Chapter 1

Infroduction

1.1 Information about course

This is lecture material for the course ”Statistical Inverse Methods”, SIM in short.
In Finnish, Tilastolliset inversiomenetelmét. Course ID is PAP303.

Five credit points are rewarded from the course. To achieve these points you need
to i) complete and return weekly exercises, and ii) pass the final exam. At least 25
% of the weekly exercises need to be done in order to pass, and completing more
will earn you a better grade.

Exercises will include both problems that are to be solved analytically, i.e. with pen
and paper, and computer tasks that should be completed using some mathemati-
cal or statistical software on a computer. We do not specify what kind of software
should be used, choose one you are most familiar with or one you would like to
learn during the course. Programming or details about specific software are not
taught, so you need to have prior knowledge on programming or scientific com-
puting.

Most, if not all of the computer task are possible to do using any general purpose
mathematical package such as Matlab, Mathematica, Maple etc. Statistical soft-
ware packages such as R (free, under GNU GPL) is also an excellent choice for
a tool. Lower-level programming tools such as Python can be used, but we do
not recommend using very low-level programming such as C or Fortran, since too
much effort would probably go to writing code for input/output and for producing
graphics. On the other hand, software packages with limited amount of generality
and versatile programming capabilities such as Excel or SPSS are not recommended
either. The University of Helsinki has a license for SAS software, which is a huge
statistical (among others) package that is used quite often in e.g. medical research
and business applications, but perhaps because of its vast application areas and
history;, it is quite complex and a bit cumbersome to use.
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Prior knowledge should include mathematical tools that are taught on basic univer-
sity mathematics courses, e.g. Mathematics for Physicists I and II (Matemaattiset
apuneuvot, FYS51010 and FYS1011). Prior course for statistics is Statistical Anal-
ysis of Observations (Havaintojen tilastollinen késittely, FYS1014). Especially we
will need basic linear algebra and basic multivariate differential calculus. Scientific
Computing (Tieteellinen laskenta) I and II (53398 and 53399) are recommended, be-
cause basic programming, data handling, and plotting are needed in the exercise
sessions.

1.1.1 Spring 2018

Up-to-date version of the dates can be found on the course homepage at https://
wiki.helsinki.fi/display/53834/. Lecturer is Dr. Antti Penttild (Antti.I.Penttila
(a t) helsinki.fi).

1.1.2 Material

The course material, i.e. this handout and exercises, are based on the following
course materials or books:

* A.Ekholm, “Johdatus todennédkdisyyslaskentaan” and “Johdatus uskottavuus-
paattelyyn”, handouts

* S.Mustonen, Tilastolliset monimuuttujamenetelmdt, book, University of Hel-
sinki

* Course material for “Data-analysis and Inverse Methods in Astronomy, 2012”
by M. Juvela, K. Muinonen, H. Haario and A. Penttild

¢ P. Saikkonen, “Lineaariset mallit” and "Epélineaariset mallit”, handouts

e C.P. Robert & G. Casella, Monte Carlo Statistical Methods, book, Springer

1.1.3 Notations

Throughout this material I will try to maintain a uniform and consistent style on
symbol notations. If succeeded, the readability of the formulae will probably be
better. Normal weight italic symbols are used for scalars: a,b, ¢, z. Random vari-
ables are usually written with capital letters: X,Y. For theoretical variables, i.e.
parameters of distributions and/or theoretical and random properties of random
variables such as the expected value or variance, Greek letters are usually used:

i, 0.
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Functions are written with normal weight and non-italic font: sin(), P(). If possible,
named distributions such as normal distribution are marked with calligraphic font,
N(p, 0?).

With multidimensional symbols bold weight is used. Vectors are with bold slanted
symbols (z, u, v, n), and matrices with bold capital non-italics (X, A, B, X). Vectors
can be constructed from components as x = (1,2,3) — using () always refers to
column vector, i.e. nx 1 matrix. With [] we always refer to matrices, so = = [1 2 3|7
would also be a (column)vector.

1.2 Random event, probability and random variable

The concept of random event, probability and random variable is very shortly in-
troduced, since it is probably discussed in previous courses, and we are not going
into details behind the philosophical or mathematical measure theory meanings of
random variable.

