularly polarized vector plane wave is thus

E(x) =

∞∑
l=1

il
√

4π(2l + 1)

[
jl(kr)Xl,±1 ±

1

k
∇× jl(kr)Xl,±1

]
,
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cB(x) =
∞∑
l=1

il
√

4π(2l + 1)

[
− 1

k
∇× jl(kr)Xl,±1 ∓ ijl(kr)Xl,±1

]
.

The expansions for plane waves linearly polarized in the directions of the vectors ε̂1 and ε̂2 can
be obtained from the previous results,

ε̂1e
ikz =

∞∑
l=1

il
√
π(2l + 1)

[
jl(kr)[Xl,1 + Xl,−1] +

1

k
∇× jl(kr)[Xl,1 −Xl,−1]

]
,

ε̂2e
ikz =

∞∑
l=1

il−1
√
π(2l + 1)

[
jl(kr)[Xl,1 −Xl,−1] +

1

k
∇× jl(kr)[Xl,1 + Xl,−1]

]
.

19 Scattering by a spherical particle

Outside the spherical particle, the electromagnetic field is a superposition of the original incident
field and the scattered field:

E(x) = Ei(x) + Es(x),

B(x) = Bi(x) + Bs(x).

where the plane-wave fieldsEi,Bi have been given earlier. Since the scattered fields are, asymp-
totically at the infinity, outgoing waves, they must be of the form

Es =
1

2

∞∑
l=1

il
√

4π(2l + 1)

[
α±(l)h

(1)
l (kr)Xl,±1 ±

β±(l)

k
∇× h(1)

l (kr)Xl,±1

]
,

cBs =
1

2

∞∑
l=1

il
√

4π(2l + 1)

[
−iα±(l)

k
∇× h(1)

l (kr)Xl,±1 ∓ iβ±(l)h
(1)
l (kr)Xl,±1

]
,

where the coefficients α±(l) and β±(l) are determined from the boundary conditions on the sur-
face of the particle. Generally, the expansions include a summation over the orderm but, in the
case of the spherical symmetry, only the multipolesm = ±1 contribute to the expansion.

With the help of the coefficients α(l) and β(l), we obtain the total scattered and absorbed power.
The scattered power follows from the integration of the outward directed component of the
scattered-field Poynting vector over the spherical surface. The absorbed power follows from the
integration of the inward directed Poynting-vector component of the total field. By reorganizing
triple scalar products, we obtain

Ps = − a2

2µ0
<
∫

(4π)
dΩEs · (n×Bs)

Pa =
a2

2µ0
<
∫

(4π)
dΩE · (n×B)

where n = êr. Only the transverse field components contribute to the values of the integrals.
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Explicitly,

Xlm(θ, ϕ) =
−m√

l(l + 1) sin θ

[
êθYlm(θ, ϕ)−

iêϕ

[√
(l2 −m2)

(2l − 1)(2l + 1)
Yl−1,m(θ, ϕ) +

√
(l + 1)2 −m2

(2l + 1)(2l + 3)
Yl+1,m(θ, ϕ)

]]
,

1

k
∇× Zl(kr)Xlm(θ, ϕ) =

iêr
√
l(l + 1)

kr
Zl(kr)Ylm(θ, ϕ) +

1

kr

d

d(kr)
[krZl(kr)]êr ×Xlm(θ, ϕ), (132)

where we see that Xlm is transverse and that, in the latter term, the transverse component is
proportional to êr ×Xlm. Upon inserting the multipole expansions of the fields into the expres-
sions for the power, we obtain a double summation over l and l′ of relations that are of the form
X∗lm ·Xl′m′ ,X∗lm · (êr ×Xl′m′), (êr ×Xlm) · (êr ×Xl′m′). Integration over the angles removes the
other summation. Each remaining term in the sum contains a product of spherical Bessel’s func-
tions and/or their derivatives—these products can be eliminatedwith the help of theWronskian
determinants. The cross sections of scattering and absorption are finally (exercise)

σs =
π

2k2

∑
l

(2l + 1)[|α(l)|2 + |β(l)|2],

σa =
π

2k2

∑
l

(2l + 1)[2− |α(l) + 1|2 − |β(l) + 1|2],

and the exticntion cross section is the sum of the two above,

σt = − π

k2

∑
l

(2l + 1)<[α(l) + β(l)]

The differential scattering cross section is

dσs
dΩ

=
π

2k2
|
∑
l

√
2l + 1[α±(l)Xl,±1 ± iβ±(l)êr ×Xl,±1]|2,

for the original polarization state ε̂1 ± iε̂2. Thereby, scattered radiation is in general elliptically
polarized.

Let us study the solution for the coefficients α(l) and β(l) based on the boundary conditions and
start by defining the fields. The original plane-wave field is Ei = (ε̂1 ± iε̂2)eikz :

Ei(x) =

∞∑
l=1

il
√

4π(2l + 1)

[
jl(kr)Xl,±1 ±

1

k
∇× jl(kr)Xl,±1

]
,

Hi(x) =
1

µ0

∞∑
l=1

il
√

4π(2l + 1)

[
−i
k
∇× jl(kr)Xl,±1 ∓ ijl(kr)Xl,±1

]
.

The scattered field takes the form

Es(x) =
1

2

∞∑
l=1

il
√

4π(2l + 1)

[
α±(l)h

(1)
l (kr)Xl,±1 ±

β±(l)

k
∇× h(1)

l (kr)Xl,±1

]
,
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Hs(x) =
1

2µ0c

∞∑
l=1

il
√

4π(2l + 1)

[
−iα±(l)

k
∇× h(1)

l (kr)Xl,±1 ∓ iβ±(l)h
(1)
l (kr)Xl,±1

]
.

