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CHAPTER 1

Measure theoretic foundations.

1.1. Motivation: Probability meets measure theory.

Probability theory aims at modeling real-life phenomena that are characterized by uncertainty1. This
means that the outcome of an experiment (we will speak about “experiments” for simplicity, even though
applicability of the theory is by no means limited by a laboratory setup) is not entirely determined by the
initial conditions of that experiment. The prototypical examples are the experiments of “throwing a dye”
and “flipping a coin”: six (respectively, two) possible outcomes occur, and there is no way to predict in
advance which one realizes.

Assume that a particular experiment A has a finite set Ω of possible outcomes, e. g. in the case of a
dye, one has Ω = {1, 2, 3, 4, 5, 6}, and for the coin flip, one has Ω = {heads, tails}. Then, provided that the
experiment can be repeated several times, one can compute frequencies of outcomes. Let Xi ∈ Ω denote
the outcome of the i-th experiment. Put

fN (ω) :=
#{i ≤ N : Xi = ω}

N
,

where N is the number of repetitions. Note that “series of N repetitions of an experiment A” may in itself
be viewed as an experiment with an uncertain outcome, in particular, the frequencies fN (ω) will be random
numbers - meaning that if one performs two series of N repetitions of the experiment A, one will get, in
general, different frequencies.

However, if the conditions of the experiment A are repeated precisely enough, and if N is large enough,
the frequencies fN (ω) are often experimentally observed to be close to certain numbers p(ω); loosely speak-
ing,

fN (ω)
N→∞−→ p(ω).

The numbers p(ω) are determined by the conditions of the experiment only, they are certain, “non-random”
quantities. Thus, in the case of a fair dye, one has p(ω) = 1

6 for every outcome ω ∈ Ω, and for the coin flip,
one has p(heads) = p(tails) = 1

2 .
Obviously, fN (ω) ≥ 0 and

∑
ω∈Ω fN (ω) = 1. We naturally expect these properties to be inherited by

the “idealized” frequencies p, which leads to the following definition.

Definition 1.1.1. A discrete probability space is a finite (or countably infinite) set Ω (called the set of
outcomes), equipped with a function p : Ω → R≥0, such that

∑
ω∈Ω p(ω) = 1. The quantity p(ω) is called

the probability of an outcome ω.
While this definition is good enough for the case of finite (or countably infinite) set of outcomes, it does

not cover the case of uncountable sets. Although “uncountable sets of outcomes” may sound fancy from the
practical point of view, the following example shows that this setup arises quite naturally, even if we start
from the most “finite” and “discrete” probabilistic models.

Example 1.1.2. Alice has 10 euros and Bob has 5 euros. They flip a fair coin, and if it comes up heads,
Alice pays Bob 1 euro, otherwise Bob pays Alice 1 euro. They repeat the game until one of them loses all
the money. What is the probability for Alice to win?

1here we follow what is close to the “propensity interpretation of Probability” to motivate the axioms. For other inter-
pretations, see, e. g., http://plato.stanford.edu/entries/probability-interpret/.
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1.1. MOTIVATION: PROBABILITY MEETS MEASURE THEORY. 5

Even before actually computing the probability, one must understand what does it mean, that is, what is
the relevant probability space for this Alice-Bob game. If the number of coin flips were fixed in advance - say,
N - the construction of probability space would be fairly easy. One would then take Ω := {heads, tails}N ,
that is, the set of all sequences (ω1, . . . , ωN ) of length N with ωi ∈ {heads, tails}, and the probability of
each outcome would be 2−N . Unfortunately, this is not enough for our purposes, since the duration of the
Alice-Bob game is not fixed in advance. However large N we take, it is still possible that the game has no
winner after N flips. In fact, the game might have no winner at all: Alice and Bob could play ad infinitum.

Taking this possibility into account, we take a different view on the Alice-Bob game. We may assume
that they continue to flip the coin even after the winner is decided (the results of these flips are, of course,
irrelevant). Or, in other words, we imagine that they first flip the coin an infinite number of times, record the
resulting sequence of heads and tails, and only then examine this sequence in order to determine the winner.
Thus, the natural choice of probability space for the game would be the space {heads, tails}N of all infinite
sequences ω = (ω1, ω2, . . . ), with “equal probability assigned to each sequence”. This is an uncountably
infinite space, and the discrete probability space structure is inadequate here: an infinite amount of equal
numbers cannot sum up to 1.

Still, we can meaningfully ascribe non-trivial probabilities to certain sets of outcomes - such sets are
called events. For example, given a finite sequence2 σ = (σ1, . . . , σN ) ∈ {0, 1}N , we can consider the set
Ωσ1,...,σN := {ω ∈ {0, 1}N : ω1 = σ1, . . . , ωN = σN}. This is the set of all infinite sequences whose beginning
agrees with the presecribed sequence (σ1, . . . , σN ). In the probabilistic language, this corresponds to the
event that the first N coin flips yield that particular sequence. Of course, the probability of this event
should be 2−N .

We can, furthermore, compute the probability of events like “Alice wins on move N ”. Indeed, these
are just disjoint unions of events of the form Ωσ1,...,σN , and the interpretation of probabilities in terms of
frequencies suggests that if A,B are disjoint sets, then we must have the relation

P(A ∪B) = P(A) + P(B).

A natural next step is to invoke the representation

(1.1.1) {Alice wins} = t∞N=1{Alice wins on move N}.

So, if we want the axiomatics of Probability to be rich enough to treat the Alice-Bob game, it should say
something about the behavior of probabilities under countable disjoint unions. As Kolmogorov realised in
1930-s, measure theory provides exactly the right framework for Probability, as it studies functions of sets
that are countably additive - exactly what is needed to pass from (1.1.1) to

P{Alice wins} =

∞∑
N=1

P{Alice wins on move N}.

In this particular example, there is a way to further exhibit a direct relevance of measure theory - in
fact, of the Lebesgue measure on the unit interval. Namely, given a finite sequence ω ∈ {0, 1}N , or an
infinite sequence ω ∈ {0, 1}N, define

R(ω) :=

N∑
i=1

ωi2
−i,

where N =∞ for the case of an infinite sequence. This is just the real number in the interval [0, 1] whose
binary representation consists of the digits in the sequence ω. Then, it is easy to see that R(Ωσ1,...,σN ) =
[R(σ), R(σ) + 2−N ], that is, the probability of an event Ωσ1,...,σN exactly equals the length of R(Ωσ1...σN ).

The mapping R is “almost a bijection” - the set of points with more than one preimage has Lebesgue
measure 0 (Exercise!). Therefore, we can assign probability to more general sets - such as, e. g. “Alice
beats Bob” - by putting

P(A) := |R(A)|,

2here we switch the notation from {heads, tails} to {0, 1}
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where | · | denotes the Lebesgue measure, provided that R(A) is Lebesgue measurable. This way, probability
is defined for a wide class of events - it is in fact a measure on {0, 1}N.

1.2. Definitions and elementary facts from measure theory

We begin by recalling necessary definitions of measure theory. In what follows, 2Ω denotes the set of
all subsets of a set Ω.

Definition 1.2.1. Suppose Ω is a set, and F ⊂ 2Ω a collection of its subsets. The collection F is called
a σ-algebra if the following conditions are satisfied:

• ∅ ∈ F ;
• if A ∈ F , then Ac := Ω \A ∈ F ;
• if A1, A2, . . . is a sequence of subsets of Ω such that Ai ∈ F for all i, then ∪∞i=1Ai ∈ F .

Since we could take An = An+1 = · · · = ∅, the third condition is also satisfied for finite sequences of
Ai. Also, by the first two conditions, Ω ∈ F , and by the second and third conditions, a σ-algebra is closed
under countable intersectons: if Ai ∈ F for all i, then

∩∞i=1Ai = (∪∞i=1A
c
i )
c ∈ F .

Definition 1.2.2. A set equipped with a σ-algebra is called a measurable space, and the elements of
the σ-algebra are called measurable sets.

Definition 1.2.3. Given a measurable space (Ω,F), a function µ : F → R≥0 ∪ {+∞} is called a
measure if it satisfies the following properties:

• µ(∅) = 0;
• (σ-additivity or countable additivity) If A1, A2, . . . is a sequence of disjoint sets (that is, Ai∩Aj = ∅

for i 6= j), such that Ai ∈ F for all i, then

µ(∪∞i=1Ai) =

∞∑
i=1

µ(Ai).

A measure µ is called a probability measure if µ(Ω) = 1.

The second condition in the above definition is equivalent to finite additivity (that is, µ(A ∪ B) =
µ(A) + µ(B) for disjoint measurable sets A,B) combined with lower continuity :

if A1 ⊂ A2 ⊂ . . . are measurable sets, then

µ(∪∞i=1Ai) = lim
i→∞

µ(Ai),

In the case µ(Ω) <∞, σ-additivity is also equivalent to finite additivity combined with upper continuity :
if A1 ⊃ A2 ⊃ . . . are measurable sets, then

µ(∩∞i=1Ai) = lim
i→∞

µ(Ai).

A fundamental property of measures and σ-algebras is that they can be pushed forward by maps:

Lemma 1.2.4. If (Ω1;F1) is a measurable space, and f : Ω1 → Ω2 is a map, then the set

F1 ◦ f−1 := {A ∈ 2Ω2 : f−1(A) ∈ F1}

is a σ-algebra on Ω2. If, moreover, µ is a measure on F1, then µ ◦ f−1, defined by

µ ◦ f−1(A) = µ(f−1(A)),

is a measure on F2.