Probability can be interpreted from frequentist viewpoint — if random phenomena
or experiment is repeated and its outcome is statistically stable, the ratio of the
number of events where result A is observed, n4, and the number of all events n
will estimate the the probability of A. In another words, P(A) ~ n4/n. Naturally,
0 < P(A) < 1. The actual value of P(A) may be unknown, but we assume that it is
constant.

Frequentist interpretation has some caveats because we often want to consider
probability of events that cannot strictly speaking be repeated. Probability is better
interpreted through set theory. The sample space S includes all the possible events
s;. The sample space can be finite, countably infinite or uncountable infinite. All

the probability calculus can be derived from three simple axioms for set A in S:
VA holds that P(A) > 0 (1.1)
P(S)=1 (1.2)

IfA NAyN...NA,=0,then

The third axiom tells that if events are mutually exclusive, the probability measure
is additive. The third axiom also holds for infinite sets. This set theory interpre-
tation of probability can often be graphically studied by means of Venn diagrams,
see Fig. 1.1 for an example.

1.2.1 Some probability laws

Laws of probability can be derived from the three axioms. Some simple and most
common definitions are given here. In what follows we will write A N B shorter

1-3



Figure 1.1: Example Venn diagram with some group theory sets.

with AB.

Addition:
P(AUB)=P(A)+P(B) —P(AB) (1.4)

that is valid also if AN B # 0.

Conditional probability (ehdollinen todennikdisyys): Probability of event A requiring

that B has happened, P (A|B).

P(AB)
P(B)

P(A|B) = (1.5)

Statistical independence (tilastollinen riippumattomuus): Events A and B are statisti-
cally (or stochastically) independent if and only if P(AB) = P(A)P(B). The usual
notation for this is

Al B = P(AB)=P(A)P(B) (1.6)

Chain rule:
P(AB) =P(B)P(A|B) = P(A)P(B|A) (1.7)
and theorem of total probability:

P(B) = _P(A)P(B|4) (1.8)

when the sample space S has been partitioned into mutually exclusive sets A, . ..

Bayes formula:
__ P(A)P(BJA)
P = S PP (Bl 9

where P (4;) is called prior probability and P (A;|B) posterior probability.

We will prove and use some of these formulae in the exercises.
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1.2.2 Random variable

Random variable (satunnaismuuttuja) is a mapping of the result of a random event
into real axis. If Y is a random variable, then every possible outcome s € S can be
coded into real number y. For example, if there are only two possible outcomes, ” A
will happen, or A will not happen”, it is often coded that Y'(A) = 1, Y (not A) = 0.

Probability of certain random event to occur follows from set theory notation, P(Y =
y). This is often written also as Py (y) or even as P (y) for short, if it is evident what
random variable is considered. Evidently, from Egs. (1.1) and (1.2) it follows that
0<PY =y) <L

Discrete random variables are such that the set of possible outcomes is finite or
countably infinite. Finite set can be for example three categories where the event
will fall, and countable infinite set, for example, the set of natural numbers. It is
possible that P(Y = y;) = 0 for some y;, but from Eq. (1.2) it follows that there must
be at least one y; for which P(Y = y;) > 0.

Discrete variables can be divided into different scales according to their properties.
The nominal scale is the most simple one. In nominal scale the outcome of the event
is in finite set of ‘categories’ for which there is no natural order. An example would
be the party a person is voting for. These categories are coded into numbers, but no
arithmetic operations are meaningful with the numbers. One cannot say that cat-
egory ‘1’ is smaller than category '2". The only possible probability description of
nominal variable is to list the probabilities P (Y = y). The complete list of outcomes
and associated probabilities is the probability mass function (pistetodennikdisyysfunk-
tio)

f(y) =P =y). (1.10)

With ordinal scale variable the order of the categories is a meaningful concept. For
example, many polls may ask if you “agree fully” (Y = 4), “agree partly” (Y =
3), “disagree partly” (Y = 2), or “disagree strongly” (Y = 1). In that case it is
meaningful to claim that "4” is more than ’3’, although operations suchas 4 —3 = 1
are not meaningful. For ordinal variable, in addition to probability mass function,
a cumulative distribution function (kertymdfunktio) can be defined

F(y) =P(Y <y)=> f(u). (1.11)

See Fig. 1.2 for examples.