The internal field is

Et(x) =
1

2

∞∑
l=1

il
√

4π(2l + 1)

[
η±(l)jl(ktr)Xl,±1 ±

ζ±(l)

kt
∇× jl(ktr)Xl,±1

]
,

Ht(x) =
1

2µc

∞∑
l=1

il
√

4π(2l + 1)

[
−iη±(l)

kt
∇× jl(ktr)Xl,±1 ∓ iζ±(l)jl(ktr)Xl,±1

]
.

The boundary conditions on the surface of the spherical particle (radius a) are

êr × [Ei + Es −Et]|r=a = 0,

êr × [Hi + Hs −Ht]|r=a = 0.

As found earlier,

êr ×
[

1

k
∇× Zl(kr)Xlm(θ, ϕ)

]
= − 1

kr
[krZl(kr)]

′Xlm(θ, ϕ),

so that, due to the orthogonality of the functions Xlm and êr ×Xlm , the boundary conditions
simplify into the form,

jl(ka) +
1

2
α±(l)h

(1)
l (ka)− 1

2
η±(l)jl(kta) = 0,

± 1

ka
[kajl(ka)]′ ∓ 1

2
β±(l) · 1

ka
[kah

(1)
l (ka)]′ ∓ ζ±(l)

1

kta
[ktajl(kta)]′ = 0,

1

ka
[kajl(ka)]′ +

1

2
α±(l)

1

ka
[kah

(1)
l (ka)]′ − µ0

2µ
· η±(l)

1

kta
[ktajl(kta)]′ = 0,

∓jl(ka)∓ 1

2
β±(l)h

(1)
l (ka)± 1

2

µ0

µ
ζ±(l)jl(kta) = 0.

With the help of the Riccati-Bessel functions and by writing x = ka, kta = mx, we obtain

ψl(x) +
1

2
α±(l)ξl(x)− 1

2
η±(l)

1

m
ψl(mx) = 0,

∓ψ′l(x)∓ 1

2
β±(l)ξ′l(x)∓ 1

2
ζ±(l)

1

m
ψ′l(mx) = 0,

ψ′l(x) +
1

2
α±(l)ξ′l(x)− µ0

2µ
η±(l)

1

m
ψ′l(mx) = 0,

∓ψl(x)∓ 1

2
β±(l)ξl(x)± µ0

2µ
ζ±(l)

1

m
ψl(mx) = 0,

that leads to

α±(l) = −2

µ0
µ ψl(x)ψ′l(mx)− ψ′l(x)ψl(mx)
µ0
µ ξl(x)ψ′l(mx)− ξ′l(x)ψl(mx)

,

β±(l) = −2
∓µ0

µ ψ
′
l(x)ψl(mx)∓ ψl(x)ψ′l(mx)

∓µ0
µ ξ
′
l(x)ψl(mx)∓ ξl(x)ψ′l(mx)

,

η±(l) = 2
ψl(x)ξ′l(x)− ψ′l(x)ξl(x)

1
mψl(mx)ξ′l(x) + 1

m
µ0
µ ψ
′
l(mx)ξl(x)

,
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ζ±(l) = 2
∓ψ′l(x)ξl(x)pmψl(x)ξ′l(x)

1
mψ
′
l(mx)ξl(x)∓ 1

m
µ0
µ ψl(mx)ξ′l(x)

.

[Lecture 10]
We have solved for the scattered field completely for two circular polarization states of the orig-
inal field ε1 ± iε2. We thus know the elements S(c)

j (j=1,2,3,4) of the amplitude scattering matrix
that relates the original field to the scattered field in the circular-polarization representation.(

Es−
Es+

)
=
eik(r−z)

−ikr

(
S

(c)
2 S

(c)
3

S
(c)
4 S

(c)
1

)(
Ei−
Ei+

)
(133)

The amplitude scattering matrix elements of the circular-polarization representation relate lin-
early to the commonly used ones of the linear-polarization representation.

S
(c)
1

S
(c)
2

S
(c)
3

S
(c)
4

 =
1

2


1 1 i −i
1 1 −i i

−1 1 i i

−1 1 −i −i




S1

S2

S3

S4

 , (134)

where, in the case of Lorenz-Mie scattering (S3 = S4 = 0),

S
(c)
1 = (S1 + S2)/2

S
(c)
2 = (S1 + S2)/2 = S

(c)
1

S
(c)
3 = (−S1 + S2)/2

S
(c)
4 = S

(c)
3

} ⇒ { S1 = S
(c)
1 − S

(c)
3

S2 = S
(c)
1 + S

(c)
3

The complete scattering matrix follows now from the elements S1, S2 in a standard manner. The
elements S(c)

1 , S(c)
2 , S(c)

3 , S(c)
4 follow from the far-zone expressions for the scattered fields, for

which the vector spherical harmonics expansions reduce to the form utlized earlier in the ex-
pression for the differential scattering cross section. A more detailed assessment is left for an
exercise.

20 Scattering at the short-wavelength limit. Scalar diffraction the-
ory.

Traditionally, diffraction entails those deviations fromgeometric optics that derive from the finite
wavelength of the waves. Thereby, diffraction is connected to objects (e.g., holes, obstacles) that
are large compared to the wavelength. The possible geometries are described in the figure below
(see Jackson). The sources of the radiation are located in region I and we want to derive the
diffracted fields in the diffraction region II. The regions are bounded by the interfaces S1 and S2.
Kirchhoff was the first one to treat this topic systematically.