Proof. This follows from the identities f−1(∅) = ∅, f−1(Ac) =
(
f−1(A)

)c, and f−1(t∞i=1Ai) =

t∞i=1f
−1(Ai). �
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Definition 1.2.5. A map f : Ω1 → Ω2 between two measurable spaces (Ω1,F1) and (Ω2,F2) is called
measurable if F2 ⊂ F1 ◦ f−1, or, in other words, the preimage of any measurable set is measurable. When
we want to be more explicit, we call it F1-to-F2 measurable.

How to construct σ-algebras? First, there is always the maximal one, i .e. the set 2Ω of all subsets of
Ω, and the minimal one, containing just two elements: ∅ and Ω. Second, an intersection of an arbitrary
collection of σ-algebras is also a σ-algebra. Therefore, given an arbitrary collection A of subsets of Ω,
we may define the smallest σ-algebra containing A , denoted by σ(A). This is just the intersection of all
σ-algebras containing A. When Ω bears a structure of a topological space, one may take A to be the set
of all open subsets of Ω; the result is called the Borel σ-algebra, and denoted by B(Ω). In the case Ω = R,
the Borel σ-algebra coincides with σ({(−∞, a] : a ∈ R}).

We are ready to give the key definitions of Probability:

Definition 1.2.6. A probability space is a triple (Ω,F ,P), where Ω is a set, F is a σ-algebra on Ω, and
P is a probability measure on P.

Remark 1.2.7. A discrete probability space is can be seen as a special case of a probability space, by
taking F := 2Ω, and P(A) :=

∑
ω∈A p(ω).

Definition 1.2.8. Given a probability space (Ω,F ,P), a measurable map from Ω to a measurable space
(Ω′,F ′) is called a random variable (with values in Ω′).

Usually, when speaking about random variables, the σ-algebra F ′ is not mentioned explicitly. If Ω′ is
a topological space, we assume F ′ = B(Ω) unless stated otherwise. In particular, if Ω′ = R, then a random
variable is a function f : Ω→ R such that f−1((−∞, a]) is measurable for any a ∈ R.

Definition 1.2.9. If f is a random variable with values in Ω′, then the measure on F ′ given by

µ(A) := P(f−1(A)).

is called a distribution of the random variable f .

Remark 1.2.10. One can write P(f−1(A)) = P({ω ∈ Ω : f(ω) ∈ A}). It is customary in Probability
texts to use capital latin letters for random variables (e. g., X instead of f) and abbreviate the last formula
to something like P(X ∈ A).

A distribution of a scalar random variable X is thus a probability measure on (R,B(R)). A function

FX(a) = P(X ∈ (−∞, a])

is called the probability distribution function3 of X.

Lemma 1.2.11. For any random variable X, FX(a) is non-decreasing, right-continuous (i. e., FX(ai)→
FX(a) whenever ai ↘ a, and has limits lima→+∞ FX(a) = 1, lima→−∞ FX(a) = 0. Conversely, if F is
any function with these properties, then there exists a probability measure µ on B(R) such that F (a) =
µ((−∞, a]).

Proof. The properties of FX follows from monotonicity and upper/lower continuity of measure; e. g.,
∩ai↘a(−∞, ai] = (−∞, a] implies the right continuity.

The existence of measure µ is based on existence of Lebesgue measure4. Assume first that F is con-
tinuous and strictly increasing. Then it has an inverse h := F−1 : (0, 1)→ R which is also continuous and
increasing, and h−1((−∞; a]) = (0;F (a)]. The pushforward of the Lebesgue measure by h is the desired
measure on R.

In the general case, define, for x ∈ (0, 1),

h(x) := inf{y ∈ R : F (y) ≥ x}.

3or cumulative disctribution function
4to be proved in Section 1.4
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Since F (a) → 0 as a → −∞ and F (a) → 1 as a → +∞, this infimum is finite for all x ∈ (0, 1). Note that
if yi ↘ y and F (yi) ≥ x, then, by right-continuity, F (y) ≥ x. This means that the infimum is in fact a
minimum, i. e. F (h(x)) ≥ x. In plain words, h(x) is determined by the following rules:

• if x has preimages, then we take h(x) to be the left-most of them;
• if x has no preimages, then there exists a unique y ∈ R such that limu→y− F (u) < x < F (y). In

this case, we take h(x) = y.
Clealry, h is non-decreasing, therefore, h−1((−∞, a]) is an interval for each a. In particular, h is Borel-to-
Borel measurable and we can define a measure µ on R by setting µ(A) := |h−1(A)|.

It remains to check that for all a ∈ R, h−1(−∞, a] = (0;F (a)]. First,

h(F (a)) = inf{y ∈ R : F (y) ≥ F (a)} ≤ a,

because a belongs to the set {y ∈ R : F (y) ≥ F (a)}. Since h is increasing, this means that

h((0, F (a)] ⊂ (−∞, a],

so (0, F (a)] ⊂ h−1(−∞, a]. To prove the opposite inclusion, pick x > F (a); as noted above, F (h(x)) ≥ x >
F (a), which means that h(x) > a, that is, x /∈ h−1(0; a]. �

One simple, but important operation with probability spaces is that of restriction: if (Ω,F ,P) is a
probability space, and A ∈ F , then F|A := {A ∩ B : B ∈ F} is a σ-algebra on A, and µ(B) := P(A ∩ B)
is a measure on F|A. If P(A) = 0, this measure identically zero; otherwise it could be normalized to be a
probability measure on A. This probability measure is called conditional probability, and denoted by P(·|A).
So, by definition,

P(B|A) =
P(B ∩A)

P(A)
.

Exchanging A and B in the above definition, one arrives at Bayes’s formula:

P(B|A) =
P(A|B)P(B)

P(A)
.

1.3. Dynkin’s π − λ theorem and uniqueness of measures.

In this section, we prove that if two probability measures on B(R) have the same probability distribution
function - i. e., agree on all rays (−∞, a] - then they agree on B(R). It is very tempting to call this result
“obvious”: if two measures agree on a collection A of sets, surely they must agree on σ(A)! Unfortunately,
this implication is badly wrong, as one of the exercises shows. We will develop an abstract tool that is
useful to treat this and many other questions of the same flavour.

Definition 1.3.1. A collection A of subsets of a set Ω is called a π-system if it is closed under
intersections:

A,B ∈ A ⇒ A ∩B ∈ A.

Definition 1.3.2. A collection A of subsets of a set Ω is called a λ-system5 if
• Ω ∈ A;
• if A,B ∈ A and A ⊂ B, then B \A ∈ A;
• if A1 ⊂ A2 ⊂ ... all belong to A, then ∪∞i=1Ai ∈ A.

The λ-systems are a slight generalizations of σ-algebras. Indeed, every σ-algebra is a λ-system (because
B \A = B ∩ (Ω \A)). On the other hand, the first two properties in the definition of a λ-system imply the
first two properties in the definition of σ-algebra. Therefore, a λ-system that is closed under finite unions
is a σ-algebra. By passing to complements, we see that a λ-system that is closed under finite intersections
is also a σ-algebra.

5sometimes also a d-system, of Dynkin system.
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Example 1.3.3. Assume that µ and ν are two probability measures on the same σ-algebra F . Then
{A ∈ F : µ(A) = ν(A)} is a λ-system.

Theorem 1.3.4. (π-λ theorem of Dynkin’s lemma) Let A be a π-system and B be a λ-system. Then

A ⊂ B ⇒ σ(A) ⊂ B.

Proof. Let λ(A) denote the intersection of all λ-systems that contain A; this is also a λ-system. Our
goal is to prove that λ(A) is closed under intersections. Denote S(A) := {B : A ∩ B ∈ λ(A)}, and let us
check that if A ∈ λ(A), then S(A) is a λ-system. Indeed, Ω ∩ A = A ∈ λ(A). If C ⊂ D and C,D ∈ S(A),
then

(D \ C) ∩A = (D ∩A) \ (C ∩A).

Both (D ∩A) and (C ∩A) belong to λ(A), and since λ(A) is a λ-system, so does their difference. Finally,

A ∩ (∪∞i=1Ai) = ∪∞i=1(A ∩Ai),
which shows that ∪∞i=1Ai belongs to S(A) whenever all Ai do.

Now assume that A ∈ A. Since A is a π-system, A ⊂ S(A). Since S(A) is a λ-system, we have
λ(A) ⊂ S(A). So, we have proved the following: if A ∈ A and B ∈ λ(A), then A ∩ B ∈ λ(A). This means
that S(B) contains A, and since it is a λ-system, it contains λ(A). In other words, λ(A) is closed under
intersections.

Consequently, λ(A) is a σ-algebra that contains A, therefore σ(A) ⊂ λ(A) ⊂ B. �

Collecting all the facts of this subsection together:

Corollary 1.3.5. If two measures µ1 and µ2 such that µ1(Ω) = µ2(Ω) < ∞ agree on a π-system A,
they agree on σ(A). In particular, a probability measure on R is uniquely determined by its p. d. f.

Proof. It only remains to notice that {(−∞, a] : a ∈ R} is a π -system. �

1.4. Caratheodory extension and existence of measures.

In this section, we review a powerful tool to construct measures: the Caratheorody’s extension theorem.
This theorem is used to construct:

• Lebesgue measure on R;
• Direct products of measure spaces;
• Non-direct products (projective limits) of measure spaces (Kolmogorov’s extension theorem).

Definition 1.4.1. A collection R ⊂ 2Ω of subsets of a set Ω is called a semi-ring if the following
conditions are satisfied:

• ∅ ∈ R;
• it is a π-system, i. e., closed under intersections;
• if A,B ∈ R, then there exists a finite collection of disjoint sets A1, . . . , An ∈ R such that

A \B = tni=1Ai.

Example 1.4.2. The collection I := {[a; b) : a, b ∈ R} is a semi-ring.

Definition 1.4.3. We say that a function µ : R → R≥0, is a pre-measure 6 if µ(∅) = 0, and the identity
A = t∞i=1Ai, where A,Ai ∈ R, implies µ(A) =

∑∞
i=1 µ(Ai).

