1. Let $\varphi : \mathbb{R} \to \mathbb{C}, \ \varphi \neq 0$, be, say, a continuous function such that its support is contained in the interval [0, 1]. (In other words, φ vanishes everywhere outside this interval.)

a) Show that if $B \subset L^2(\mathbb{R})$ is a set which contains all functions

$$g_n(t) := \varphi(t-n) , \quad n \in \mathbb{Z},$$

then B cannot be compact.

b) Show that the convolution operator $T_{\varphi}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$,

$$T_{\varphi}f(x) = \int_{-\infty}^{\infty} \varphi(x-t)f(t) dt$$

is bounded but not compact.

2. Consider the Hilbert space $L^2(0,1)$, and some $\alpha > 1/2$. Define the operator

$$Af(t) = t^{-\alpha}f(t)$$

with domain

 $D(A) = \{ f \in L^2(0,1) : \exists \delta > 0 \text{ such that } f(t) = 0 \text{ for almost all } t \in [0,\delta] \}.$

Prove that A is not bounded nor closed. For the latter, you can for example consider functions $f_n(t)$ defined as t^{α} for $1/n \leq t \leq 1$ and as 0 for t < 1/n, where $n \in \mathbb{N}$. 3. Consider the Hilbert space $L^2(0, 2\pi)$ and let $g : [0, 2\pi] \to \mathbb{C}$ be a C^1 -function such that its *n*th Fourier-coefficient $\hat{g}(n)$ satisfies the bound $|\hat{g}(n)| \leq 1/n$. Show that the (convolution) operator

$$K_g f(t) := \int_0^{2\pi} g(t-s)f(s)ds$$

is compact. (You should use the isomorphism of $L^2(0, 2\pi)$ and ℓ^2 defined by the Fourier series, and Probl. 3 in Exercise 1.)

4. A linear operator $T: H \to H$, where H is a Hilbert space, is called a finite rank operator, if the range R(T) = T(H) is a finite dimensional subspace of H. Show that a finite rank operator is compact. Moreover, show that if $T \in \mathcal{L}(H)$

can be approximated with respect to the operator norm by finite rank operators T_n , $n \in \mathbb{N}$, i.e. for all $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that

$$||T - T_n|| \le \varepsilon,$$

then T is compact.

You can use the result that in a finite dimensional normed space, bounded subsets are precompact.