For simplicity, we will first study scalar fields, whereafter we will extend the analysis to vector
fields. Let ψ(x, t) be a scalar field, for which we assume a harmonic time dependence e−iωt. In
essence, ψ is one of the components of the E or B fields. We assume that ψ fulfils the scalar
Helmholtz wave equation

(∇2 + k2)ψ(x) = 0
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in the volume V bounded by S1 and S2. We introduce the Green’s function G(x,x′),

(∇2 + k2)G(x,x′) = −δ(x− x′)

and start from Green’s theorem∫
V

(φ∇2ψ − ψ∇2φ)d3x′ =

∮
S

[φ
∂ψ

∂n
− ψ∂φ

∂n
]dA′

∂ψ

∂n
≡ n′ · ∇ψ

where n′ is the unit inward normal vector of S. Let us now set ψ = G and φ = ψ so that, with
the help of the wave equations for ψ and G,

ψ(x) =

∮
S
dA′[ψ(x′)n′ · ∇′G(x,x′)−G(x,x′)n′ · ∇′ψ(x′)]

Kirchhoff’s diffraction integral follows from this relation when G is chosen to be the free-space
Green’s function describing outgoing waves,

G(x,x′) =
eikR

4πR
, R = x− x′, R = |R|

Then
ψ(x) = − 1

4π

∮
S
dA′

eikR

R
n′ · [∇′ψ + ik(1 +

i

kR
)
R

R
ψ]

The surface S is composed of S1 and S2 and the integration can be divided into two parts. In the
proximity of S2, ψ is an outgoing wave and fulfils the so-called radiation condition

ψ → f(θ, ϕ)
eikr

r
,

1

ψ

∂ψ

∂r
→ (ik − 1

r
).

By inserting these results into the integral above, it is possible to show that the integral over S2

vanishes at least as the inverse of the radius of the sphere when the radius approaches infinity.
There remains the integral over S1, giving the final form of the Kirchhoff integral relation,

ψ(x) = − 1

4π

∫
S1

dA′
eikR

R
n′ · [∇′ψ + ik(1 +

i

kR
)
R

R
ψ]

In applying the integral relation, it is necessary to know both ψ and ∂ψ/∂n on the surface S1.
In general, these are not known, at least not precisely. Kirchhoff’s approach was based on the
idea that ψ and ∂ψ/∂n are approximated on S1 for the computation of the diffracted wave. This
so-called Kirchhoff’s approximation consists of the following assumptions:

1. ψ and ∂ψ/∂n vanish everywhere else but the holes of S1

2. ψ and ∂ψ/∂n in the holes are equal to the original field values when there are no diffracting
elements in space.

These assumptions contain a serious mathemtical inconsistency: if ψ and ∂ψ/∂n are zero on a
finite surface, then ψ = 0 everywhere. In spite of the inconsistency, the Kirchhoff approximation
works in an excellentway in practical problems and constitutes the basis of all diffraction calculus
in classical optics.
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The mathematical inconsistencies can be removed by a proper choice of the Green’s function. In
the setup of the figure below (see Jackson), (both P and P ′ are located several wavelengths away
from the hole) we obtain

ψ(P ) =
k

2πi

∫
S1

dA′
eikr

r

eikr
′

r′
O(θ, θ′)

O(θ, θ′) =


cos θ, ;
cos θ′, ;
1
2(cos θ + cos θ′), (Kirchhoffin approksimaatio).

The obliquity factor O(θ, θ′) assumes less significance than the phase factors, which partly ex-
plains the success of the Kirchhoff approximation.

21 Vector Kirchhoff integral relation

The scalar Kirchhoff integral relation is an exact relation between the scalar fields on the surface
and at infinity. In a corresponding way, the vector Kirchhoff integral relation is an exact rela-
tion between the E,B fields on the surface S and the diffracted or scattered fields at infinity.
Such a relation is interesting in itself and it is a correct guess that the relation carries practical
significance, too.

In what follows, we derive the vector relation for the electric field E, starting from the general-
ization of Green’s theorem already appearing in the scalar case for all components of theE-field,

E(x) =

∮
S
dA′[E(n′ · ∇′G)−G(n′ · ∇′)E],

when x ∈ V and V is the volume bounded by S. Again, n′ is the unit normal vector pointing
into the volume V . Since G is singular at x′ = x and we make use of vector calculus valid for
smooth functions, we assume that S is composed of the outer surface S′ and an infinitesimally
small inner surface S′′ so that the point x′ = x is left out from volume V (but the point is inside
S′′). In such a case, the left-hand side of the previous equation disappears, but the integration
over S′′ on the right-hand side returns −E(x) when the radius of S′′ goes to zero.

The vector relation can now be written in the form

0 =

∮
S
dA′[2E(n′ · ∇′G)− n′ · ∇′(GE)]

and, with the help of the divergence theorem ja divergenssiteoreeman∫
V
dV ′∇ ·A =

∮
S
dA′A · n,

the latter term can be transformed to a volume integral

0 =

∮
S
dA′2E(n′ · ∇′G) +

∫
V
dV ′∇′2(GE)

Now
∇2A = ∇(∇ ·A)−∇× (∇×A)∫

V
dV∇φ =

∮
S
dAnφ, (n ulkonormaali)
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∫
V
dV∇×A =

∮
S
dA(n×A)

and the volume integral can be returned back to a surface integral

0 =

∮
S
dA′[2E(n′ · ∇′G)− n′(∇′ · (GE)) + n′ × (∇′ × (GE))]

When the∇-operations are carried out for GE and use is made of Maxwell’s equations∇′ ·E =

0,∇′ ×E = iωB, one obtains

0 =

∮
S
dA′[iω(n′ ·B)G+ (n′ ×E)×∇′G+ (n′ ·E)∇′G]

and, furthermore,

E(x) =

∮
S
dA′[iω(n′ ·B)G+ (n′ ×E)×∇′G+ (n′ ·E)∇′G]

where the volume bounded by S now again includes the point x.
As in the case of the scalar relation, we can now derive the vector Kirchhoff integral relation