Remark 1.4.4. Let µ be a finitely additive function on a semi-ring R, that is, if A,A1, . . . , AN ∈ R
and A = tNi=1Ai, then µ(A) =

∑N
i=1 µ(Ai). Assume that A1, . . . , AN ∈ R, B1, . . . , BM ∈ R, andtNi=1Ai =

tMi=1Bi. Then
N∑
i=1

µ(Ai) =

N∑
i=1

µ(tMj=1(Ai ∩Bj)) =

N∑
i=1

M∑
j=1

µ(Ai ∩Bj)) =

M∑
j=1

µ(Bj).

6The conditions are the same as in the definition of measure. However, the term “measure” is reserved for functions
defined on a σ-algebra.
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This means that we can extend the function µ in a consistent way to finite unions of elements of R. Below
we use this extension; e. g., for A,B ∈ R, we write µ(A \B) instead of

∑n
i=1 µ(Ai).

Theorem 1.4.5. (Caratheodory extension theorem). Let R be a semi-ring on a set Ω, and let µ : R →
R≥0 be a pre-measure. Then there exists a measure on σ(R) that coincides with µ on R.

Proof. The first step is to define the outer measure µ∗ associated with µ. Namely, given A ∈ 2Ω,
define

µ∗(A) := inf
∪∞i=1Ai⊃A
Ai∈R

∞∑
i=1

µ(Ai);

in words, the infimum is taken over all countable covers of A by elements of R. The outer measure is defined
for any subset of Ω. However, for it to be a measure, we need to restrict it to a smaller class of subsets.

The second step, the most ingenious one in the proof, is to describe that class explicitly. Namely, we
say that a subset A of Ω is well-splitting if, for any E ∈ 2Ω, one has

(1.4.1) µ∗(E) = µ∗(E ∩A) + µ∗(E \A).

The rest of the proof boils down to a (rather straightforward) check of the following facts:
• sets in R are well-splitting;
• well-splitting sets form a σ-algebra;
• µ∗, when restricted to well-splitting sets, is a measure;
• if A ∈ R, then µ∗(A) = µ(A).

Before proceeding to the proof, we note that µ∗ is countably subadditive:

(1.4.2) µ∗(∪∞i=1Ai) ≤
∞∑
i=1

µ∗(Ai).

To see this, fix ε > 0, and let, for each i, {Ai,j}∞j=1 be a collection of elements of R that covers7 Ai (that
is, Ai ⊂ ∪∞j=1Ai,j) such that

∑∞
j=1 µ(Ai,j) ≤ µ∗(Ai) + ε

2i . Then the collection {Ai,j}∞i,j=1 covers ∪∞i=1Ai.
Therefore,

µ∗(∪∞i=1Ai) ≤
∞∑

i,j=1

µ(Ai,j) ≤
∞∑
i=1

µ∗(Ai) + ε

∞∑
i=1

2−i =

∞∑
i=1

µ∗(Ai) + ε,

and (1.4.2) follows by letting ε→ 0. In view of the sub-additivity, the inequality

(1.4.3) µ∗(E) ≥ µ∗(E ∩A) + µ∗(E \A)

is sufficient for A to be well-splitting.
Sets in R are well-splitting. Suppose E ⊂ Ω and A ∈ R. Let {Ai}∞i=1, Ai ∈ R be a cover of E with∑∞

i=1 µ(Ai) ≤ µ∗(E) + ε. We can decompose

(1.4.4) Ai = (Ai ∩A) t (Ai \A)

where all Ai,j ∈ R; note that also Ai ∩A ∈ R. Since µ is countably additive, we have8

(1.4.5) µ(Ai) = µ(Ai ∩A) + µ(Ai \A),

or, after summing over i,

µ∗(E) + ε ≥
∞∑
i=1

µ(Ai) =

∞∑
i=1

µ(Ai ∩A) +

∞∑
i=1

µ(Ai \A) ≥ µ∗(E ∩A) + µ∗(E \A).

The last inequality follows from the fact that {A∩Ai}∞i=1 (respectively, {Ai \A}∞i=1) form a cover of E ∩A
(respectilvey, E \A).

7If Ai is not covered by any countable collection of elements of R, then µ∗(Ai) = +∞ by definition, and (1.4.2) is
obviously true.

8note that in general; Ai \A /∈ R. Here we use for the first time the convention of Remark 1.4.4.
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If A ∈ R, then µ(A) = µ∗(A). Clearly, µ∗(A) ≤ µ(A), since A covers itself. If {Ai}∞i=1 is any cover of
A use the decomposition (1.4.4) and sum the identity (1.4.5) over i. By countable additivity of µ, we get

∞∑
i=1

µ(Ai) =

∞∑
i=1

µ(A ∩Ai) +

∞∑
i=1

µ(Ai \A) ≥
∞∑
i=1

µ(A ∩Ai).

Now, define
Ãn := (A ∩An) \ ∪n−1

i=1 (A ∩Ai).
It is not hard to see that Ãn is a finite disjoint union of elements in R, and that µ(Ãn) ≤ µ(A ∩ An).

Moreover, Ãn are disjoint, and ∪∞i=1Ãn = A. This shows that
∞∑
i=1

µ(Ai) ≥
∞∑
i=1

µ(A ∩Ai) ≥
∞∑
i=1

µ(Ãn) = µ(A)

Taking infimum over all covers gives µ∗(A) ≥ µ(A).
Well-splitting sets form a σ-algebra. It is obvious that Ω is well-splitting, and that a complement of a

well-splitting set is well-splitting. Let us check that if A,B are well-splitting, then so is A ∪B. Indeed,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) =

µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc),
where in the first equality we used that A is well-splitting, and in the second one we used that B is well-
splitting twice. Now, note that A ∪ B = (A ∩ B) ∪ (A ∩ Bc) ∪ (Ac ∩ B). By the sub-additivity of µ∗, we
can write

µ∗(E ∩ (A ∪B)) ≤ µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B).

Plugging this into the above equality yields

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩Ac ∩Bc),
and since Ac ∩Bc = (A ∪B)c, this means that A ∪B is well-splitting.

It remains to check that if A1, A2 . . . are well-splitting, then so is A := ∪∞i=1Ai. We may assume without
loss of generality that Ai are disjoint. Let E ⊂ 2Ω; we may assume µ∗(E) < ∞, for otherwise (1.4.3) is
vacuous. Let A(N) := ∪Ni=1Ai. Since A(N) is well-splitting, we can write

µ∗(E) = µ∗(E ∩A(N)) + µ∗(E \A(N)) ≥ µ∗(E ∩A(N)) + µ∗(E \A).

Once again, since A(N) is well-splitting, we can write

µ∗(E ∩A) = µ∗(E ∩A ∩A(N)) + µ∗(E ∩A \A(N)) = µ∗(E ∩A(N)) + µ∗(∪∞i=N+1(E ∩Ai)),
so, combining the last two formulas,

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E \A)− µ∗(∪∞i=N+1(E ∩Ai)).

Since all Ai are well-splitting,
∑N
i=1 µ

∗(E ∩ Ai) = µ∗(E ∩ A(N)) ≤ µ∗(E) < ∞, therefore, the series∑∞
i=1 µ

∗(E ∩ Ai) converges. So, by sub-additivity, µ∗(∪∞i=N+1(E ∩ Ai)) ≤
∑∞
i=N+1 µ

∗(E ∩ Ai) → 0 as
N →∞.

When restricted to well-splitting sets, µ∗ is a measure. Clearly, µ∗(∅) = 0. Let A1, A2, . . . be disjoint
well-splitting sets; then

∑N
i=1 µ

∗(Ai) = µ∗(tNi=1Ai) ≤ µ∗(t∞i=1Ai) for all N , so, we have

µ∗(t∞i=1Ai) ≥
∞∑
i=1

µ∗(Ai).

The opposite inequality follows from subadditivity. �

Proposition 1.4.6. (Caratheodory extension theorem - uniqueness) If, in the conditions of the previous
theorem, Ω can be written as a countable union of sets in R, then the extension of µ to σ(R) is unique.
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Proof. Let Ω = ∪∞i=1Ai; where Ai ∈ R; we may assume that they are disjoint. Suppose µ̃ is another
measure on σ(R) that agrees with µ on R. Let E ∈ σ(R), By monotonicity of measures, any extension µ̃
of µ must satisfy µ̃(E ∩Ai) ≤ µ∗(E ∩Ai) = µ(E ∩Ai) and µ̃(Ai \ E) ≤ µ∗(Ai \ E) = µ(E ∩Ai). Then,

µ̃(Ai) = µ̃(E ∩Ai) + µ̃(Ai \ E) ≤ µ(E ∩Ai) + µ(Ai \ E) = µ(Ai),

and since µ(Ai) = µ̃(Ai), all the inequalities are in fact equalities, i. e., µ(E ∩Ai) = µ. Consequently,

µ̃(E) =

∞∑
i=1

µ̃(E ∩Ai) =

∞∑
i=1

µ∗(E ∩Ai) = µ∗(E).

�

Remark 1.4.7. Another proof of Proposition 1.4.6, not referring to the outer measure machinery, is
based on the π − λ theorem (Thm 1.3.4).

Example 1.4.8. (Lebesgue measure.) There exists a unique measure λ on R such that for any a < b,
λ([a, b)) = b− a.

Proof. We apply Theorem 1.4.5 and Proposition 1.4.6 to the semi-ring {[a; b) : a, b ∈ R} with
µ([a; b)) := b− a. All we have to check is that if I = t∞i=1Ii, then

(1.4.6) µ(I) =

∞∑
i=1

µ(Ii).

An elementary input is the finite additivity of µ: if I = tNi=1Ii, then

(1.4.7) µ(I) =

N∑
i=1

µ(Ii).

