Assume that A is a symmetric operator in the Hilbert space H and that H has on orthonormal basis $(e_n)_{n=1}^{\infty}$ consisting of eigenvectors of A, so that

We still assume $\lambda_n > 0$ for all n and that all the vectors e_n belong to D(A). Our task is to show that A is essentially self-adjoint.

Recall that if $x \in H$, then

(0.2)
$$x = \sum_{n=1}^{\infty} x_n e_n$$

where $x_n = (x|e_n) \in \mathbb{C}$ and

(0.3)
$$\sum_{n=1}^{\infty} |x_n|^2 = ||x||^2,$$

in particular both sums in (0.2) and (0.3) converge.

1. Show that if
$$x = \sum_{n=1}^{\infty} x_n e_n \in D(A) \subset H$$
, then

(0.4)
$$\sum_{n=1}^{\infty} (1+\lambda_n^2) |x_n|^2 < \infty.$$

Let $\mathcal{D} \subset H$ be the set of all $x = \sum_{n=1}^{\infty} x_n e_n$ such that (0.4) holds, and define the operator with domain \mathcal{D} ,

(0.5)
$$\mathcal{A}x := \sum_{n=1}^{\infty} \lambda_n x_n e_n.$$

Verify that $\mathcal{A}: \mathcal{D} \to H$ is an extension of A.

2. Show that $\sigma(\mathcal{A})$ is the closure of the set $\{\lambda_n : n \in \mathbb{N}\}$ in \mathbb{C} .

3. Show that \mathcal{A} is the same as the closure of A. Here, you may assume it is known that \mathcal{A} is closed.

4. Show that \mathcal{A} is self-adjoint.

(We plan to apply these results to the study of the harmonic oscillator of quantum mechanics in the forthcoming exercises.)