E(x) =

∮
S1

dA′[iω(n′ ·B)G+ (n′ ×E)×∇′G+ (n′ ·E)∇′G],

where the integration extends over S1 only.
Finally, we derive a relation between the scattering amplitude and the near fields. For the fields
in the vector Kirchhoff integral relation, we choose the scattered fields Es,Bs, that is, the total
fieldsE,Bminus the original fieldsEi,Bi. If the observation point is far away from the scatterer,
both the Green’s function and the scattered electric field can be given in their asymptotic forms

G(x,x′) =→ 1

4π

eikr

r
e−ik·x

′

Es(x)→ eikr

r
F(k,k0)

where k is a wave vector pointing in the direction of the observer, k0 is the wave vector of the
original field, and F(k,k0) is the vector scattering amplitude. In this limit,∇′G = −ikG and we
obtain an integral relation for the scattering amplitude,

F(k,k0) =
i

4π

∮
S1

dA′e−ik·x
′
[ω(n′ ·Bs) + k× (n′ ×Es)− k(n′ ·Es)]

The relation depends explicitly on the direction of k and the dependence on k0 is implicit in Es
and Bs. Since k · F = 0, we can reduce the relation to

F(k,k0) =
1

4πi
k×

∮
S1

dA′e−ik·x
′
[
ck× (n′ ×Bs)

k
− n′ ×Es]

Alternatively, one may want the scattering amplitude in direction k for a specific polarization
state ε∗,

ε∗ · F(k,k0) =
i

4π

∮
S1

dA′e−ik·x
′
[ωε∗ · (n′ ×Bs) + ε∗ · (k× (n′ ×Es))]

These integral relations are useful in scattering problems entailing short wavelengths and in the
derivation of the optical theorem.
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22 Diffraction by a circular aperture

[Lecture 11]
Diffraction is divided into Fraunhofer and Fresnel diffraction depending on the geometry under
consideration. There are three length scales involved: the size of the diffracting system d, the
distance from the system to the observation point r and thewavelength λ. The diffraction pattern
is generated when r >> d. In tht case, the slowly changing parts of the vector integral relation
can be kept constant. Particular attention needs to be paid to the phase factor eikR. When r >> d,
we obtain

kR = kr − kn · x′ + k

2r
[r′2 − (n · x′)2] + . . . , n =

x

r
,

where n is a unit vector pointing in the direction of the observer. The magnitudes of the terms
in the expansion are kr, kd, (kd)2/kr. In Fraunhofer diffraction, the terms from the third one (in-
clusive) onwards are negligible. When the third term becomes significant (e.g., large diffracting
systems), we enter the domain of Fresnel diffraction. Far enough from any diffracting system,
we end up in the domain of Fraunhofer diffraction.
If the observation point is far away from the diffracting system, Kirchhoff’s scalar integral relation
assumes the form

Ψ(x) = −e
ikr

4πr

∫
S1

dA′e−ik·x
′
[
n · ∇′Ψ(x′) + ik · nΨ(x′),

where n now is the unit normal vectoron, x′ denotes the position of the element dA′, and r =

|x|,k = k(x/r). The so-called Smythe-Kirchhoff integral relation is an improved version of the
pure Kirchhoff relation and, in the present limit, takes the form

E(x) =
ieikr

2πr
k×

∫
S1

dA′n×E(x′)e−ik·x
′

Let us study next what the different diffraction formulae give for a circular hole (radius a) in an
infinitesimally thin perfectly conducting slab.
Figure (see Jackson)
In the vector relation,

(n×Ei)z=0 = E0ε2 cosαeik sinαx′

and, in polar coordinates,

E(x) =
ieikrE0 cosα

2πr
(k× ε2)

∫ a

0
dζζ

∫ 2π

0
dβeikζ[sinα cosβ−sin θ cos(ϕ−β)]

Define
ξ ≡ 1

k
|k⊥ − k0,⊥| =

√
sin2 θ + sin2 α− 2 sin θ sinα cosϕ,

in which case the integral takes the form

1

2π

∫ 2π

0
dβ′e−ikζξ cosβ′

= J0(kζξ)

that is, the result is the Bessel function J0. Hereafter, the integration over the radial part can be
calculated analytically, and

E(x) =
ieikr

r
a2E0 cosα(k× ε2)

J1(kaξ)

kaξ

page 43/52



The time-averaged power as per unit solid angle is then

dP

dΩ
= Pi cosα

(ka)2

4π
(cos2 θ + cos2 ϕ sin2 θ)|2J1(kaξ)

kaξ
|2

Pi = (E2
0/2z0)πa2 cosα,

wherePi is the total power normally incident on the hole. If ka >> 1, the function [(2J1(kaξ)/kaξ)2]

peaks sharply at 1 with the argument ξ = 0 and falls down to zero at ∆ξ ≈ 1/ka. The main part
of the wave propagates according to geometric optics and only modest diffraction effects show
up. If, however, ka ≈ 1, the Bessel function varies slowly as a function of the angles and the
transmitted wave bends into directions considerably deviting from the propagation direction of
the incident field. In the extreme limit ka << 1, the angular dependence derives from the po-
larization factor k × ε2, but the analysis fails because the field in the hole can no longer be the
original undisturbed field as assumed earlier.

let us study the scalar solution assuming that Ψ corresponds the magnitude of the E field,

Ψ(x) = −ik e
ikr

r
a2E0

1

2
(cosα+ cos θ)

J1(kaξ)

kaξ

dP

dΩ
∼= Pi

(ka)2

4π
cosα(

cosα+ cos θ

2 cosα
)|2J1(kaξ)

kaξ
|2 (135)

Both the vector and scalar results include the Bessel part [(2J1(kaξ)/kaξ)2] and the same wave
number dependence. But whereas there is no azimuthal dependence in the scalar result, the
vector result is significantly affected by the azimuthal dependence. The dependence derives
from the polarization of the vector field. For an original field propagating in the direction of the
normal vector, the polarization effects are not important, when additionally ka >> 1. Then, all
the results reduce into the familiar expression

dP

dΩ
∼= Pi

(ka)2

π
|Ji(ka sin θ)

ka sin θ
|2

However, for oblique directions, there are large deviations and, for very small holes, the analysis
fails completely.