To prove (1.4.7), let Ii = [ai; bi) be numbered in the increasing order of their leftmost points9, i. e.
a1 ≤ · · · ≤ aN . Since Ii = [ai; bi) and Ii+1 = [ai+1; bi+1) are disjoint, we must have ai+1 ≥ bi, that is,
a ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ bN ≤ b. Since I = ∪Ni=1Ii, we must have, in fact, a = a1,b1 = a2, . . . , bN = b. So,

N∑
i=1

µ(Ii) = b1 − a1 + b2 − a2 + · · ·+ bN − aN = bN − a1 = b− a = µ(I).

This, in particular, implies that
∑N
i=1 µ(Ii) ≤ µ(I), and, by passing to the limit,

∑∞
i=1 µ(Ii) ≤ µ(I).

To prove the opposite inequality, assume by contradiction that ε = µ(I) −
∑∞
i=1 µ(Ii) > 0. Then, each

I(N) = I(N) := I\
(
∪Ni=1Ii

)
is a non-empty disjoint union of intervals. We can find a finite unionK(N) ⊂ I(N)

of compact intervals such that10 µ(I(N))− µ(K(N)) < ε
2N+1 . Then,

µ(I(N) \ ∩Ni=1K
(i)) = µ

(
∪Ni=1(I(N) \K(i))

)
≤

N∑
i=1

µ(I(N) \K(i)) ≤
N∑
i=1

µ(I(i) \K(i)) ≤
N∑
i=1

ε

2N+1
≤ ε

2
.

Since µ(I(N)) ≥ ε, this implies that µ(∩Ni=1K
(i)) ≥ ε

2 , in particular, it is non-empty. The intersection of a
sequence of non-empty nested compact sets is non-empty, therefore, I \∪∞i=1Ii = ∩∞i=1I

(N) ⊃ ∩∞i=1K
(N) 6= ∅,

a contradiction. �

9observe that an attempt to prove (1.4.6) in a similar way would fail at this point. This is what makes (1.4.6) non-
elementary as compared to (1.4.7).

10recall that we extend µ to finite unions of intervals according to Remark 1.4.4. Moreover, here we extend the definition
of µ to finite unions of arbitrary intervals (e. g., open or closed); it is easy to see that (1.4.7) holds true with this extension.
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1.5. Expectation.

An expectation of a real-valued random variable is just another name for the (Lebesgue) integral over
a measure space:

E(X) =

ˆ
Ω

XdP.

Recall that the integral
´

Ω
hdµ, where h : Ω→ R, is defined in three steps. First, if h =

∑n
i=1 aiIAi , where

A1, . . . , An, are measurable of finite measure (such h are called simple functions), put
ˆ

Ω

hdµ :=

n∑
i=1

aiµ(Ai);

check that this is well defined, i. e., does not depend on the choice of representation of h in this form.
Second, if h is a non-negative measurable function, putˆ

Ω

hdµ := sup
g≤h

g simple

ˆ
Ω

gdµ.

Finally, for a general h, put ˆ
Ω

hdµ :=

ˆ
Ω

hIh≥0dµ−
ˆ

Ω

(−hIh<0) dµ.

whenever at least one of the terms is finite, otherwise we say that the integral does not exist11. To get used
to the notation, we formulate the following proposition in terms of expectations rather than integrals, even
though all the statements are true for arbitrary measure spaces.

Proposition 1.5.1. The expectation satisfies the following properties:
• (linearity) if α, β ∈ R, and EX and EY exist, then E(αX + βY ) exists, and

E(αX + βY ) = αE(X) + βE(Y );

• (monotonicity) if X,Y are measurable such that 0 ≤ X(ω) ≤ Y (ω) for all ω ∈ Ω and EY exists,
then E(X) ≤ E(Y ).

• (monotone convergence theorem) if Xi ≥ 0 are measurable and Xi ↗ X almost surely, then
E(Xi)→ E(X).

Remark 1.5.2. The expression “Xi ↗ X almost surely” (and, in general, “Property P = P (ω) holds
almost surely”), used above, means that Xi(ω) ↗ X(ω) for P-almost every ω ∈ Ω, that is, for all ω ∈ Ω
except for a set of measure zero.

It is, in general, not true that Xn → X almost surely implies EXn → EX:

Example 1.5.3. (Growing bump) Let Ω = (0, 1) with Lebesgue measure λ, and Xn = nI(0; 1
n ). Then

Xn(ω)→ 0 for any ω ∈ (0, 1), but EXi = nλ((0; 1
n )) ≡ 1.

The following sufficient condition is of huge importance in practice:

Proposition 1.5.4. (Dominated convergence theorem) if Xi are measurable, Xi → X almost surely,
and there exists a random variable Y ≥ 0 with E(|Y |) < ∞ such that if |Xi| ≤ |Y | almost surely for all i,
then E(Xi)→ E(X).

Proof of Propositions 1.5.1 and 1.5.4. We refer the reader to the “Measure and integral” course.
�

The integral is an important tool to construct new measures from existing ones.

11in probability, by saying that X has expectation, one means that it exists and is finite
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Lemma 1.5.5. Let f ≥ 0 be a measurable fuction on a measure space (Ω,F , µ) (not necessarily with
finite measure). Then µ′, defined on F by

µ′(A) :=

ˆ
A

fdµ =

ˆ
Ω

(f · IA)dµ

is a measure on F .

Proof. If A = ∅, then IA = 0, so µ′(A) = 0. If A1, A2, · · · ∈ F are disjoint and A = t∞i=1Ai, then

IA = lim
n→∞

n∑
i=1

IAi

pointwise, and

µ′(A) =

ˆ
Ω

(f · IA)dµ =

ˆ
Ω

(
lim
n→∞

f ·
n∑
i=1

IAi

)
dµ = lim

n→∞

ˆ
Ω

(
n∑
i=1

f · IAi

)
dµ = lim

n→∞

n∑
i=1

µ′(Ai),

where we have used Monotone convergence theorem in the third identity and linearity of the integral in the
last one. �

Definition 1.5.6. If, for a measure µ′, there exists a function f such that µ′(A) ≡
´
A
fdµ, then the

function f is called the Radon-Nikodym derivative12 of µ′ with respect to µ, denoted f = dµ′

dµ , or dµ
′ = fdµ.

In the special case when µ is the Lebesgue measure (on R or on Rn), and µ′ is a probability measure -
e. g., when µ′ is a distribution of a random variable - the function f is called probability denisity (of that
random variable).

Remark 1.5.7. If the probability disctibution function FX of a scalar random variable has a continuous
derivative13, then F ′ is a probability density of X (because P(X ≤ a) = FX(a) =

´ a
−∞ F ′(x)dx by Newton-

Leibnitz).

Remark 1.5.8. The Radon-Nikodym theorem asserts that if µ(A) = 0 implies µ′(A) = 0, then there
exists a function f such that dµ′ = fdµ.

Proposition 1.5.9. (abstract change of variable theorem) Let (Ω1,F1,P) be a probability space, (Ω2,F2)
a measurable space, X : Ω1 → Ω2 a random variable and f : Ω2 → R a measurable function. Then,

(1.5.1) E(f ◦X) =

ˆ
Ω2

fdµX ,

where µX denotes the distribution of the random varaible X.

Proof. If f is a simple function assuming only the values a1, . . . , an, then f ◦X is also simple, andˆ
Ω2

f(x)dµ(x) =
∑

aiµX(f = ai) =
∑

aiP(X ∈ {ω ∈ Ω2 : f(ω) = ai}) =
∑

aiP(f ◦X = ai) = E(f ◦X).

If f ≥ 0, then ˆ
Ω2

fdµX ≤ E(f ◦X),

because if g is a simple function approximating f from below, then g ◦X is a simple function approximating
f ◦ X from below. Now we proceed to the proof of another inequality. Given ε > 0, denote fε(ω) :=
max{a ∈ εN : a ≤ f(ω)}, and for T > 0 (large), denote fTε := fεIfε≤T . Since fTε is a simple function and
fTε ≤ f , one has ˆ

Ω2

fdµX ≥
ˆ

Ω2

fTε dµX = E(fTε ◦X).

12In Statistics, Radon-Nikodym derivarive is also calles “likehood ratio”.
13This condition is not optimal. The right condition is called absolute contnuity of F .
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By monotone convergence theorem, E(fTε ◦X)→ E(fε ◦X) as T →∞, so, passing to the limit in the above
inequality gives ˆ

Ω2

fdµX ≥ E(fε ◦X) ≥ E(f ◦X)− ε,

since f ≤ fε + ε. Letting ε→ 0 gives the desired result.
Finally, the general case follows from linearity of both sides of (1.5.1) and the identities

(f · If≥0) ◦X = (f ◦X) · If◦X≥0,

(f · If<0) ◦X = (f ◦X) · If◦X<0.

�

This theorem is useful14, in particular, when Ω2 = R. Then,

E(f(X)) =

ˆ
R
f(x)dµX(x);

in particular, taking f to be the identity map:

E(X) =

ˆ
R
xdµX(x).

This reduces the computation of an expectation as an integral over an abstract measure space to integration
over R, provided that the disctribution µX of X is known. In many practical cases (when µX has a density,
see below), this boils down to integration over the Lebesgue measure, or to the familiar Riemann integrals
from calculus courses.

Let us collect further important properties of the expectation.

Proposition 1.5.10. The expectation satisfies the following useful inequalities:
• (Cauchy-Schwarz)

(1.5.2) E(XY ) ≤
√
E(X2) ·

√
E(Y 2).

• (Holder) for p, q > 0 such that 1
p + 1

q = 1,

(1.5.3) E(XY ) ≤ (E|X|p)
1
p (E|X|q)

1
q .

