Calculus in several variables

General exam 15.11.2012

1. Is the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x)=\left\{\begin{array}{l}
\left(x_{1}^{3}+x_{2}^{3}+x_{1} x_{2}\right) /\|x\|, x \neq 0 \\
0, x=0
\end{array}\right.
$$

differentiable at the origin?
2. Prove that the equation $x^{2}-z e^{x+y+z}=0$ defines a surface in some neighborhood of the origin. Also, determine the equation of the tangent plane to this surface at the origin.
3. (a) Assume that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has partial derivatives at the origin with respect to both variables. Does it follow that f is continuous at origin?
(b) How is defined the derivative of the function f at x to the direction of the vector $\alpha,|\alpha|=1$?
4. Determine the maxima and minima of the function $f, f(x, y)=x^{3}-x y^{2}$ in the set $\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2} \leq 1\right\}$.
5. Let $D=\left\{(x, y) \in \mathbb{R}^{2} ; 1 / 4 \leq x^{2}+y^{2} \leq 4\right\}$. Compute the integral

$$
\int_{D}\left(x^{2}+y^{2}\right)^{2} \cos \left(x^{2}+y^{2}\right) d x d y .
$$