The most advance scale for discrete variables is the interval scale. Variable has
countable number of outcomes, and they can be ordered, and their intervals are
meaningful and constant,i.e. 1 <2 < 3and 2—1 = 3—2 = 1. Both probability mass
function and cumulative distribution function are defined. Furthermore, one can
compute with the outcomes, and especially one can compute descriptive statistics
such as mean, median or standard deviation.
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Figure 1.2: Example of probability mass function (on left) and cumulative distribu-
tion function (on right) for discrete random variable.

Continuous variables are measured in interval or ratio scales. Ratio scale differs
from interval scale by having unique and non-arbitrary zero value, but there are
no real differences in using continuous interval or ratio scale variables in statistics.
Most importantly, continuous variables are uncountable infinite. From that reason
the probability of every single outcome is zero. Instead of probability mass func-
tion, a non-negative, real valued probability density function (pdf, todennikéisyysti-
heysfunktio) is defined so that

Y1
Plyo<Y <1y) = f(u)du foryy < y;. (1.12)
Yo
The so-called probability density f(y) can be non-negative although the probability
of single event is zero. The cumulative density function (cdf) for continuous random
variable is defined as
Y

F(y) =P <vy) = / f(u)du. (1.13)

—0o0

See Fig. 1.3 for examples.

1.3 Descriptive statistics

The pdf or cdf of random variable is the complete description of the phenomenon,
at least in mathematical sense. However, we often would like to compress that in-
formation into some set of numbers that would give us important information on
the behavior of the random variable. These numbers are called statistics (tunnuslu-
vut). In principle everything that is computed from pdf or from random sample is
statistics, but there are some common choices on how distributions or samples are
described.

We should remember to make clear difference between theoretical statistics and
sample statistics. With theoretical statistics we mean quantities that can be derived
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Figure 1.3: Example of probability density function (on left) and cumulative den-
sity function (on right) for discrete random variable.

from the pdf of a random variable, and that pdf might be unknown. The idea is
that even though the distribution of random variable is unknown to us, it ‘exists’
and we can gather knowledge about it by observing the realized outcomes of the
random variable. Theoretical statistics are often marked with Greek letters. The
most common example of theoretical statistics and its sample counterpart is the
expected value (1) and the sample mean (z). Actually, sample mean can also be
thought to be random variable (X) and the mean computed from one particular
sample (7) is the realization of that.

1.3.1 Expectation

The expected value (odotusarvo) of variable is the ‘center of gravity’ for a distribu-
tion. It is the most common statistics, and many distributions use it as a parameter.
Expected value, or the expectation operator E(-), is defined as

BY) = [ ytw)dy (1.14)
for continuous variable, and
E(Y)=> yf(y) (1.15)
Y
for discrete variable. Itis said that the expectation does not exists unless the integral
| ity (1.16)

converges, i.e. it has a finite value, and similarly but with sum instead of integral
for discrete variable. Famous example of distribution without expected value is the
Cauchy distribution.
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Expectation is important statistics and is is useful to know some basic properties
of E(-) operator. First, it should be noted that a function of random variable is also
a random variable, i.e. if V' = g(Y) then V is a random variable. It can be shown
that expectation of V' can be derived without knowing the pdf of V' by

E(V) = /OO g(y) (y) dy. (1.17)

With discrete variable the same holds but with sum instead of integral. Another
property is that expectation is a linear operator, i.e.

EYi+--+Y,)=EY1)+ -+ E(Y,) (1.18)
E(cY) = cE(Y) , where cis constant (1.19)

1.3.2 Variance

As expectation is a location measure, variance is a dispersion measure. It describes
how much a random variable deviates from its expectation on average. Variance is
derived as .

var(¥) = B(Y B0 = [ (5= EV) 1) dy (1.20

[e.9]

for continuous variable. Variance must be finite to exist. Instead of operators E and
var symbols ;i and o are often used.

Some properties of variance are dealt next. First,

var(aY +b) = a*var(Y). (1.21)
Second, for the variance of sum of independent variables Y3, ...,Y,, 1L hold that
var(Y1 + -+ Y,) =var(Yy) + - - - + var(Ys,), (1.22)

but the same is generally not true if the variables are not independent.