• (Jensen) if f : R→ R is a convex function and E|X| <∞, E(|f(X)|) <∞, then

(1.5.4) f(E(X)) ≤ E(f(X)).

Particular useful cases are |E(X)| ≤ E(|X|) and (EX)2 ≤ EX2.
• (Chebyshev) for a non-negative random variable X and a > 0, one has

(1.5.5) P(X ≥ a) ≤ EX
a
.

It is sometimes useful to apply this inequality to a function of a given random variable, e. g.

P(X ≥ a) = P(X2 ≥ a2) ≤ EX2

a2
.

Proof. Here, we only sketch the proofs. First, by linearity of the expectation, the inequality E(X +
Y )2 ≥ 0 can be rewritten as

EXY ≤ EX2 + EY 2

2
.

Now note that the left-hand side is invariant under multiplication of X by λ and simultaneous multiplication
of Y by 1

λ , while the right-hand side is not; optimizing over such λ gives (1.5.2).

14Note a slight technicality: f is required to be a measurable map from (R,B(R)) to (R,B(R)). By contrast, a measurable
function as defined in analysis is a measurable map from (R,L(R)) to (R,B(R)), L being the Lebesgue σ-algebra. We will
mostly apply (1.5.1) to continuous functions, which are always Borel-to-Borel measurable.
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Elementary calculus allows one to prove Young’s inequality

XY ≤ |X|
p

p
+
|Y |q

q
,

and taking expectations and pulling the same trick with λ gives (1.5.3).
To prove Jensen’s inequality, we use the fact that for a convex function f , we have

f(x) = sup(ax+ b),

where the supremum is taken over all a, b such that ay + b ≤ f(y) for all y ∈ R. For any such a, b, we have

E(f(X)) ≥ E(aX + b) ≥ aEX + b.

Taking a supremum gives Jensen’s inequality.
Finally, EX ≥ E(XIX≥a) ≥ E(aIx≥a) = aP(X ≥ a), which is (1.5.5). �

In probability, one often encounters integrals of functions that depend on a parameter; one often needs
to differentiate the integral with respect to this parameter. This is usually amounts to the identity

(1.5.6)
∂

∂x

ˆ
Ω

f(x, ω)dµ(ω) =

ˆ
Ω

∂

∂x
f(x, ω)dµ(ω).

This identity is, however, not true in general; the conterexample is given by a version of the “growing bump”:

Example 1.5.11. Let, for y > 0 and x ∈ R,

f(x, y) =

{
e−

y2

x2 , x 6= 0

0, x = 0
.

Then, ∂xf(0, y) = 0 for all y > 0 (indeed, for y 6= 0, e−
y2

x2 decays to zero faster than any polynomial as
x→ 0). However, by the change of variables w = y

x ,ˆ ∞
0

e−
y2

x2 dλ(y) = x

ˆ ∞
0

e−w
2

dw,

so

∂x

ˆ
R
f(x, y)dy

∣∣∣∣
x=0

=

ˆ
R
e−w

2

dw 6= 0

. (The value of the integral is
√
π/2, as we will see soon, but it is not important for the conclusion).

We now formulate two sufficient conditions for the formula (1.5.6) to be true. The first one belongs to
the realm of real analysis; it assumes that the parameter belongs to an interval; the regularity assumption
needed to outrule the “growing bump” examples is formulated in terms of ∂xf(x, ω). The second one
assumes that the function x 7→ f(x, ω) is analytic in some domain in the complex plane, but the regularity
asumption is imposed on f(x, ω) itself, and the conclusion is much stronger: one gets all the derivatives at
once.

Theorem 1.5.12. (Differentiating an integral, real version) Let I ⊂ R be an open interval, and (Ω,F , µ)
a measure space. Assume that a function f : I × Ω→ R satisfies the following properties:

• for every x ∈ I, the function ω 7→ f(x, ω) is integrable;
• for almost every ω and every x ∈ I, the derivative ∂xf(x, ω) of the function x 7→ f(x, ω) exists;
• there is a measurable function h : Ω→ R≥0 such that

´
Ω
hdµ <∞ and |∂xf(x, ω)| ≤ h(ω) for all

x ∈ I and almost all ω ∈ Ω.
Then, the derivative ϕ′(x) of the function ϕ(x) :=

´
Ω
f(x, ω)dµ(ω) exists at all x ∈ I, and ϕ′(x) =´

Ω
∂xf(x, ω)dµ(ω).
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Proof. One has, for every x ∈ Ω and δ > 0 small enough,

ϕ(x+ δ)− ϕ(x)

δ
=

ˆ
Ω

f(x+ δ, ω)− f(x, ω)

δ
dµ(ω).

Note that the integrand tends to fx(x, ω) for almost all ω ∈ Ω, along any subsequence of δ → 0. Also,∣∣∣∣f(x+ δ, ω)− f(x, ω)

δ

∣∣∣∣ ≤ sup
[x,x+δ]

|∂xf(·, ω)| ≤ h(ω),

so the Dominated Convergence theorem readily applies, and we conclude

ϕ(x+ δ)− ϕ(x)

δ
→
ˆ

Ω

∂xf(x, ω)dµ(ω)

along any subsequence of δ. �

Theorem 1.5.13. (Differentiating an integral, complex version) Let Λ ⊂ C be an open set, (Ω,F , µ) a
measure space, and assume that a function f : Λ× Ω→ C satisfies the following properties:

• for every z ∈ Λ, the function ω 7→ f(z, ω) is measurable;
• for almost every ω, the function z 7→ f(z, ω) is analytic in Λ;
• there is a measurable function h : Ω→ R≥0 such that

´
Ω
h <∞ and |f(z, ω)| ≤ h(ω) for all z ∈ Λ

and almost every ω ∈ Ω.
Then, the function ϕ(z) :=

´
Ω
f(z, ω)dµ(ω) is analytic in Λ, and ∂n

∂znϕ(z) =
´

Ω
∂n

∂zn f(z, ω)dµ(ω) for all
n = 1, 2, . . . and for all z ∈ Λ.

Proof. Note that the statement of the theorem is local, i. e., it is sufficient to prove the statement in
a neighborhood of every point in Λ. Recall that the derivative of an analytic function can be estimated in
terms of the function itself:∣∣∣∣ ∂∂z f(z, ω)

∣∣∣∣ =

∣∣∣∣∣ 1

2πi

ˆ
|ζ−z|=r

f(ζ, ω)

(ζ − z)2
dζ

∣∣∣∣∣ ≤ 1

2πr
sup
z∈Λ
|f(z, ω)| ≤ 1

2πr
h(ω),

where r = rz is small enough so that {ζ : |ζ − z| ≤ r} ⊂ Λ. By applying exactly the same argument as in
the real case to a small ball contained in Λ (so that there is a uniform lower bound on rz over this ball), we
see that the (complex!) derivative ϕ′(z) exists and equals

´
Ω

∂
∂z f(z, ω)dµ(ω), which is finite. By repeating

the same argument, we get higher derivatives. �

1.6. Direct products of measure spaces and Fubini’s theorem

In this section, we construct direct products of measure spaces. This construction is crucial for the
probabilitsic concept of independence. We will, however, go beyond the setup of probability spaces, to cover
also other nice measure such as the Lebesgue measure.

Definition 1.6.1. A measure space (Ω,F , µ) is called σ-finite if there is a sequence of sets Ei ∈ Ω,
such that µ(Ei) <∞, and Ω = ∪∞i=1Ei.

Finite measures and the Lebesgue measures on R and Rn are, of course, σ-finite. The example of a
measure space which is not σ-finite is a counting measure (µ(E) = |E|) on an uncountable space (e. g., the
real line). The σ-finiteness assumption is essential for all the statements in this section.

Proposition 1.6.2. (Direct product of measure spaces) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite
measure spaces. Then, there exists a unique measure µ1 ⊗ µ2 on σ(F1 × F2), such that for any A1 ∈ F1

and A2 ∈ F2 with µ1(A1) <∞ and µ2(A2) <∞, one has

(1.6.1) µ1 ⊗ µ2(A1 ×A2) = µ1(A1) · µ2(A2).
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Proof. Denote F0
1 := {A ∈ F1;µ1(A) < ∞}, and simiarly for F0

2 . Let us check that F0
1 × F0

2 =
{A×B : A ∈ F0

1 , B ∈ F0
2} is a semi-ring. If A1, B1 ∈ F0

1 and A2, B2 ∈ F0
2 , then

(A1 ×A2) ∩ (B1 ×B2) = (A1 ∩B1)× (A2 ∩B2) ∈ F0
1 ×F0

2 .

The set (A1×A2) \ (B1×B2) is a discoint union of three sets: (A1 \B1)× (A2 \B2), (A1 \B1)× (A2 ∩B2)
and (A1 ∩B1)× (A2 \B2); each of them belongs to F0

1 ×F0
2 . Hence, indeed, F0

1 ×F0
2 is a semi-ring.

To apply Theorem 1.4.5, we have to show that if A × B = t∞i=1Ai × Bi, where A,Ai ∈ F0
1 and

B,Bi ∈ F0
2 , then

µ1(A) · µ2(B) =

∞∑
i=1

µ1(Ai) · µ2(Bi).

A convenient trick to do so is to use the monotone convergence theorem. Define functions f, fN : Ω1 → R
by f = µ2(B)IA, and fN :=

∑N
i=1 µ2(Bi)IAi . Note that fN and f are measurable functions on (Ω1,F1).

Moreover, for any ω ∈ Ω1, fN (ω) = µ2(ω′ ∈ Ω2 : (ω, ω′) ∈ tNi=1Ai×Bi). Therefore, by the lower continuity
of the measure µ2,

lim
N→∞

fN (ω) = µ2(ω′ ∈ Ω2 : (ω, ω′) ∈ t∞i=1Ai ×Bi) = µ2(ω′ ∈ Ω2 : (ω, ω′) ∈ A×B) = f(ω).

