In the following we consider the elements g of the Sobolev-space $H^1(]0, 1[) = H^1(0, 1)$ as continuous functions so that g(t) is well defined for all $t \in [0, 1]$. So, $H_0^1(]0, 1[) = H_0^1(0, 1)$ is the closed subspace of $H^1(0, 1)$, consisting of functions which vanish at 0 and 1. Equivalently, $H_0^1(0, 1)$ is the closure of the subspace $C_0^{\infty}(0, 1)$ in $H^1(0, 1)$.

1. Consider the operator $A: f \mapsto if'$ (weak derivative) with

$$D(A) = \{ f \in L^2(0,1) : f \in H^1_0(0,1) \}.$$

Determine $D(A^*)$ and A^* . Is A symmetric or self-adjoint?

2. The same question for the operator $A_{\theta} : f \mapsto if'$, when it is defined in the domain

$$D(A_{\theta}) = \{ f \in L^2(0,1) : f \in H^1(0,1), f(0) = e^{i\theta} f(1) \},\$$

where $\theta \in [0, 2\pi]$ is a given fixed number. Can you say something about self-adjoint extensions of the operator A of Problem 1?

3. Let Ω be for example the unit cube $\Omega = [0,1] \times [0,1] \times [0,1] \subset \mathbb{R}^3$ and let $\varphi \in L^1(\Omega)$ be fixed. Consider the multiplication operator

$$M_{\varphi}f = \varphi f,$$

which is defined as pointwise multiplication in the domain

$$D(M_{\varphi}) = \{ f \in L^2(\Omega) : \varphi f \in L^2(\Omega) \}.$$

Show that M_{φ} is densely defined and closed. Give examples of bounded and unbounded operators M_{φ} .

4. Show that M_{φ} of the Probl. 3 satisfies $(M_{\varphi})^* = M_{\overline{\varphi}}$ and thus it is self-adjoint, if the values of φ are real numbers.