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1. Prove the Hardy inequality
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say, for real valued u ∈ C∞0 (]0,∞[). (Instruction: integrate the identity
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and use Cauchy-Schwartz.)

2. Prove the Hardy inequality∫
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|u(x)|2dx ≤ 4
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for real valued u ∈ C∞0 (R3). Use polar coordinates and Probl. 1.

3. Let u ∈ C∞0 (R3) and denote by û its Fourier-transform. Then, show that∫
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4. Let Ω = Rd, d ∈ N, and let A = −∆ with domain D(A) = C∞0 (Ω). What is the
domain of the Friedrichs extension of A? (You should take into account that C∞0 (Ω)
is dense for example in H2(Ω) for this Ω.)
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