Calculus in several variables

General exam 15.11.2012

1. Is the function $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(x) = \begin{cases} (x_1^3 + x_2^3 + x_1 x_2) / ||x||, \ x \neq 0, \\ 0, \ x = 0, \end{cases}$$

differentiable at the origin?

- 2. Prove that the equation $x^2 ze^{x+y+z} = 0$ defines a surface in some neighborhood of the origin. Also, determine the equation of the tangent plane to this surface at the origin.
- 3. (a) Assume that the function $f : \mathbb{R}^2 \to \mathbb{R}$ has partial derivatives at the origin with respect to both variables. Does it follow that f is continuous at origin?
 - (b) How is defined the derivative of the function f at x to the direction of the vector α , $|\alpha| = 1$?
- 4. Determine the maxima and minima of the function f, $f(x, y) = x^3 xy^2$ in the set $\{(x, y) \in \mathbb{R}^2; x^2 + y^2 \leq 1\}$.
- 5. Let $D = \{(x, y) \in \mathbb{R}^2; 1/4 \le x^2 + y^2 \le 4\}$. Compute the integral

$$\int_{D} (x^{2} + y^{2})^{2} \cos(x^{2} + y^{2}) \, dx \, dy$$