1.3.3 Other statistics

Other commonly used statistics to describe the shape of the distribution include
skewness (71, vinous) and kurtosis (7., huipukkuus). Both are derived from the cen-
tral moments i, of distribution, u, = E(Y — u)*, so that

"= g ,and g = % —3. (1.23)

Kurtosis is defined so that it is zero for standard normal distribution A/(0, 1). Skew-
ness is zero for all symmetric distributions.
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One important family of statistics are defined by quantiles. The p’th quantile is the
value £ for which

F(&) = p. (1.24)

Especially median is the quantile at 1/2, the middle value of a distribution. Lower
or first quartile is at 1/4 and upper or third quartile at 3/4. Median and other quar-
tiles are so-called robust statistics, since their values are not heavily effected if the
distribution has very wide tails, unlike expectation or variance, for example. An
example of some of the abovementioned statistics is given in Fig. 1.4.
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Figure 1.4: Symmetric distribution (normal) on left, and skew distribution (log-
normal) on right. For both the place of expected value is marked with black line,
median with green, and 1st and 3rd quartiles with red and blue. For symmetric
distribution median and p have the same value.

1.3.4 Covariance

We have not yet introduced multivariate random variables, but still it is best to
mention covariance and correlation at this point. As said, covariance deals with
two-dimensional random variable (U, V'), and it measures the linear dependence
between the variables. Definition for covariance is

cov(U, V) =E[(U - EU))(V —-E(V))] =EUV)—-EU)E(V) (1.25)
Without proof we mention that the expectancy of product of two random variables
is

E(UV) = / / wv f(u, v) du dv (1.26)

for continuous variables. The f(u,v) is the joint distribution (yhteisjakauma) of U
and V. Correlation is the covariance that is normalized with standard deviations

cov(U, V)

oyoy

cor(U, V) = (1.27)
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Independence is wider concept than only linear independence, so zero covariance
does not imply statistical independence, but the opposite is true,

ULV = cov(U,V) =cor(U, V) =0. (1.28)

With the concept of covariance we can generalize the Eq. (1.22) about the variance
of sum of independent variables to dependent ones,

var(U + V') = var(U) + var(V) + 2cov(U, V), (1.29)
even when U /L V.

1.3.5 Sample statistics

All the abovementioned theoretical statistics all have their sample counterparts, or
sample estimates (otosestimaatti), to be exact. The concept and derivation of esti-
mate is introduced only in the next chapter, but for now we list formulae for these
common statistics without proving their estimate properties.

Sample mean 7 is computed as

1
T=—) ax (1.30)
[t
(sample) standard error as
1 n
2 _ 2
5°=—— ;(xz z)*, (1.31)
and sample covariance as
1 n
Say = —— z:(a:z —Z)(yi — 7). (1.32)

i=1
The denominator n — 1 is needed instead of n for the estimator to be unbiased, but
this is again a topic of estimation theory and not dealt with here. Estimates for
different quantiles are self-evident and can be made by sorting the sample with n
observations and searching for k’th value so that k/n = p.

Mean and variance are not robust statistics. If the underlying distribution has heavy
tails, i.e. the probability for extreme values is not ‘small’, the sample estimate may
vary a lot from one sample to another. With astronomical observations, for ex-
ample, sampling more and more is often not an option, so it is difficult to know
whether observations come from heavy-tail distribution or not, or if some of the
observations are simply wrong or affected by another process. Therefor, it is quite
difficult to objectively say if some observations are outliers and should be left out
from the analysis or not. However, due to the large effect that “unusual” observa-
tions can have in mean or variance estimates, they are sometimes left out, i.e. data
is censored or trimmed. Common practices include e.g. trimming out observations
with distance to mean larger than three standard deviations and then computing
mean and variance again.
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1.4 Distributions

The distribution, either probability mass function for discrete variable or proba-
bility density function for continuous, is the complete description of the random
variable. Alternatively, cumulative functions can be used. One should note that
all random variables have distribution, but that there are infinitive number of dis-
tributions and only few of them are ’known’ in the sense that they are named and
their formula is given. In this chapter we will list some univariate distributions and
their statistics.

