Algebra I
 University of Helsinki, Department of mathematics and statistics
 General examination
 24.1.2013

1. Denote $H=\left\{5^{n} \mid n \in \mathbb{Z}\right\}$.
a) Show that H is a subgroup of the group $(\mathbb{Q} \backslash\{0\}, \cdot)$.
b) Show that the groups (H, \cdot) and $(\mathbb{Z},+)$ are isomorphic.
2. a) $\mathrm{On} \mathbb{Z}_{6}$, the set of residue classes modulo 6 , we define a binary operation $*$ by

$$
[a]_{6} *[b]_{6}=[a+b+2]_{6} .
$$

The binary operation has an identity. What is the identity?
b) Show that on \mathbb{Z}_{6} it is not possible to define a binary operation by

$$
[a]_{6} *[b]_{6}=[|a|-5 b]_{6} .
$$

3. Denote $R=\mathbb{Z}_{3} \times \mathbb{Z}_{5}$.
a) Is R an integer domain?
b) The set R^{*} consists of all the units of R. Show that $\left([2]_{3},[2]_{5}\right) \in R^{*}$.
c) The set R^{*} of units is a multiplicative group. Determine the subgroup generated by the element $a=\left([1]_{3},[2]_{5}\right)$, that is, the subgroup $\langle a\rangle$.
4. Consider the group S_{4} and its normal subgroup

$$
V=\{(1),(12)(34),(13)(24),(14)(23)\} .
$$

a) Determine the coset $(123) V$.
b) Which of the following cosets coinside? Remember to justify your answer.

$$
(123) V, \quad(12) V \cdot(24) V, \quad((23) V)^{-1}
$$

c) Show that the factor group S_{4} / V is not cyclic.

