
Chapter 3

Linear model

3.1 Introduction

Linear model (LM, lineaarinen malli) or (linear) regression analysis (regressioana-
lyysi) is a family of models that is used to analyze dependence between scalar de-
pendent variable (selitettävä muuttuja, vastemuuttuja) and one or more explanatory
variables (selittävä muuttuja).

The term regression refers to regression towards mean, the fact that the expected
value (i.e. ’mean’) is the best prediction to unknown random variable. We construct
the linear model in such a way that it actually models the expected value of the
random variable, and the difference between the model and the observations is the
’random part’ of the model.

3.1.1 Systematic part of linear model

The terminology in LM is such that the observed values of explanatory variable
xi = (xi1, . . . , xik) are collected together into n×k data matrix X:

X =

x11 . . . x1k

. . .
xn1 . . . xnk

 , (3.1)

and the observed values of the dependent variable are collected to vector y =

(y1, . . . , yn). Linear regression refers to model where the functionality between
explanatory and dependent variables is linear. With common choice of symbol
β = (β1, . . . , βk) for the regression coefficients, i.e. the linear function between
variables, we end up with

y = Xβ, (3.2)
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or for single observation i:

yi = xi· · β = β1xi1 + · · ·+ βkxik. (3.3)

The equations above describe the systematic part of LM, there is no random com-
ponent included.

3.1.2 Random part of linear model

The systematic part of LM does not say anything about random variables or devi-
ations between the model and reality. For that we need to introduce randomness
into LM. That is done via the residuals (residuaali, jäännös). The idea is that the sys-
tematic part of the model is described perfectly by Eq. (3.2), but the randomness
is added to the equation and that explains the errors between model and observa-
tions. With residual ϵ (random variable) this means that LM for one observation
is

Yi = xi· · β + ϵi = β1xi1 + · · ·+ βkxik + ϵi, (3.4)

or in matrix form for all the observations

Y = Xβ + ϵ (3.5)

i.e. Y1

...
Yn

 =

x11 . . . x1k

. . .
xn1 . . . xnk


β1

...
βk

+

ϵ1...
ϵn

 . (3.6)

Figure 3.1 shows an example of one-dimensional linear model and Fig. 3.2 for two-
dimensional model.
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Figure 3.1: Concepts in regression model — data x, dependent variable y, regres-
sion model ŷ = E[y(x)], and residual ϵ.
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Figure 3.2: Linear model with two explanatory variables.

3.1.3 Assumptions for linear model

Some assumption are needed to make LM statistically and technically valid. The
so-called standard assumption are:

1. Explanatory variable is non-random. There are ways to go around this as-
sumption, and this is more important in principle than in practice. Anyway,
it should be noted that LM in its basic form does not take possible errors in
X into account in any way.

2. Explanatory variables are not (completely) linearly dependent on each other.
There cannot be an explanatory variable whose values can be computed as a
linear combination from other explanatory variables. This will indicate that,
for example, the correlation coefficient ρ between any two explanatory vari-
ables cannot have values 1 or −1. This is mostly a technical assumption, since
if violated, the matrix XTX is singular, i.e. cannot be inverted. The inversion
will be needed in the estimation of LM as you will see later. We can run into
numerical problems also in cases where an explanatory variable is almost a
linear combination of the other variables.

3. The expected value of each residual is zero, i.e. E(ϵi) = 0 ∀i, or E(ϵ) = 0. This
is a vital assumption, since it guarantees that we are modeling the expected
value of Y with the systematic part of our model, because now

E(Yi) = E(β1xi1 + . . .+ βkxik + ϵi) = β1xi1 + . . .+ βkxik + E(ϵi)

= β1xi1 + . . .+ βkxik. (3.7)

4. The variance of the residuals are constant, i.e. var(ϵi) = σ2 ∀i, or var(ϵ) = σ21.
This is the so-called homoscedasticity assumption. In many cases where this
is initially not true, it is possible to weight the samples so that this assumption
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becomes true for the weighted model (dealt later in this chapter). For the
dependent variable this indicates that var(Yi) = σ2.