1.4.1 Discrete distributions

Bernoulli

Most simple discrete distribution is the Bernoulli distribution for binary random
variable, i.e. with two possible outcomes, 0 and 1. If the probability of having 1 is
7, then
Y ~ B(r) = f(y) =7Y(1 —m)"Y, (1.33)
EY)=mx, var(Y)=n(1 —7), y € {0,1}. (1.34)
Notice the notation, Y ~ B() should be read as Y has/obeys Bernoulli distribution
with parameter 7.

Binomial distribution

When more than one identical and independent Bernoulli trials are sampled, the
total number of successes (outcome 1) is given by binomial distribution

Y ~ Bin(n,7) = f(y) = (1 —m)"Y, (1.35)

yl(n —y)!
EY)=nm var(Y)=nr(1—7), y=0,...,n. (1.36)

Poisson distribution

Poisson distribution can be used to model counts, i.e. how many times some (rare)
event has occurred in one time unit. Good example could be the number of photons
that hit the CCD sensor per time unit. When the intensity parameter, i.e. expected
number of events per unit time, is )\, the distribution is

Y ~PAN) = f(y) = exp(—)\)g, (1.37)
EY)=\var(Y)=\ y=0,.... (1.38)

Examples of Poisson and binomial pdf’s are shown in Fig. 1.5.
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Figure 1.5: Pdf’s of binomial (on left) and Poisson (on right) distributions.

1.4.2 Continuous distributions

Normal distribution

Normal distribution is by far the most common distribution due to the fact that it
is the limiting distribution of many derived random variables by the central limit
theorem, and thus can be used as approximative distribution to many otherwise
too complicated or non-traceable distributions. Gauss derived the distribution to
describe errors observed in the movements of planets and planetoids. With param-
eters y and o? the distribution is

Y ~ N(p,0?) = f(y) = ! exp (—M) : (1.39)

E(Y)=pu, var(Y) =0, y € R. (1.40)

The term standardization (standardointi) means that the expected value (or mean)
is subtracted from the original value, and the result is scaled (divided) with the
standard deviation. This operation is not limited to normal distribution in any way,
but if general normal variable Y ~ N (u, 0?) is standardized, the results has A/(0, 1)
distribution, a.k.a. standard normal distribution.

The probability mass in normal distribution between p — ko and p + ko is approxi-
mately 68% with k& = 1, 95% with k£ = 2, and 99% with k = 3. These are the famous
one, two and three-sigma intervals that are commonly used in statistical tests and
error limits.

The central limit theorem states that, under quite common conditions, pdf of the
scaled sum Z of independent and identically distributed (i.i.d.) random variables
approaches to normal distribution when the number of summed variables increases
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Figure 1.6: One (blue), two (red) and three-sigma (yellow) areas in normal distri-
bution.

without limit. Precisely

ForiidY;,...,Y, with E(Y;) = 0 and var(Y;) = o2, (1.41)
1 - approx
Z = NG ZZ:YQ PR N(0,0%), asn — oo.
This has evident implication to the sample mean X as a random variable, for large

samples the sample mean should have normal distribution around the true, un-
known mean, and the variance of sample mean around the true value is o2 /n.

N(0,0%) with 0°=1/2, 1, 2 N(0,0%) with 0°=1/2, 1, 2
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Figure 1.7: Pdf and cdf of normal distributions with different o.
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Exponential distribution

Exponential distribution can be used to model waiting times between two succes-
sive events from Poisson distributed variable. When intensity parameter (same
interpretation as with Poisson) is ), the distribution is

Y ~ Exp(\) = f(y) = Aexp(—\y), (1.42)
E(Y)=1/A, var(Y) = 1/)\* y > 0. (1.43)

Exp(d) with 1=1/2, 1, 2 Exp(d) with 1=1/2, 1, 2

20 10F
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0 2 4 6 8 0 2 4 6 8
y y

Figure 1.8: Pdf and cdf of exponential distributions with different \.