Now, the monotone convergence theorem implies that
N∑
i=1

µ2(Bi)µ1(Ai) = EfN
N→∞−→ Ef = µ1(A) · µ2(B).

The uniqueness follows for Proposition 1.4.6 and σ-finiteness. �

Remark 1.6.3. Assume that A ∈ F1, B ∈ F0
2 , and that µ1(A) = +∞. Since µ1 is σ-finite, we can

write Ω1 = ∪∞i=1Ei, where E1 ⊂ E2 ⊂ . . . and µ1(Ei) <∞. Consequently,

µ1 ⊗ µ2(A×B) = lim
i→∞

µ1 ⊗ µ2(A ∩ Ei ×B) = lim
i→∞

µ(A ∩ Ei)× µ(B) =

{
0, µ2(B) = 0

+∞, µ2(B) > 0

Consequently, we can extend the identity (1.6.1) to the whole F1 × F2, if we stick to the convention that
0 · ∞ = 0 and a · ∞ =∞ for a 6= 0.

Corollary 1.6.4. If (Ωi,Fi, µi), i = 1, . . . , n are σ-finite measure spaces, then there is a unique
measure µ1 ⊗ · · · ⊗ µn on σ(F1 × · · · × Fn), such that for any A1 ∈ F1, . . . , An ∈ Fn, one has

(1.6.2) µ1 ⊗ · · · ⊗ µn(A1 × · · · ×An) =

n∏
i=1

µi(Ai).

Proof. The existence follows from Proposition 1.6.2 by induction. For the uniqueness, assume first
that all µi(Ωi) are finite. Then, F1 × · · · × Fn is a π-system, and the π − λ theorem (more preciselly,
Corollary 1.3.5) gives the result. The uniqueness in the σ-finite case follows by approximation; we leave it
as an exercise. �

One of the most important facts about product measures is that a product measure of a set can be
computed as an integral.

Theorem 1.6.5. (Cavalieri principle) Given σ-finite measure spaces (Ω1,F1, µ1) and (Ω2,F2, µ2), let
E ∈ σ(F1 ×F2). Then

• for all ω ∈ Ω1, the set Eω := {ω′ ∈ Ω2 : (ω, ω′) ∈ E} is F2 measurable;
• the funtion fE : Ω1 → R, defined by fE(ω) := µ2(Eω) is F1 measurable15, and

µ1 ⊗ µ2(E) =

ˆ
Ω1

fEdµ1.

15more precisely, F1-to-B(R) measurable. Here and below, the omitted target σ-algebra is always Borel.
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Proof. We assume first that µ1(Ω1) < ∞ and µ2(Ω2) < ∞. Let L denote the set of all subsets of
Ω1×Ω2 for which the conclusion of the theorem holds. Note that it contains F1×F2, which is a π-system.
So, we only have to chek that L is a λ-system. If E := E(2) \ E(1) with E(1), E(2) ∈ L and E(1) ⊂ E(2),
then, for any ω ∈ Ω1

Eω = E(2)
ω \ E(1)

ω

is F2-measurable; moreover,
fE(ω) = fE(2)(ω)− fE(1)(ω)

is F1-to-B(R) measurable as a sum of two measurable functions, and

µ1 ⊗ µ2(E) = µ1 ⊗ µ2(E(2))− µ1 ⊗ µ2(E(1)) =

ˆ
Ω1

fE(2)dµ1 −
ˆ

Ω1

fE(1)dµ1 =

ˆ
Ω1

fEdµ1,

so E ∈ L. If E = ∪∞i=1E
(i) with E(1) ⊂ E(2) ⊂ . . . and E(i) ∈ L, then, for all ω ∈ Ω1,

Eω = ∪∞i=1E
(i)
ω ,

which is a measurable set, and, by the lower continuity of µ2,

fE(ω) = lim
i→∞

fE(i)(ω).

The monotone convergence theorem and the lower continuity of µ1 ⊗ µ2 givesˆ
Ω1

fEdµ1 = lim
i→∞

ˆ
Ω1

fE(i)dµ1 = lim
i→∞

µ1 ⊗ µ2(E(i)) = µ1 ⊗ µ2(E).

In the σ-finite case, let E(i) ∈ F1 × F2 be a sequence of sets such that E(i) ⊂ E(i+1) and ∪∞i=1E
(i) =

Ω1 × Ω2. By the finite case, the theorem is true for each of the sets E ∩ E(i), so,

µ1 ⊗ µ2(E) = lim
i→∞

µ1 ⊗ µ2(E ∩ E(i)) = lim
i→∞

ˆ
Ω1

fE∩E(i)dµ1.

However, by lower continuity of µ2, one has fE∩E(i)(ω) ↗ fE(ω) for every ω ∈ µ1, and the conclusion
follows from the monotone convergence theorem. �

Before proceeding further, we need to clarify a technical point.

Definition 1.6.6. Given a measure space (Ω,F , µ), a set A ⊂ Ω is called a null-set (w. r. t. µ) if
it is contained in a measurable set of measure zero. The measure µ is called complete if all null-sets are
F-measurable. If µ is not complete, denote

F := {A ∪B ⊂ Ω : A ∈ F , B is a null-set}.

Note that F is a σ-algebra, and µ can be extended to a measure µ on F by µ(A) := µ(A′), where
A′ ⊂ A is any F-measurable set such that A′ \ A is a null-set. When extended to F , the measure µ is
complete; we call this procedure a completion of the measure µ. (Exercise: prove all the claims in this
paragraph).

Thus, we denote by F1 ⊗ · · · ⊗ Fn the completion of σ(F1 × · · · × Fn) with respect to the product
measure P1 ⊗ · · · ⊗ Pn, and usually assume the product measure to be extended to F1 ⊗ · · · ⊗ Fn.

Example 1.6.7. Let A1 ⊂ Ω1 be a non-measurable set, and A2 ∈ F2 be such that P2(A2) = 0. Then
A1 × A2 is, in general, not measurable with respect to σ(F1 × · · · × Fn), but A1 × A2 ⊂ Ω1 × A2, and
P1 ⊗ P2(Ω1 ×A2) = 1 · 0 = 0, so A1 ×A2 is a null-set, and, in paticular, it is F1 ⊗ · · · ⊗ Fn - measurable.

Theorem 1.6.8. (Cavalieri principle for completed spaces). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be com-
plete σ-finite measure spaces. Assume that E ⊂ Ω1 × Ω2 is F1 ⊗F2 measurable. Then

• for µ1- almost all16 ω ∈ Ω1, the set Eω := {ω′ ∈ Ω2 : (ω, ω′) ∈ E} is F2 measurable;
• the fucntion fE(ω) := µ2(Eω) is F1-to-B(R) (defined almost everywhere on Ω1) is measurable;

16this expression means “for all, except for a set of measure zero”
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• one has the identity

µ1 ⊗ µ2(E) =

ˆ
Ω1

fEdµ1.

Proof. Assume that E = A ∪ B, where A ∈ σ(F1 × F2) and B is a null-set. Then E = A t (B \ A),
where B \ A is also null-set. The collection of all subsets of Ω1 × Ω2 that satisfy the conclusion of the
theorem is closed under disjoint unions. Therefore, in view of Theorem 1.6.5, it suffices to prove the result
for E a null-set.

However, if E ⊂ B ∈ σ(F1 × F2) with P1 ⊗ P2(B) = 0, then for all ω ∈ Ω1, Eω ⊂ Bω. Applying
Proposition 1.6.5 to B, we see that

´
Ω1
fBdP1 = 0. Since fB ≥ 0, actually fB = 0 for almost every ω ∈ Ω1.

This means that for almost every ω ∈ Ω1, Eω is a null-set (and thus is F2-measurable, since P2 is complete),
and fE = 0 a. e. �

Theorem 1.6.9. (Tonnelli’s theorem) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be complete σ-finite measure
spaces. If f : Ω1 × Ω2 → R≥0 is F1 ⊗F2 measurable, then

• For a. e. ω ∈ Ω1, the function fω(·) := f(ω, ·) : Ω2 → R is F2 measurable.
• The function ω 7→

´
Ω2
fω(ω′)dµ2(ω′), defined almost everywhere on Ω1, is F1-measurable.

• The following identity holds:

(1.6.3)
ˆ

Ω1×Ω2

fd(µ1 ⊗ µ2) =

ˆ
Ω1

(ˆ
Ω2

fω(ω′)dµ2(ω′)

)
dµ1(ω).

Proof. When f = IE , E ∈ F1 ⊗ F2, the result follows directly from Theorem 1.6.8. The class of
functions for which is holds is closed under linear combinations (hence contains all simple functions) and
by monotone convergence (hence contains all non-negative measurable functions). �

Corollary 1.6.10. (Fubini’s theorem) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be complete σ-finite measure
spaces. If f : Ω1 × Ω2 → R is F1 ⊗F2 measurable and such that

(1.6.4)
ˆ

Ω1×Ω2

|f |d(P1 ⊗ P2) <∞,

then the conclusion of Theorem 1.6.9 holds.

Proof. Write f = fIf≥0 − (−fIf<0) and apply Theorem 1.6.9 to each term. Note that (1.6.4)
guarantees that ˆ

Ω1

(ˆ
Ω2

fω(ω′)Ifω≥0dµ2(ω′)

)
dµ1(ω) =

ˆ
Ω1×Ω2

fIf≥0d(µ1 ⊗ µ2) <∞,

therefore,
´

Ω2
fω(ω′)Ifω≥0dµ2(ω′) < ∞ for a. e. ω ∈ Ω1, and similarly for

´
Ω2
−fω(ω′)Ifω<0dµ2(ω′).