5. There is no correlation/covariance between the residuals, i.e. cov(ϵi, ϵj) =

0 ∀i ̸= j or cov(ϵ) = σ2In. The lack of (auto)correlation rules out time-series
from standard linear model.

You may notice that there are no assumptions about the normality of the residuals.
These are not needed for LM to be ’valid’ in statistical sense. However, if normal-
ity can be assumed, it will allow us to do certain statistical inference dealing with
confidence intervals, tests etc. But, even in cases where normality is not assumed
per se, results derived from normal assumption are usually asymptotically valid.
The normal assumption states that

ϵ ∼ Nn(0, σ
2In), (3.8)

and thus
Y ∼ Nn(Xβ, σ2In), (3.9)

3.1.4 Linear model is linear with respect to model coefficients

An important detail to notice with LM and its formulation (e.g. Eq. (3.5)) is that
only the functional dependence between data and dependent value needs to be
linear, i.e. of formXβ. The data itself can be transformed by any linear or nonlinear
function. The justification is simple — if we want to use f(xi)where f is any function
in LM instead of xi, we can just introduce new variable x∗

i = f(xi) into matrix X.
More generally, Y = f(X)β + ϵ = X∗β + ϵ. In Fig. 3.3 there are examples of one-
dimensional LM’s where the dependence is through x2 or log(x).
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Figure 3.3: Examples of two linear models with one explanatory variable.
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Constant term

One application to above is the constant term (vakiotermi) in LM, β0. You will often
see models in the form of

Yi = β0 + β1xi1 + · · ·+ βkxik + ϵi, (3.10)

but this is a simple transformation to data matrix. If you introduce constant value
of 1 as the first variable, you will end up with previous equation. Thus, constant
term is introduced to LM by constructing data matrix

X =

1 x11 . . . x1k

... . . .
1 xn1 . . . xnk

 . (3.11)

With constant term it is a popular convention that the coefficients are re-numbered
from 0 to k, instead of 1 to k + 1.

Interaction term

With multivariate linear model a common ’derived variable’ is the so-called inter-
action term (yhteisvaikutustermi), i.e. variable of type xjxl. With interaction term
present the (hyper)planes from LM with only linear xj’s transforms into models
that are not (hyper)planes with respect to original xj’s. In Fig. 3.4 there are exam-
ples of two-dimensional LM’s where dependence is not of form of (hyper)plane as
respect to x1 and x2.
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Figure 3.4: Examples of two linear models with two explanatory variables. In left,
dependence is of form β0+β1x1+β2x1x2, and in right of form β0+β1x

2
1+β2 log(x2).
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Transformation into linear

The fact that explanatory variables can be transformed can also be applied to the
whole model equation and the dependent variable Yi, but with certain conditions.
Let us have an example of model where the systematic part is yi = β0x

β1

i1 · · ·xβk

ik .
By applying logarithm function to both sides of the equation, we end up with new
dependent and explanatory variables: y∗i = log(yi) = log(β0) + β1 log(xi1) + · · · +
βk log(xik) = β∗

0 + β1x
∗
i1 + · · ·+ βkx

∗
ik. The transformed model is linear.

The one important thing to consider in transformations is that it does not only trans-
form the systematic part, but the residuals also. With the example above, residuals
must be additive to the transformed model. That implies that they were multiplica-
tive in the original one, i.e. Yi = β0x

β1

i1 · · ·xβk

ik ϵi. If this is not reasonable model for
residuals, the transformed model violates the LM form.