23 Scattering in detail

Let us now consider a small particle that is much larger than the wavelength and study what
kind of tools the vector Kirchhoff integral relation offers, if the fields close to the surface can be
estimated somehow.

For example, the surface of the scatterer is divided into the illuminated and shadowed parts.
The boundary between the two parts is sharp only in the limit of geometric optics and, in the
transition zone, the breadth of the boundary is of the order of (2/kR)1/3 ·R, whereR is a typical
radius of curvature on the surface of the particle.

On the shadow side, the scattered field must be equal to the original field but opposite in sign,
in which case the total field vanishes. On the illuminated side, the field depends in a detailed
way on the properties of the scattering particle. If the curvature radii are large compared to
the wavelength, we can make use of Fresnel’s coefficients and geometric optics in general. The
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analysis can be generalized into the case of a transparent particle and the method is known as
the physical-optics approximation (or Kirchhoff approximation).
Let us write the scattering amplitude explicitly in two parts,

ε∗ · F = ε∗ · Fsh + ε∗ · Fill

and assume that the incident fields is a plane wave

Ei = E0ε0e
ik0·x

Bi = k0 ×Ei/kc

The shadow scattering amplitude is then (Es ≈ −Ei,Bs ≈ −Bi)

ε∗ · Fsh =
E0

4πi

∫
sh
dA′ε∗ · [n′ × (k0 × ε0) + k× (n′ × ε0)] · ei(k0−k)·x′

where the integration is over the shadowed region. The amplitude can be rearranged into the
form

ε∗ · Fsh =
E0

4πi

∫
sh
dA′ε∗ · [(k + k0)× (n′ × ε0) + (n′ · ε0)k0] · ei(k0−k)·x′

In the short-wavelength limit, k0 · x′ and k · x′ vary across a large regime and the exponential
factor fluctuates rapidly and eliminates the integral everywhere else but the forward-scattering
direction k ≈ k0. In that direction (θ . 1/kR), the second factor is negligible compared to the
first one since (ε∗ · k0)/k is of the order of sin θ << 1, (ε∗ · k = 0,k0 ≈ k). Thus,

ε∗ · Fsh =
iE0

2π
(ε∗ · ε0)

∫
sh
dA′(k0 · n′)ei(k0−k)·x′ (136)

In this approximation, the integral over the shadow side only depends on the projected area
against the propagation direction of the original field. This can be seen from the fact that k0 ·
n′dA′ = kdx′dy′ = kd2x′⊥ ja (k0− k) · x′ = k(1− cos θ)z′− k⊥ · x′⊥ ≈ −k⊥ · x′⊥. The final form of
the shadow scattering amplitude is thus

ε∗ · Fsh =
ik

2π
E0(ε∗ · ε0)

∫
sh
d2x′⊥e

−ik⊥·x′
⊥ (137)

In this limit, all scatterers producing the same prohjected area will have the same shadow scat-
tering amplitude. For example, in the case of a circular cylindrical slab (radius a)∫

sh
d2x′⊥e

−ik⊥·x′
⊥ = 2πa2J1(ka sin θ)

ka sin θ
,

ε∗ · Fsh ∼= ika2E0(ε∗ · ε0)
J1(ka sin θ)

ka sin θ
.

This explains nicely the forward diffraction pattern in scattering by small particles.
[Lecture 12]
The scattering amplitude due to the illuminated side of the scatterer cannot be calculated with-
out defining the shape and optical properties of the particle. Let us assume in the following
example that the illuminated region is perfectly conducting. Then, the tangential components of
the fields Es andBs on S1 are approximately opposite and similar to those of the original fields,
respectively. The scattering amplitude due to the illuminated part is then

ε∗ · Fill =
E0

4πi

∫
ill
dA′ε∗ · [−n′ × (k0 × ε0) + k× (n′ × ε0)] · ei(k0−k)·x′
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When this is compared with the shadow amplitude, the only notable difference is the sign in
the first term. This sign difference results in a completely different scattering amplitude that can
also be written in the form muodossa

ε∗ · Fill =
E0

4πi

∫
ill
dA′ε∗ · [(k− k0)× (n′ × ε0)− (n′ · ε0)k0] · ei(k0−k)·x′

When again kR >> 1, the exponential factor fluctuates rapidly and one would expect a strong
contribution in the forward direction; however, the first termgoes to zero in the forwarddirection
and no strong contribution can follow. The illuminated region contributes to scattering in the
form of a reflected wave.