Therefore, their difference is well defined almost everywhere on Ω1, and we can apply linearity to finish the
proof. �

Remark 1.6.11. Notice that Theorem 1.6.9 states, in particular, that if one side of (1.6.3) is finite,
then another one is also finite, and they are equal. By contrast, if the sign of f is not fixed, it might happen
that the right-hand side of (1.6.3) is finite, but the left-hand side is not defined. In this case, it might
happen that exchanging the order of integration changes the result.

1.7. Infinite products of probability spaces and Kolmogorov extension theorem

In this section, we construct infinite direct products of probability spaces, and also non-direct products
(projective limits). We start with the countable case. Let (Ωi;Fi,Pi)∞i=1 be probability spaces, and let
Ω :=

∏∞
i=1 Ωi, the set of all infinite sequences (ω1, ω2, . . . ), where ωi ∈ Ωi.

Definition 1.7.1. Denote

CN := {A1 × . . .×AN ×
∞∏

i=N+1

Ωi ⊂ Ω}
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and C := ∪∞N=1CN . The elements of C are called cylindrical sets.

Note that the class of cylindrical sets forms a semi-ring. Indeed, ∅ ∈ C, and if A,B ∈ C, then A,B ∈ CN
for some N . Assume that

A = A1 × · · · ×AN × ΩN+1 × . . . , B = B1 × · · · ×BN × ΩN+1 × . . .

Then
A ∩B = A1 ∩B1 × · · · ×AN ∩BN × ΩN+1 × · · · ∈ C

and

B \A =
⊔

Ei=Ai∩Bi or Bi\Ai
∃i: Ei=Bi\Ai

N∏
i=1

Ei ×
∞∏

i=N+1

Ωi.

Lemma 1.7.2. Assume that µ : C → R≥0 is such that
• µ|CN is finitely additive for each N ;
• µ is upper semicontinuous: if B1 ⊃ B2 ⊃ . . . are finite disjoint unions17 of sets in C and ∩∞i=1Bi =
∅, then µ(Bn)→ 0 as n→∞.

Then µ is a pre-measure on C.

Proof. Let A = t∞i=1Ai, where A,Ai ∈ C; write A = (tni=1Ai)t Ãn. Note that there exists M>0 such
that A,A1, . . . , An ∈ CM . By additivity of µ on CM , this implies

µ(A) =

n∑
i=1

µ(Ai) + µ(Ãn),

and the result follows by applying the lower semicontinuity to Ãn. �

Theorem 1.7.3. (Countable products of measure spaces) There is a unique probability measure P on
σ(C) satisfying

(1.7.1) P

(
A1 × · · · ×AN ×

∞∏
i=N+1

Ωi

)
= P1(A1) · . . . · PN (AN )

for all N and all A1 ∈ F1, . . . , AN ∈ FN .

Proof. Note that P, defined by (1.7.1), extends to a measure on σ(CN ) for each N (essentially, the
N -fold product measure); in particular, its restriction to CN is finitely additive. In view of Caratheodory
extension theorem and Lemma 1.7.2, it suffices to check the upper continuity of P.

Let B1 ⊃ B2 ⊃ . . . be finite disjoint unions of sets in C and ∩∞i=1Bi = ∅, and assume that P(Bn) > ε > 0
for all n. Given ω1 ∈ Ω1, define the sections

Bω1
n := {(ω2, ω3, . . . ) ∈ Ω2 × Ω3 × · · · : (ω1, ω2, . . . ) ∈ Bn)}.

Since Bn ∈ CN for some N = N(n), these sections have the form

Bω1
n = (Bω1

n )′ × ΩN+1 × ΩN+2 × . . .

Let
hn(ω1) := P(Ω1 ×Bω1

n ) = P2 ⊗ · · · ⊗ PN ((Bω1
n )′)

By Cavalieri’s principle (applied to P1 ⊗ · · · ⊗ PN ), hn(ω1) is a measurable function andˆ
Ω1

hndP1 = P(Bn) > ε.

17recall that we extend µ to such sets according to Remark 1.4.4.
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Now, hn is a decreasing sequence of non-negative functions (bounded above by 1), therefore, by monotone
convergence theorem, ˆ

Ω1

lim
n→∞

hn = lim

ˆ
Ω1

hn ≥ ε,

Therefore, there exists ω1 ∈ Ω1 such that limn→0 hn(ω1) > ε
2 , i. e., such that P(Ω1 ×Bω1

n ) > ε
2 for all n.

We now iterate the procedure. By similar reasoning, we can find ω2 ∈ Ω2 such that for all n, P(Ω1 ×
Ω2 ×Bω1ω2

n ) > ε
4 , where

Bω1ω2
n := {(ω3, ω4, . . . ) ∈ Ω3 × Ω4 × · · · : (ω1, ω2, . . . ) ∈ Bn}.

And so on. This way, we obtain an infinite sequence ω ∈ (ω1, ω2, . . . ) ∈ Ω. We claim that ω belongs
to each Bn. Indeed, if ω 6/∈ Bn, then, for N large enough, (ω1, . . . , ωN , ω

′
N+1, ω

′
N+2, . . . ) /∈ Bn for any

ω′N+1, ω
′
N+1, . . . . This means that Bω1ω2...ωN

n = ∅, a contradiction that shows that ∩∞i=1Bi 6= ∅. �

We now switch to non-direct products (projective limits) of measures. Now, we consider a sequence of
Let, for each n, µn be a probability measure on σ(F1 × · · · × Fn).

Definition 1.7.4. Suppose (Ω1,F1), (Ω2,F2), . . . are measurable spaces. A family {µn}, where µn is a
probability measure on σ(F1×· · ·×Fn), is called consistent if, for every n and for every A ∈ σ(F1×· · ·×Fn),
one has

µn+1(A× Ωn+1) = µn(A).

Given a consistent collection {µn}, we can define a function µ : C → R≥0 by

µ(A′ × Ωn+1 × Ωn+2 × . . . ) := µn(A′)

for every A′ ∈ σ(F1 × · · · ×Fn). The consistency condition guarantees that µ is well defined, i. e. depends
only on the set A′ × Ωn+1 × Ωn+2 × . . . and not on the choice of n.

Example 1.7.5. (Direct products of measure spaces) If (Ωi,Fi,Pi) are probability spaces, then

µn := P1 ⊗ · · · ⊗ Pn
is a consistent family of measures.

Clearly, µ is finitely additive on each Cn. We would like to invoke Lemma 1.7.2 and Caratheodory
extension theorem to extend µ to σ(C). However, there are examples where such an extension does not
exist. To avoid these patologies, we need to put additional structure of metric space on each Ωi. We need
the following preliminary result, very important on its own.

Theorem 1.7.6. (Regularity of Borel measures). Let Ω be a complete separable metric space, and let
µ be a finite measure on B(Ω). Then, every set A ∈ B(Ω) satisfies

the approximation property: for every ε > 0, there exists a compact set KA ⊂ A and an
open set OA ⊃ A such that µ(OA)− µ(KA) < ε.

Proof. We first prove that every set A ∈ B(Ω) in any metric space satisfies a weaker property:
The closed approximation property : for every ε > 0, there exists a closed set CA ⊂ A
and an open set OA ⊃ A such that µ(OA)− µ(CA) < ε.

Let us first see that closed sets satisfy the closed approximation property. Indeed, if A is closed, one can
take CA := A and OA = Oδ := ∪x∈ABδ(x), where Bδ(x) is the open ball around x of radius δ. Since Ω \A
is open, for each x ∈ Ω \ A there exists δ0 > 0 such that Bδ0(x) ⊂ Ω \ A. Then x /∈ Oδ for δ < δ0. This
shows that ∩∞n=1O 1

n
= A, therefore limn→∞ µ(O 1

n
) = µ(A), which gives the desired result.

It remains to show that the sets satisfying the closed approximation property form a σ-algebra. Indeed,
Ω does satisfy it, since it is closed. If OA and CA are approximations to A, then OcA ⊂ Ac is closed, CcA ⊃ Ac
is open, and

µ(CcA)− µ(OcA) = µ(Ω)− µ(CA)− µ(Ω) + µ(OA) < ε,
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so the approximation property is preserved under complements. If A1, A2 are approximated by O1, C1 and
O2, C2 respecively, put O = O1 ∩O2 and K = C1 ∩ C2. Then, C ⊂ A1 ∩A2 ⊂ O, and we have

O \ C = (O1 ∩O2 ∩ Cc1) ∪ (O1 ∩O2 ∩ Cc2) ⊂ (O1 ∩ Cc1) ∪ (O2 ∩ Cc2),

so
µ(O \ C) ≤ µ(O1 \ C1) + µ(O2 \ C2),

which shows that approximation property is preserved under finite interstctions. Finally, if Ai are disjoint
and satify approximation property, let O1, O2, . . . be open sets and C1, C2, . . . be closed sets such that
Ci ⊂ Ai ⊂ Oi and µ(Oi \ Ci) < ε

2i+1 . Since µ(t∞i=1Ci) < ∞, we can choose N so that
∑∞
i=N+1 µ(Ci) <

ε
2 .

Then ∪∞i=1Oi ⊃ ∪∞i=1Ai is open, tNi=1Ci ⊂ ∪∞i=1Ai is closed, and

µ(∪∞i=1Oi)− µ(tNi=1Ci) ≤
∞∑
i=1

µ(Oi)− µ(tNi=1Ci) =

∞∑
i=1

(µ(Oi)− µ(Ci) +

∞∑
i=N+1

µ(Ci) ≤
ε

2
+
ε

2
,

concluding the proof of the closed approximation property.
Now we prove that if Ω is a complete separable metric space, then Ω itself satisfies the approximation

property. Fix ε > 0, and let y1, y2, . . . be a dense subsequence of Ω. Then, for each δ > 0, we have
∪∞n=1Bδ(yn) = Ω. By the lower continuity of a measure µ, this means that for any m > 0, there exists
n = n(m) such that

µ
(
∪n(m)
n=1 B 1

m
(yn)

)
> µ(Ω)− ε

2m
.