Categorical variables

Categorical variables (luokittelumuuttujat, i.e. discrete variables with reasonably
small number of possible values) can be used in linear models, although there
should usually be continuous variables also present in the model. Model with
only categorical variables can be analyzed better as special cases of LM, e.g. with
analysis-of-variance (ANOVA) methods. The recipe for including categorical vari-
ables is again to encode the categories to one or more explanatory variables.
Let us have categorical variable c that has p + 1 different outcomes (categories),
coded here to numbers 0, 1, . . . , p. We can introduce a set of pnew variables {gi1, . . . ,
gip} into X. We need one ’reference category’, for example the case c = 0. With
reference case we have {0, . . . , 0}. With case c = 1 we have {1, 0, . . . , 0}, with c =

2, {0, 1, 0, . . . , 0} etc., and finally with c = p, {0, . . . , 0, 1}. Now the augmented
data matrix row for, e.g., observation with c = 2 and p + 1 = 4 would be x∗

i =

(0, 1, 0, xi1, . . . , xik).
With the data matrix augmented with new variables coded from the categorical
variable, the systematic part of ML is

yi = β0 + β1gi1 + . . .+ βpgip + βi(p+1)xi1 + . . .+ βi(p+k)xik, (3.12)

and the model can be estimated in the normal manner. The additional limitation
with categorical variable is that if we do variable selection or model diagnostics
(see later in the chapter), the augmented variables must be dealt as a group.
The interpretation of the model with augmented variables for categories is that
the constant term β0 is now related to case with c = 0. The regression coefficient
βj estimates the difference in y when moving from reference class to class c = j.
There is a technical reason behind the reference class having zeros for all the new
variables — otherwise the ’constant’ variable 1would be sum of new variables, and
that would violate the beforementioned assumption 2 with ML.
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3.2 Estimation of linear model

The first task in LM analysis is to estimate the coefficients β for the model. The
LM is implicitly assumed to refer to a case where the L2-norm between model and
observations is minimized. This combination of LM and minimization of L2-norm
is called the method of least squares or ordinary least squares (OLS, pienimmän neliö-
summan menetelmä, PNS). With OLS the values for the coefficients can be computed
analytically, which is generally not the case with non-linear models or with other
than L2-norm.
So, in OLS we want to minimize the sum of squared residuals (or errors, SSE):

SSE =
n∑
i

(yi − β1xi1 − . . .− βkxik)
2 = (y −Xβ)T (y −Xβ) = ∥y −Xβ∥2 . (3.13)

The solution to the minimization above can be derived by solving the root of its
derivative. Without details it will give us the so-called normal equations (NE)

XTXβ = XTy. (3.14)

The solution to NE is the estimate to the model, b = β̂:

b = (XTX)−1XTy. (3.15)

With estimate b forβ we can compute the observed residuals, e = y−Xb, and again
this is the estimate for the random variable ϵ. Now the SSE can be expressed with

SSE = ∥e∥2 , (3.16)

and the residual variance σ2 (jäännösvarianssi) of the model can be estimated by s2

as
s2 =

1

n− k
SSE. (3.17)

Note that to compute the OLS estimate b the matrix inversion in Eq. (3.15) can be
avoided, which can be preferable with large number of variables k because matrix
to be inverted, XTX, is k×k matrix. The solution to normal equations in Eq. (3.14)
can be computed with LU- or Cholesky decomposition and Gaussian elimination.

3.2.1 Properties of OLS estimate

We can derive quite easily some properties of the OLS estimate b. Most importantly,
it holds that

E(b) = β, (3.18)

and
cov(b) = σ2(XTX)−1. (3.19)
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These properties do not require any assumption of normal distribution for the
residuals ϵ. However, if we assume that residuals follow normal distribution we
can show that the OLS estimate is also the maximum likelihood estimate, and that

b ∼ Nn(β, σ
2(XTX)−1) (3.20)

3.2.2 Weighted linear model

Weighed LM comes up in cases where the variance of residuals or dependent vari-
able is not constant. The observations where the variance is small should influ-
ence ’more’ to the estimate, they should ’weight’ more. This means that instead of
var(ϵi) = σ2 we have var(ϵi) = σ2/wi, where wi is the weight of the observation. In
matrix formulation this is written as

cov(ϵ) = σ2V, (3.21)

where V is diagonal matrix ⌈1/w1 · · · 1/wn⌋.
The estimation of weighted LM is derived with the help of (Cholesky) decomposi-
tion V = CCT . Multiplying LM by C−1 from left we get