Assume next that the scattering particle is spherical (radius a). The predominating contribution
to the scattering amplitude now derives from a region of integration where the phase of the
exponential factor is stationary. If (θ, ϕ) are the coordinates of k and (α, β) those of n′ (with
respect to k0), the phase factor is

φ(α, β) = (k0 − k) · x′ = ka[(1− cos θ) cosα− sin θ sinα cos(β − ϕ)]

The stationary point can be found at angles α0, β0, where α0 = π/2 + θ/2 and β0 = ϕ. These
angles correspond exactly to the angles of reflection on the surface of the sphere as dictated by
geometric optics. At that point, the vector n′ points in the direction of (k−k0). In the proximity
of angles α = α0 and β = β0

φ(α, β) = −2ka sin
θ

2
[1− 1

2
(x2 + cos2 θ

2
y2) + . . .]

where x = α− α0 and y = β − β0. The integration can be carried out approximately:

ε∗ · Fill ∼= ka2E0 sin θe−2ika sin θ
2 (ε∗ · εr) ·

∫
dxei[ka sin θ

2
]x2
∫
dyei[ka sin θ

2
cos2 θ

2
]y2

εr = −ε0 + 2(nr · ε0)nr, nr =
k− k0

|k− k0|

When 2ka sin θ
2 >> 1, the integrals can be calculated using the result

∫∞
−∞ dxe

iαx2 =
√
πi/α,

ε∗ · Fill ∼= E0
a

2
e−2ika sin θ

2 ε∗ · εr

For large 2ka sin θ
2 , the intensity of the reflected part of the radiation is constant as a function of

the angle, but the part has a rapidly varying phase. When θ → 0, the intensity vanishes as θ2

(see the integral above).

Comparison of the amplitudes due to the shadowed and illuminated parts of the surface shows
that, in the forward direction, the former amplitude predominates over the latter by a factor
ka >> 1 whereas, at the scattering angles 2ka sin θ >> 1, the ratio of the amplitudes is of the
order of 1/(ka sin3 θ)1/2. The differential scattering cross section (summed over the polarization
states of the original and scattered waves) is

dσ

dΩ
∼=

{
a2(ka)2|J1(ka sin θ)

ka sin θ |
2, θ . 10

ka ;
a2

4 , θ >> 1
ka .

The total scattering cross section is twice the geometric cross section of the particle.
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24 Optical theorem

The optical theorem is a fundamental relation that connects the exticntion cross section to the
imaginary part of the forward-scattering amplitude. Consider a plane wave with a wave vector
k0 and field components Ei,Bi. The plane wave is incident on a finite-sized scatterer inside the
surface S1. The scattered field Es,Bs propagates away from the scatterer and is observed in the
far zone in the direction k. The total field outside the surface S1 is, by definition,

E = Ei + Es

B = Bi + Bs.

In the general case, the scatterer absorbs energy from the original field. The absorbed power can
be calculated by integrating the inward-directed Poynting-vector component of the total field
over the surface S1:

Pabs = − 1

2µ0

∮
S1

dA′Re(E×B∗) · n′

The scattered power is computed in the usual way from the asymptotic form of the Poynting
vector for the scattered fields in the regime, where the fields are simple transverse spherical
waves that attenuate as 1/r. But since there are no sources between S1 and infinity, the scattered
power can aswell be calculated as an integral of the outward-directed component of the Poynting
vector for the scattered field over S1:

Psca =
1

2µ0

∮
S1

dA′Re(Es ×B∗s) · n′

The total power is the sum of the absorbed and scattered power so that, after rearranging,

P = Pabs + Psca = − 1

2µ0

∮
S1

dA′Re(Es ×B∗i + E∗i ×Bs) · n′

When the original field in written explicitly in the form

Ei = E0ε0e
ik0·x

cBi =
1

k
k0 ×Ei

the total power can be transformed to the form

P =
1

2µ0
ReE∗0

∮
S1

dA′e−ik0·x[ε∗0 · (n′ ×Bs) + ε∗0 ·
k0 × (n′ ×Es)

kc
]

By comparing this with the scattering amplitude F(k,k0) derived earlier, we can recognize that
the total power is proportional to the value of F in the forward-scattering direction k = k0 in the
polarization state coinciding with that of the original field:

P =
2π

kZ0
Im[E∗0ε

∗
0 · F(k = k0)],

which is the basic form of the optical theorem.

The total or extinction cross section σe is defined as the ratio of the total and original flux densities
(|E0|2/2Z0, power as per unit surface area).
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In a corresponding way, one can define a normalized scattering amplitude f (against the original
field value at origin)

f(k = k0) =
F(k,k0)

E0

The final form of the optical theorem is then

σe =
4π

k
Im[ε∗0 · f(k = k0)].

25 Scattering by nonspherical particles

[Lecture 13]
Perfectly spherical particles constitute, practically, an exception in nature and even in indus-
trial applications. In the recent past, numerical methods have been actively developed for light
scattering by nonspherical particles. In practice, the methods require extensive computational
capacity including supercomputers.
In what follows, one possible modeling of a nonspherical particle geometry is presented: the
Gaussian random sphere. Thereafter, computation of scattering by Gaussian particles is dis-
cussed in various approxiamtions, whereafter a summary is given on essentially exact numerical
methods and possibilities to apply these methods to scattering by Gaussian particles.

26 Gaussian random particle

Statistical modeling of nonspherical particle shapes seems reasonable, since nonspherical shapes
usually showup as awide spectrumof different-looking shapes. In theGaussian-random-sphere
model, the particle is assumed to be mathematically star-like so that there is an origin with re-
spect to which the shape can be expressed as a function of the spherical coordinates. In the
spherical geometry, the so-called lognormal statistics are being used so that the radial distance
of the particle varieswithin ]0,∞[. The shape is unambiguously defined by themean of the radial
distance a and the covariance function of the logarithm of the radial distance Σs. Explicitly,

r(θ, ϕ) = aes(θ,ϕ)− 1
2
β2
,

where s is the logarithmic radial distance and β2 = Σs(0) is the variance of s. Now

s(θ, ϕ) =
∑
lm

slmYlm(θ, ϕ)

and, due to s being real-valued,

sl,−m = (−1)ms∗lm

{
l = 0, 1, 2, . . . , ;
m = −l, . . . ,−1, 0, 1, . . . , l,

,

Im(sl0) = 0.

