SPECTRAL THEORY / AUTUMN 2016 / EXERCISE 10

1. Prove the Hardy inequality

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{x^{2}}|u(x)|^{2} d x \leq 4 \int_{0}^{\infty}\left|u^{\prime}(x)\right|^{2} d x \tag{0.1}
\end{equation*}
$$

say, for real valued $u \in C_{0}^{\infty}(] 0, \infty[)$. (Instruction: integrate the identity

$$
\frac{d}{d x}\left(\frac{u^{2}}{x}\right)=-\frac{u^{2}}{x^{2}}+\frac{2 u^{\prime} u}{x}
$$

and use Cauchy-Schwartz.)
2. Prove the Hardy inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \frac{1}{|x|^{2}}|u(x)|^{2} d x \leq 4 \int_{\mathbb{R}^{3}}|\nabla u(x)|^{2} d x \tag{0.2}
\end{equation*}
$$

for real valued $u \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$. Use polar coordinates and Probl. 1.
3. Let $u \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ and denote by \hat{u} its Fourier-transform. Then, show that

$$
\int_{\mathbb{R}^{3}}|x|^{-2}|u(x)|^{2} d x \leq 4 \int_{\mathbb{R}^{3}}|\xi|^{2}|\hat{u}(\xi)|^{2} d \xi .
$$

4. Let $\Omega=\mathbb{R}^{d}, d \in \mathbb{N}$, and let $A=-\Delta$ with domain $D(A)=C_{0}^{\infty}(\Omega)$. What is the domain of the Friedrichs extension of A ? (You should take into account that $C_{0}^{\infty}(\Omega)$ is dense for example in $H^{2}(\Omega)$ for this Ω.)