C−1y = C−1Xβ +C−1ϵ, (3.22)

which can be written as y∗ = X∗β + ϵ∗. It is easy to see that

E(ϵ∗) = C−1E(ϵ) = 0 (3.23)

and
cov(ϵ∗) = C−1cov(ϵ)(C−1)T = σ2C−1CCT (CT )−1 = σ2In, (3.24)

so that the transformed model is regular LM. For estimation of β one does not even
need to form the decomposition, since

b =
(
(C−1X)TC−1X

)−1
(C−1X)T C−1y =

(
XT (CCT )−1X

)−1
XT (CCT )−1y

= (XTV−1X)−1XTV−1y. (3.25)

This equation above means that weighted model can be estimated quite similarly as
the normal LM, only including an extra weight matrix V. Actually, the procedure
is valid for any positive definitive V, therefore it is called the generalized linear
model and it allows also covariance between residuals.

3.3 Diagnostics of linear model

The estimation of linear model, as seen above, is not too complicated. Main inter-
ests for researcher with LM is usually the diagnostics for the model. These include
checks regarding the model assumptions, selection of variables, confidence inter-
vals etc.
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3.3.1 Validity of model assumptions

The assumptions behind LM were introduced in Sec. 3.1.3. The validity of the as-
sumptions can be assessed with the observed residuals of the model

e = y −Xb, (3.26)

or even better, with standardized (i.e. studentized) residuals ri:

ri =
ei

s
√
1− pii

, (3.27)

where s is the estimate of the residual standard deviation, see Eq. (3.17). The term
pii is part of the covariance matrix of the observed residuals:

pii is [P]ii in P = X(XTX)−1XT . (3.28)

With weighted model where vii are elements [V]ii in cov(ϵ) = V, the standardized
residuals are

ri =
ei√

vii
√
1− pii

. (3.29)

With residuals, the best way to study the validity of different assumptions is to
draw figure(s) of (standardized) residuals against explanatory variables, or against
predicted response ŷ = Xb.

Model is unbiased

The first assumption to check with the model is assumption 3 in Sec. 3.1.3, which
says that the expected value of residuals should be zero, E(ϵ) = 0. As the observed
residuals should estimate theoretical ones, the (standardized) residuals should have
mean value of zero. If the mean of observed residuals is not zero, there are missing
variables in the model, or the data cannot be explained with linear model.
An example is shown in Fig. 3.5. The data is produced from y = x2 + ϵ, and two
models are fitted. First model is y = β1x, and second the correct one, y = β1x

2.
This can be seen in the residual plot, where residuals from y = β1x are clearly
biased with nonzero mean. Residuals from y = β1x

2 show random, non-systematic
variation around zero, as is expected if the assumptions of LM are valid.

Residuals are homoscedastic

The assumption 4 in Sec. 3.1.3 says that residuals should be homoscedastic, i.e. the
variance of the residuals should be constant. This can be quite reliably checked
graphically from residual plots. In Fig. 3.6 we show example of homoscedastic and
heteroscedastic residuals. In many cases the heteroscedasticity can be removed by
choosing suitable weighting for the observations, i.e. modeling out the trends in
variance.
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Figure 3.5: Observations and two linear models on left, and their residuals on right.
Blue color is for model y = β1x, and red color for y = β1x
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Figure 3.6: Example of homoscedastic residuals (on left) and heteroscedastic resid-
uals (on right).

Residuals are normal-distributed

The assumptions 1, 2 and 5 from Sec. 3.1.3 cannot be verified from residual plots.
The first one requires background information from the observation event and the
physics behind the data. The second one is seen as difficulties in the numerical es-
timation of the model. The validity of the assumption 5 can be seen from residuals,
but without further information about the process it is not possible to distinguish
that effect from the possible bias resulting from selecting wrong variables to the
model.

The ’extra’ assumption about normality, however, can be tested from the residu-
als. If residuals seem to follow normal distribution, all the tests and confidence
intervals regarding LM are more reliable. There are special tests for normality, e.g.
Saphiro-Wilk or Anderson-Darling, but one graphical analysis tool is the so-called
quantile-quantile (Q-Q) plot.