Gamma distribution

Gamma distribution is a general case of exponential distribution, exponential is

gamma with index x = 1. Gamma is flexible distribution and is used to model

lifetimes and other distances before event. With index « and scale A the distribution
is

Ky k—1
Y ~ Gamma(k, \) = f(y) = A exp(—/\y)? (1.44)
()
E(Y)=x/\ var(Y) = x/N%, y >0 (1.45)

where I'() is the gamma function.

Log-normail distribution

Log-normal distribution is yet another distribution for positive-valued variable,
and as its name suggest, it is the result of logarithm of normal-distributed vari-
able. As the normal distribution can be justified through central limit theorem and
sum of i.i.d. variables, log-normal is the limiting distribution for the product of
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Figure 1.9: Pdf’s of gamma distributions with different x and .

i.i.d. variables. With parameters 1 and o2, which refer to the underlying normal
distribution, the log-normal distribution is

Y ~ LN (p,0?) = f(y) L o (—M) , (1.46)

 y2ro 202

1
E(Y) =exp <u + 502) , var(Y) = exp(0? — 1) exp(2u + 0?), y > 0. (1.47)

logn(u,0-?) with u=0, 1, 2 and o°=1 logn(u,o-?) with 0?=1/2, 1, 2 and u=1
06 i 025¢
05¢ 1 o020f
04:
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Figure 1.10: Pdf’s of log-normal distributions with different y and o?.

Distribution of function of random variable

Functions of random variable introduce new random variables which have their
own distributions. The new distribution can be found by replacing original variable
by inverse transform function and scaling by the derivative of the transform. More
formally, let us have original random variable U with known distribution f;; (), and
a transform function from U to V: V' = g(U). With the following method function
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g must be differentiable. With inverse transform h(V) = ¢g7!(V') = U we can define
that
dh(v)

fy (0) = fr(h(v)) |

| (1.48)

Please note that if inverse transform u = h(v) is multiple-valued function, for ex-
ample u = £/v, then all the possible pdf’s must be summed together for fy (v), e.g.

fv(v) = fu(=v) [d| + fy (Vo) |d].

1.5 Statistical plots

A large part of data analysis is to describe the data with methods that compress the
important information with numbers (statistics) or with figures. We show here a
few typical plots for one-dimensional data, and scatterplots for multi-dimensional
data. Previous pages have already shown examples of probability distribution
plots for both discrete and continuous variables. The corresponding plot for sam-
ple data is histogram.

Histogram collects data into bins, and plots the bins so that their height (discrete
variable) or area (continuous variable) corresponds to the frequency of the obser-
vations in bins. If the purpose of histogram is to compare against theoretical dis-
tribution, the frequencies must be scaled so that their heights (discrete) or areas
(continuous) sum up to one. The number of bins can be chosen freely, but one
‘rule-of-thumb’ suggests to use number of bins between /n and 2+/n for data with
n observations.

For data with outliers or otherwise long tails, the widths of the bins may differ in
the histogram. Especially then one must remember that the area of the ‘bar” in the
histogram is what counts, not the height. An example is shown in Fig. 1.11.

05—
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X
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Figure 1.11: Pdf of normal distribution and histogram of 500 normal-distributed
random numbers.

If distributions of several variables need to be compared in one figure, a box-and-
whiskers plot is quite handy choice. Box-and-whiskers plot shows the range where
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data is, and its quartiles. In that way one gets a rough idea on how the data is
spread, and about the symmetric / non-symmetric properties of the distribution
and tails. The plot is drawn using smallest and largest values of data as ‘'whiskers’,
and a box from first to third quartile. Median or mean value is drawn in the middle
of the box. Example in Fig. 1.12 will enlighten the principle. If there seems to be
outliers in the data, the ‘'whiskers” might use, e.g., 1% and 99% quantiles as the
endpoints instead of smallest and largest value.

30

‘= [ =

10

N(15,25) N(15,64) LN(2.‘8,0.1)

Figure 1.12: Box-and-whiskers plot of three samples of 100 observations from dif-
ferent distributions. First two are from normal distribution, and third from log-
normal.

Scatterplots (sirontakuviot) are used to show dependence between two or more vari-
ables. With many variables the individual i vs. j plots can be organized into matrix
of scatterplots.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.13: Scatterplot of data with \/z-dependence and normally distributed er-
rofrs.
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