The spherical harmonics coefficients of the logarithmic radial distance slm,m ≥ 0 are indepen-
dent Gaussian random variables with zero means and with variances (l andm as above)

Var[<(slm)] = (1 + δm0) 2π
2l+1cl

Var[=(slm)] = (1− δm0) 2π
2l+1cl
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The coefficients cl ≥ 0, l = 0, . . . ,∞ are the coefficients of the Legendre expansion for the covari-
ance function Σs:

Σs(γ) = β2Cs(γ) =

∞∑
l=0

clPl(cos γ),

∞∑
l=0

cl = β2,

where γ is the angualr distance between two directions (θ1, ϕ1) and (θ2, ϕ2).
The two slopes on the Gaussian random particle (subscripts refering to partial derivatives)

sθ =
rθ
r
,

1

sin θ
sϕ =

rϕ
r sin θ

are, again, independent Gaussian random variables with zero means and with standard devia-
tions

ρ =

√
−Σ

(2)
s (0),

where Σ
(2)
s is the second derivative of the covariance function with respect to γ. The correlation

length lc and correlation angle Γc are

lc = 2 sin
1

2
Γc =

1√
−c(2)

s (0)

.

Natural random shapes often exhibit covariance functions, for which the coefficients cl follow
the exponent form cl ∝ l−ν , l ≥ 2. For ν = 4, one obtains random shapes applicable, in the first
place, to modeling Saharan sand particles, asteroids, as well as the shapes of terrestrial planets.
In the limiting case, the Gaussian random shape thus depends on a single free parameter insofar
as the shape is concerned: the variance β2 of the logarithmic radial distance. β2 relates to the
relative variance of the radius σ2 via the simple relation

σ2 = eβ
2 − 1.

Increasing σ results in shapes, where the radial fluctuations are enhanced.
If, additionally, ν is treated as a free parameter, one obtains shorter correlation lengths with
smaller values of ν (when the expansions are always truncated at a certain degree lmax) and
thereby lrger numbers of hills and valleys as per unit solid angle.
For ν ≥ 4, non-fractal smooth shapes are obtained whereas, for ν < 4, fractal shapes follow, in
which case infinite expansions would yield non-differentiable surfaces rendering the discussion
of slopes meaningless.

27 Scattering by Gaussian particles in different approximations

Light scattering by Gaussian random particles has been studied in the ray-optics, Rayleigh-
volume, Rayleigh-Gans, anomalous-diffraction and perturbation-series approximations, as well
as in the Rayleigh-ellipsoid approximation.
In the Rayleigh-volume approximation, the scattering by a small particle follows from its vol-
ume. In the case of the Gaussian particle, the (ensemble-averaged) absorption cross section is
proportional to the mean of the volume, whereas the scattering cross section is proportional to
the mean of the squared volume. The angular characteristics of the scattering matrix are the
same as in the Rayleigh approximation for spherical particles. The results are largely analytical.
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In the Rayleigh-ellipsoid approximation, an ellipsoid is fitted to each realization of the Gaussian
particle, the ellipsoid volume being equal to the volume of the realization. Scattering is then
approximated with the existing electrostatics approximation for ellipsoidal scatterers. The most
significant challenge in the Rayleigh-ellipsoid approximation is the numerical computation of
the best-fit ellipsoid, whereafter the results follow in a straightforward way.
In the Rayleigh-Gans approximation (or the first Born approximation), the numerical computa-
tion of the form factor can be aided by analytical intermediate results. In practice, some numer-
ical integrattion remains, preventing the treatment of arbitrarily large particles.
In anomalous diffraction, path lengths of rays inside the Gaussian sample particles are numer-
ically computed in cases where the refractive index is close to unity. The absorption follows
directly from the exponential attenuation and extinction is computed from the optical theorem.
The angular dependence of scattering is obtained by averaging the square of the scattering am-
plitude. The most demanding task is the computation of the path lengths inside the particle,
which is difficult for extremely nonspherical shapes.
In the second-order perturbation-series approach for the boundary conditions, analytical results
follow for the cross sections and scattering matrices and the most challenging numerical part is
the computation of the so-called 3j-symbols. The unknown accuracy of the results is a problem.
In practice, the perturbation-series method is applicable to wavelength-scale scatterers only, if
the deviations from the spherical shape are small compared to the wavelength.
Approximations can be taken to be "the spice" that makes the scattering research "delicious",
since, in practice, all so-called exact methods are based on approximation in some part. One can
make the provocative statement that only approximations allow the computation of light scat-
tering by realistic small particles. The applicability of the exact methods is usually limited to a
narrow range of simple shapes. By the rapid development of computers and by the development
of new analytical methods, the applicability of certain exact methods grows slowly but steadily.

