Lineaaristen mallien kurssi - yleistentti 14.12.2012

1. Define the (full rank) linear model with <u>all assumptions</u> and explain briefly the interpretation of the model. Define also the concepts of (least squares) residual and fitted value and explain briefly their interpretation. Finally, show that $\mathbf{y'y} = \mathbf{\hat{y}'\hat{y}} + \mathbf{\hat{\varepsilon}'\hat{\varepsilon}}$, where $\mathbf{\hat{y}} (n \times 1)$ is the vector of fitted values, $\mathbf{\hat{\varepsilon}} = [\hat{\varepsilon}_1 \cdots \hat{\varepsilon}_n]'$ is the vector of residuals, and n is the sample size.

2. Let $Y_1, ..., Y_5$ be independent normally distributed random variables such that $Y_i \sim N(\mu_i, \sigma^2)$ (i = 1, ..., 5), where

$$\mu_i = \begin{cases} \beta_1 & \text{for } i = 1, 2\\ \beta_1 + 2\beta_2 & \text{for } i = 3\\ \beta_1 - \beta_2 & \text{for } i = 4, 5 \end{cases}$$

Formulate the situation as a linear model and estimate the parameters β_1 and β_2 by applying the estimation theory of the linear model. Describe briefly the estimation principle and find out the probability distribution of $\hat{\boldsymbol{\beta}} = [\hat{\beta}_1 \ \hat{\beta}_2]'$, the estimator of the parameter vector $\boldsymbol{\beta} = [\beta_1 \ \beta_2]'$.

3. Let $Y_1, ..., Y_4$ be independent normally distributed random variables such that $Y_i \sim N(i\beta, \sigma^2)$ (i = 1, ..., 4). Formulate the situation as a linear model and derive a test for the hypothesis $H : \beta = 0$ against the alternative $\beta \neq 0$.

4. Suppose that the random variables $Y_{11}, ..., Y_{1n_1}, Y_{21}, ..., Y_{2n_2}, Y_{31}, ..., Y_{3n_3}$ are independent with $Y_{ji} \sim N(\mu_j, \sigma^2)$, $i = 1, ..., n_j$, j = 1, 2, 3. Formulate the situation as a linear model and test the hypothesis $H: \mu_1 = \mu_2 = \mu_3$ by applying the test theory of the linear model.

In case you happen to need:

• The density function of a random vector $\mathbf{X} \sim \mathsf{N}_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$f(x) = (2\pi)^{-k/2} \det(\boldsymbol{\Sigma})^{-1/2} \exp\left\{-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}\right)' \boldsymbol{\Sigma}^{-1} \left(\mathbf{x} - \boldsymbol{\mu}\right)\right)\right\},\$$

where $det(\Sigma)$ is the determinant of the covariance matrix Σ and the real valued case is obtained by setting k = 1.

- The $F_{k,m}$ -distribution is defined by the random variable $m\chi_k^2/k\chi_m^2$ where χ_k^2 and χ_m^2 are independent. Moreover, $\mathsf{E}(\chi_k^2) = k$, $\mathsf{Var}(\chi_k^2) = 2k$.
- The t_k -distribution is defined by the random variable $Z/\sqrt{\frac{1}{k}\chi_k^2}$ where $Z \sim N(0,1)$ and Z and χ_k^2 are independent.
- If $\mathbf{X} \sim \mathsf{N}_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $(\mathbf{X} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu}) \sim \chi_k^2$.
- If $\mathbf{X} \sim \mathsf{N}_k(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_k)$ and the matrix $\mathbf{P}(k \times k)$ is an orthogonal projection of rank r then $(\mathbf{X} \boldsymbol{\mu})' \mathbf{P}(\mathbf{X} \boldsymbol{\mu}) / \sigma^2 \sim \chi_r^2$.