Algebra I

University of Helsinki
Department of Mathematics and Statistics

General examination

22.10.2013

1. The group $G=\{a, b, c, d, x, y\}$ has the following mutiplication table:

\cdot	a	b	c	d	x	y
a	a	b	c	d	x	y
b	b	c	a	x	y	d
c	c	a	b	y	d	x
d	d	x	y	b	c	a
x	x	y	d	c	a	b
y	y	d	x	a	b	c

(a) What is the order of b ?
(b) Determine c^{-4}.
(c) Find a subgroup of G whose order is 4 , or show that such subgroup does not exist.
2. The group $G=\{(1),(14),(15),(45),(145),(154)\}$ has subgroups $H=$ $\{(1),(145),(154)\}$ and $K=\{(1),(14)\}$.
(a) Determine the elements of the coset (15) H .
(b) Is it possible talk about the quotient group G / H ? If so, determine the elements and multiplication table of this quotient group.
(c) Is it possible to talk about the quotient group G / K ? If so, determine the elements and multiplication table of this quotient group.
3. Show that the following cancellation property holds in an integral domain D :

Assume that $a, b, c \in D$ and $a \neq 0$. If $a b=a c$, then $b=c$.
4. Show that the set

$$
R=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \text { is odd }\right\}
$$

is a subring of \mathbb{Q}. What are the units of R ?
5. How many homomorphisms there are from the group \mathbb{Z}_{6} into the group \mathbb{Z}_{4} ?