28 Exact methods and their applicability to Gaussian particles

The numerical methods in light scattering can be divided into differential-equation and integral-
equation methods. The traditional computational method is the separation-of-varaibles method
that has been successful in the solution of the following scattering problems:

1. isotropic, homogeneous sphere

2. coated sphere consisting of the interior and coating (with common origin)

3. layered sphere that consists of several layers defined by concentric spherical cells

4. radially inhomogeneous sphere

5. optically active (chiral) sphere

6. homogeneous, istropic infinite circular cylinder

7. optically active infinite circular cylinder

8. isotropic infinite elliptic cylinder

9. isotropic, homogeneous spheroid
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10. coated spheroid that consists of the interior and coating (with common origin)

11. optically active spheroid

The separation-of-variables method is not applicable to scattering by Gaussian particles.
The FEM-method (finite-elementmethod) is a differenttial-equationmethod, where the scatterer
is placed in a finite computational volume that is discretized into numerous small computational
cells. Typically, there are 10-20 cells per wavelength and the electromagnetic field is solved for in
the nodal points of the cells. The resulting linear group of equations consists of a sparse matrix.
In the boundaries of the computational volume, an artifical absorbing boundary condition is in-
voked. Although FEM allows for the computations for arbitrary, even inhomogeneous particles,
it has not yet been applied to Gaussian particles.
The FDTD-method (finite-difference time-domain method) is a differential-equation method
that solves for the time dependence of the electromagnetic fields based on Maxwell’s curl equa-
tions. Both time and spatial derivatives are expressed with finite differences and time elapses
in finite steps. The scattering particle is again palced in a finite computational volume and an
absorbing boundary condition is required in the boundary of the computational volume. The
density of the discretization is as in the FEM-method. In FDTD, there is no need to solve a large
group of equations. Recently, the method has yielded promising results in light scattering by
Gaussian particles.
[Lecture 14]
In the PM-method (point matching), the boundary conditions of the electromagnetic fields are
required in a finite number of points on the surface of the particle. In the original method, there
were asmany points as unknown coefficients in the vector spherical harmonics expansion. It was
concluded that the method was numerically instable. There is, however, nothing that prevents
us from expanding the number of points and computing the coefficients using the least-squares
method. This version of the method has been noticed to be stable and is one of the most popular
numerical methods. The regime of application can be improved by expanding the fields with
a number of suitably chosen origins within the particle. PM is promising also for scattering by
Gaussian particles. It is intriguing to ponder whether “an educated guess” can help speed up
the solution of the coefficients.
The integral-equation methods are divided into a wide spectrum of different methods. In the
VIEM method (volume-integral-equation), one considers the integral equation

E(r) = Ei(r) + k2

∫
V
d3r′[1 +

1

k2
∇∇]

eik|r−r
′|

4π|r− r′|
· [m2(r′)− 1]E(r′).

By discretizing the integral on the right-hand side, one obtains a group of linear equations for the
field values at the discretization points within the volume of the particle. Solving the equations
results in the field inside the particle. Typically, again, 10-20 discretization points are required as
per wavelength so that, after a straightforward calculation, it is clear that a group of equations
with thousands of unknowns easily follows. In practice with current computers, up to 200 mil-
lion unknowns can be treated (as of December 12, 2008). Various versions of the VIEM method
have been successfully applied to Gaussian-particle scattering (foremost DDA, discrete-dipole
approximation).
In the case of VIEM, the matrix of the group of linear equations is full, which makes the solution
more difficult. When the internal field has been solved for, the same integral relation gives the
scattered field outside the particle via straightforward integration (subtracting the original field).
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DDA (discrete-dipole approximation) is a certain version of solution methods for the integral
equation. DDA can be visualized in the following: the particle can be thought to be composed
of dipole scatterers interacting with each other. In practice, the VIEM methods differ from one
another in how they treat the singular self-term inside the integral, which is essential for the
accuracy of the method.

The surface-integral-equation methods (SIEM) make use of two-dimensional integral equations
that seem like a reasonable starting point, in particular, for homogeneous particles. However,
the SIEM-methods are less stable than the VIEM-methods and usually require additional regu-
larization.

The integral equation shown above in connection to the VIEM-method is Fredholm-type and the
kernel has a singularity at r = r′. Via Fourier-transformation, handling of the singularity can be
improved and the integral equation can be solved numerically in thewavenumber (or frequency)
space. Surprisingly, the disadvantage of the method is the considerable analytical work needed
for each different particle. These so-called FIEM-methods have not been very popular.

In the TMM method (transition matrix method), the analysis proceeds with the help of vec-
tor spherical harmonics functions and the word “transition” refers to the linear matrix relation
between the original field and the scattered field. Compared to the direct vector spherical har-
monics treatment of the boundary conditions, TMM has the advantage that a linear relation is
obtained purely between the internal and original fields, reducing the number of unknowns in
the group of linear equations. After solving the group of equations, the scattered is computed
from the vector Kirchhoff integral relation. The TMM method is an efficient method, in partic-
ular, for axially symmetric particles and useful results have been obtained, e.g., for spheroids to
compare with the implications of the SVM method. However, TMM suffers from unpredictable
convergence and instability problems and have not yet been extensively applied to scattering by
Gaussian particles. As a tool the actual T -matrix is quite useful and, for a single particle, needs to
be computed only once (independently of the orientation). Recently, an analytical version of the
T -matrix method has been developed—this version is highly promising for studying scattering
by Gaussian random particles.

In the superposition method for spheres and spheroids, scattering by particle clusters is com-
puted using the translation and addition rules of vector spherical harmonics functions. The field
scattered by the cluster is expressed as a superposition of the fields scattered by each constituent
particle. The partial fields depend on each other due to the mutual electromagnetic interactions
of the constituent particles. The scattering problem againmanifests itself in a solution of a group
of linear equations. Currently, precise solutions can be computed for clusterswith several dozens
of constituent particles, when constituent-particle size approaches the wavelength.

29 Applications of electromagnetic scattering

In his book, van de Hulst has presented an excellent review of the applications of light scattering
in various fields of science. This is recommended reading bearing inmind, in particular, modern
computational methods for nonspherical particles. Bohren and Huffman offer additional mate-
rial on the applications, as well as Mishchenko et al. Finally, the publications from the meeting
series entitled Electromagnetic and Light Scattering by Nonspherical Particles: Theory, Measurements,
and Applications offer up-to-date information about the advances in light scattering by small par-
ticles.
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