The Q-Q-plot is drawn so that the theoretical quantiles of the residuals are plotted
against residuals. Let us first sort the (standardized) residuals so that e[] = (e[1] ≤
e[2] ≤ . . . ≤ e[n]). Then we form corresponding empirical cumulative distribution
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values c = (1/(n + 1), 2/(n + 1), . . . , n/(n + 1)). The theoretical quantiles are now
computed with the inverse cumulative distribution function of standard normal
distribution from the ci’s as ti = F−1(ci). Finally pairs (ti, e[i]) are plotted as in
Fig. 3.7.
If the data is from normal distribution, the pairs should lie approximately in a y = x

line in the plot. Large deviations from the line is a sign of non-normal distribution.
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Figure 3.7: Residuals that are normally (blue) or non-normally (red) distributed in
the top, and their Q-Q-plots in the bottom.

3.3.2 Model performance

The overall performance of LM is generally measured from the amount the ob-
servations deviate from the model, and that is measured by the observed sum of
squared residuals (residuaalineliösumma), SSE

SSE = e · e = ∥e∥2 =
n∑
i

e2i = ∥y −Xb∥2 =
n∑
i

(yi − xi · b)2, (3.30)

or by the observed residual variance s2 = SSE/(n − k), where k is the number of
parameters in the model. The smaller SSE, the better the model fits to observa-
tions.
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The SSE does not take into account the general variability of the dependent variable
Y , only the amount of variability around the model. Therefore the coefficient of
determination R2 (selitysaste) is preferred, because it relates the residual variance
to the total variance. The coefficient of determination is defined as

R2 = 1− SSE

SST
, (3.31)

where the sum of squares total (kokonaisneliösumma) is

SST =
n∑
i

(yi − y)2 = y · y − ny2 (3.32)

The R2 is always between 0 and 1, and can be said to be the fraction of unexplained
variance in the model. For that reason, R2 is often given in per cents.
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Figure 3.8: Observations and two fitted models. Red line is for model y = β0 + β1x

and blue line for y = β0 + β1x+ β2x
2. The R2-values for the models are 39 % (red)

and 82 % (blue).

3.3.3 Variable diagnostics

If we have physical model for the observations we know what kind of explanatory
variables to include. Often, however, we need to find suitable model just by ’guess-
ing’ or trying different choices. In these cases it is very important to be able to say
if certain variables are or are not important for the model. The importance can be
tested.
In LM a variable xj (which can also be any function of the ’original’ x), is not impor-
tant if its coefficient βj is zero, because then it will not influence to the prediction.
Of course the estimate bj is practically never exactly zero, so we need to have a mea-
sure which tells how close it must be to zero to be unnecessary. That depends on
the variability of the explanatory and the dependent variable. The test statistics tj
that can be used to study the importance of variable xj is defined as

tj =
bj

s
√
mii

, (3.33)
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where s is the observed residual standard error, and bj the estimate for the coeffi-
cient βj . The factor mii is the element (i, i) from matrix M−1 = (XTX)−1.
The null hypothesis H0 is that βj = 0, i.e. it is not important in the model. Under
H0 the test statistics is (asymptotically) t-distributed with n−k degrees of freedom,
and rejection area is defined by Eq. (2.13). The standard practice for reporting LM
fit is to construct a table of its coefficient estimates, their standard deviations, test
statistics, and p-values:

β0 b0 s
√
m00 b0/s

√
m00 2FT (−abs

(
b0/s

√
m00)

)
... ...
βk bk s

√
mkk bk/s

√
mkk 2FT (−abs

(
bk/s

√
mkk)

)
Let us take an example. In Fig. 3.9 we have 50 observations and fitted model of
from y = β0 + β1x+ β2x

2. This fit could be reported as:

estimate s.d. test statistics p-value
β0 1.84 0.157 11.7 1.46×10−15

β1 1.36 0.246 5.53 1.4010−6

β2 −0.0790 0.107 −0.738 0.464

The conclusion of the report is that the p-value for coefficient β2 is large, much
larger than e.g. 5 %. The H0 stating that β2 = 0 cannot be rejected. Because β2 = 0,
the variable x2 is unnecessary in the model and should be removed. A new model
of y = β0 + β1x should be fitted.
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Figure 3.9: Observations and fit y = 1.84 + 1.36x− 0.0790x2.

