SPECTRAL THEORY / AUTUMN 2016 / EXERCISE 6

1. Let A be a bounded self-adjoint operator in a Hilbert space H. If $K \subset \mathbb{C}$ is a non-empty compact set, then we define the map

$$\Phi: \mathcal{P} \to \mathcal{L}(H) \quad , \quad \Phi: P \mapsto P(A),$$

where $P(z) = \sum_{n=0}^{N} a_n z^n$ is a polynomial, \mathcal{P} is the subspace of C(K) consisting of polynomials P and

$$P(A) = \sum_{n=0}^{N} a_n A^n.$$

Show that Φ is an algebra homomorphism and that it satisfies properties $1^{\circ}-2^{\circ}$ of Theorem 6.11 for $f \in \mathcal{P}$.

- 2. Prove Lemma 6.6. of the lecture notes (for example, consider Riemann sums.)
- 3. Prove the first identity in Lemma 6.7.
- 4. Prove that the two examples after Definition 6.3 are spectral families.