Algebra I

University of Helsinki, Department of mathematics and statistics General examination

24.1.2013

- 1. Denote $H = \{5^n \mid n \in \mathbb{Z}\}.$
 - a) Show that H is a subgroup of the group $(\mathbb{Q} \setminus \{0\}, \cdot)$.
 - b) Show that the groups (H, \cdot) and $(\mathbb{Z}, +)$ are isomorphic.
- 2. a) On \mathbb{Z}_6 , the set of residue classes modulo 6, we define a binary operation * by

$$[a]_6 * [b]_6 = [a+b+2]_6.$$

The binary operation has an identity. What is the identity?

b) Show that on \mathbb{Z}_6 it is not possible to define a binary operation by

$$[a]_6 * [b]_6 = [|a| - 5b]_6.$$

- 3. Denote $R = \mathbb{Z}_3 \times \mathbb{Z}_5$.
 - a) Is R an integer domain?
 - b) The set R^* consists of all the units of R. Show that $([2]_3, [2]_5) \in R^*$.
 - c) The set R^* of units is a multiplicative group. Determine the subgroup generated by the element $a = ([1]_3, [2]_5)$, that is, the subgroup $\langle a \rangle$.
- 4. Consider the group S_4 and its normal subgroup

$$V = \{(1), (12)(34), (13)(24), (14)(23)\}.$$

- a) Determine the coset (123)V.
- b) Which of the following cosets coinside? Remember to justify your answer.

$$(123)V$$
, $(12)V \cdot (24)V$, $((23)V)^{-1}$

c) Show that the factor group S_4/V is not cyclic.