Confidence regions and distribution of the estimated coefficients

Following from previous tests we can also construct confidence intervals for single
variables in the model, or confidence regions for multiple variables. The main re-
sult that we need is that the vector of estimated coefficients should follow, at least
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approximately, the multinormal distribution:

β̂
approx.∼ Nk

(
b, s2(XTX)−1

)
(3.34)

Confidence intervals for individual coefficients can be constructed using this rela-
tion. Confidence regions for multiple coefficients will be (hyper)ellipsoids due to
the properties of multinormal distribution (discussed later in Sec. 6).

The covariance matrix of the coefficient estimate C = cov(β̂) = s2(XTX)−1 is in-
teresting as such for diagnostic purposes. Or rather, correlation matrix Σ with
elements

[Σ]ij =
Cij√

Cii

√
Cjj

(3.35)

is interesting. If the cross-correlations out of the diagonal of the correlation matrix
are close to zero, the variables in the model are close to being independent. Inde-
pendent variables is a good thing, since they introduce explanatory power to the
model that is not covered by other variables. If there are cross-correlations close to
±1, the variables in the model are correlated. That means that they more or less
’measure the same quantity’ or ’explain the same phenomena’. Usually one of two
highly cross-correlated variables should be removed from the model.

3.3.4 Model selection

Model selection is a procedure where the correct explanatory variables are not
known beforehand, and decisions on the variables that are selected to the final
model are based on the variable diagnostics. The selection procedure is not always
very straightforward, and that is because the possible cross-correlations mentioned
above in the previous section and in Eq. (3.34). The cross-correlations are the rea-
son that variables can be added or removed to the model only one by one, not in
groups. When, for example, the variable with the largest p-value is removed from
the model, the p-values of the remaining variables will change. Furthermore, the
order of the least important variables might change.

There are two different procedures that can be used in automated model selec-
tion — the forward selection and the backward elimination. With small number
of variable candidates in the model, all possible combinations can be checked. As
the number of variable candidates increase, the number of possible combinations
becomes too large for every combination to be computed. Search methods have
to be incorporated. In forward selection the best possible single variable is added
to the model at one round, and this is continued. In backward elimination one
starts from the full model, i.e. from the model with all the possible variables. In
each round the worst variable is removed. The ranking of variables is based on
their p-values. The bidirectional elimination is a combination of the forward- and
backward methods.

3-14



Selection criteria

We can have competing models either by manual selection of a few sets of variables,
or as the result from the model selection tree. A quantitative measure to compare
different models as whole is needed to select the best models from the possible
ones. The coefficient of determination R2 could seem as a possible measure be-
tween the models, but it has one unwanted property. If you have set of variables A,
and you add one variable xj , the R2 for the latter model is always as large or larger
as for the former model. In another words, new variable cannot add ’negative’ ex-
planatory power, it always contributes positively to R2. Only models with exactly
the same number of variables can be compared fairly using R2.
Therefore, different measures of the ’goodness-of-fit’ have been developed that take
into account the number of explanatory variables that is used to reach certain level
of R2. In one way or another, there is a ’penalty’ from adding more variables. The
most important model selection criteria are adjusted R2 (R2

adj), Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC). These are defined as:

R2
adj = R2 − (1−R2)

k

n− k
(3.36)

AIC = n log

(
SSE

n

)
+ 2k (3.37)

BIC = n log

(
SSE

n

)
+ log(n)k (3.38)

Large values for R2
adj are ’good’, while for AIC and BIC small values are searched

for. The three different criteria ’punish’ a bit differently from adding variables, but
all are quite good in practice. The BIC is perhaps commonly preferred over the
others.
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