Denote Cm := ∪n(m)
n=1 B 1

m
(yn), and take

K := ∩∞m=1Cm;

we claim that OΩ = Ω and KΩ := K satisfy the desired properties. First,

µ(Ω \K) = µ (Ω ∩ (∪∞m=1C
c
m)) = µ (∪∞m=1 (Ω \ Cm)) ≤

∞∑
m=1

µ(Ω \ Cm) <

∞∑
m=1

ε

2m
= ε.

it remains to check that K is compact. Each Cm is closed, therefore K is closed, therefore K is a complete
metric space. It suffices to show that for every ε > 0, K contains a finite ε-net, that is, a finite subset
x1, . . . , xN(ε) such that K ⊂ ∪N(ε)

i=1 Bε(xi). But if m is such that 1
m < ε, then y1, . . . , yn(m) form an ε-net for

Cm, and hence for K. Thus, indeed, Ω satisfies the approximation property.
Finally, it suffices to note that if OA is open, CA is closed with µ(OA)−µ(CA) < ε, then KA := CA∩KΩ

is compact, and

µ(OA \KA) = µ((OA \ CA) ∪ (OA \KΩ)) ≤ µ(OA \ CA) + µ(Ω \KΩ) ≤ 2ε.

�

Remark 1.7.7. The assumption for Ω to be complete and separable in the last theorem can be replaced
with the assumption that Ω is a countable union of compact sets. (Indeed, if K1 ⊂ K2 ⊂ . . . are compact
and exhaust Ω, then µ(Kn) → µ(Ω), and then the proof is finished as above.) The most important cases
are Ω = R and Ω = Rn, which are both complete separable and countable unions of compacts.

Theorem 1.7.8. (Kolmogorov extension theorem) Assume that {µn} is a consisent family of probability
measures on (Ωn,Fn), where each Ωn is a sigma-compact metric space and Fn = B(Ωn). Then, there is a
unique measure µ on σ(C) such that

µ(A× Ωn+1 × Ωn+2 × . . . ) = µn(A)

for any A ∈ σ(F1 × · · · × Fn).

We begin with a lemma. Denote Ω = Ω1 ×Ω2 = . . . We say that a set A ⊂ Ω is a compact cylinder if,
for some N , A = A1 × · · · ×AN ×

∏∞
i=N+1 Ωi, where each Ai is either compact, or coincides with Ωi.

Lemma 1.7.9. Assume that K(1) ⊃ K(2) ⊃ . . . are finite disjoint unions of non-empty compact cylin-
ders. Then ∩∞i=1K

(i) is non-empty.
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Proof. Case 1: each K(i) is a compact cylinder. If K(i) = K
(i)
1 ×K

(i)
2 × . . . and K(i) are nested and

non-empty, then each K(i)
j is non-empty, and K(1)

j ⊃ K(2)
j ⊃ . . . for every j. Since K(i)

j are either compact,
or coincide with Ωj , one has ∩∞i=1K

(i)
j 6= ∅. Pick, for each j, ωj ∈ ∩∞i=1K

(i)
j . Then (ω1, ω2, . . . ) ∈ ∩∞i=1K

(i).
General case. Let K(i) = tNij=1K

(i,j), where K(i,j) are compact cylinders. We may assume that for
each i, j, there is an index π(j) ∈ {1, . . . Ni−1} such that K(i,j) ⊂ K(i−1,π(j)). If that is not the case, we
can refine the partition of K(i) into compact cylinders: just replace, consequtively for each i = 2, 3, . . . ,
the collection {K(i,j)}Nij=1 by {K(i,j) ∩K(i−1,j′)}Ni,Ni−1

j,j′=1 . This way, the collection K(i,j) can be given a tree
structure, where K(i−1,π(j)) is a parent of K(i,j) (since for each i, K(i,j) are disjoint, the parent is unique).
Since each K(i) is non-empty, this tree must have an infinite branch K(1,j1) ⊃ K(2,j2) ⊃ . . . , where all
K(i,ji) are non-empty, and we apply Case 1 to this branch. �

Proof of Theorem 1.7.8. By Lemma 1.7.2 and Caratheodory’s extension theorem, it suffices to
show that µ is upper semi-continuous. We first claim that for each cylindrical set A and for each ε > 0, we
can find a compact cylinder KA ⊂ K sich that µ(A)− µ(KA) < ε. Indeed, let A = A′ ×ΩN ×ΩN+1 × . . . .
By regularity theorem (Theorem 1.7.6) applied to A′, we can find a compact subset KA′ of Ω1 × · · · × ΩN
with µN (A′)− µN (KA′) < ε. Now take

KA = π1(KA′)× · · · × πN (KA′)× ΩN+1 × . . . ,
where πi are natural projections from Ω1×· · ·×ΩN to Ωi. Since πi are continuous, each πi(KA′) is compact,
and

KA′ ⊂ π1(KA′)× · · · × πN (KA′) ⊂ A′,
so KA has all the desired properties.

Now, if B1 ⊃ B2 ⊃ . . . are finite disjoint unions of cylindrical sets such that µ(Bi) ≥ ε > 0 for all i,
and let Ki be a finite disjoint union of compact cylinders such that µ(Bi)− µ(Ki) <

ε
2i+1 . Then

µ(Bn \ ∩ni=1Ki) = µ (Bn ∩ (∪ni=1K
c
i )) = µ (∪ni=1 (Bn ∩Kc

i )) ≤
n∑
i=1

µ (Bn \Ki) ≤
n∑
i=1

µ (Bi \Ki) ≤
ε

2
.

Therefore, K(n) = ∩ni=1Ki ⊂ Bi is non-empty; clearly, they are also finite unions of compact cylinders.
Applying Lemma 1.7.9, we see that ∩∞i=1Bi 6= ∅. �

Remark 1.7.10. (Uncountable infinite products and Kolmogorov extension) Suppose T is any set and
(Ωt,Ft,Pt), t ∈ T is a collection of σ-compact metric probability spaces with Ft = B(Ω). Assume that for
each finite subset Λ ⊂ T , a probability measure µΛ is defined on the corresponding product ΩΛ =

∏
t∈Λ Ωt.

(more precisely, on the σ-algebra FΛ = σ(
∏
t∈Λ Ft)) For Λ′ ⊂ Λ, denote by πΛ→Λ′ the natural projection

from ΩΛ to ΩΛ′ . The family µΛ is called consistent if µΛ(π−1
Λ→Λ′(A)) = µΛ′(A) for each measurable A. We

call a set A ⊂ ΩT cylindrical if A has the form A = π−1
T→Λ(A′) for some finite Λ and for A′ ∈ FΛ; in this

case, µ(A) = µΛ(A′) is well-defined on the semi-ring of cylindrical sets. One has the following result:
• µ extends uniquely to σ(∪ΛFΛ);
• if µΛ are product measures, then the same holds true for arbitrary family (Ωt,Ft,Pt), t ∈ T , i. e.,

no metric structure is required.
The proof is based on the followins observations:

• then T is countable, the definitions coincide with the previous ones;
• define, for every countable subset T ′ ⊂ T , FT ′ = σ(∪Λ⊂T ′,Λ finite FΛ). Then ∪T ′⊂T,T ′ countable FΛ

is a σ-algebra.

The details are left to the reader.



CHAPTER 2

Sums of indepndent random variables

2.1. Independent events and variables

In this section, all the events and random variables are defined on the same probability space (Ω,F ,P)

Definition 2.1.1. Two events A,B ∈ F are called independent if

P(A ∩B) = P(A)P(B)

Two random variables f1 : Ω → Ω1 and f2 : Ω → Ω2 are called independent if for any measurable sets
A1 ∈ Ω1 and A2 ∈ Ω2, the events f1 ∈ A1 and f2 ∈ A2 are independent.

Remark 2.1.2. If P(A) = 0, then A,B are independent for any B. If P (A) 6= 0, then the definition is
equivalent to

P(B|A) = P(B).

Definition 2.1.3. A finite collection A1, . . . , An of events is called independent if, for any subset
1 ≤ i1 < · · · < ik ≤ n, one has P(Ai1 ∩ · · · ∩ Aik) = P(Ai1) · . . . · P(Aik). A finite collection X1, . . . , Xn of
random variables is independent if for any measurable sets A1, . . . , An, the events {Xi ∈ Ai}, i = 1, . . . , n,
are independent.

Definition 2.1.4. An infinite collection of events (random variables) is called independent if all its
finite subcollections are independent.

Definition 2.1.5. A collection At ⊂ F , t ∈ T of families of events (e. g., of σ-algebras) is called
independent if every collection At, t ∈ T of events such that At ∈ At, is independent.

Remark 2.1.6. (pairwise independent vs. independent) Events A1, . . . , An are called pairwise indepen-
dent if Ai is independent of Aj for any i 6= j. Pairwise independence is strictly weaker than independence.
As an example, let Ω = {1, 2, 3, 4} equipped with uniform measure (P({1}) = P({2}) = P({3}) = P({4}) =
1
4 ), and consider the events A1 = {1, 2}, A2 = {1; 3}, A3 = {1; 4}. They are pairwise independent: e. g.,

P(A1 ∩A2) = P({1}) =
1

4
= P(A1) · P(A2).

However, P(A1 ∩A2 ∩A3) = P({1}) = 1
4 6=

1
8 = P(A1) · P(A2) · P(A3).

The following proposition shows that the study of independent random variables boils down to the
study of product measures.

Proposition 2.1.7. Let X1, X2, . . . be random variables on the same space Ω, with values in measurable
spaces (Ω1,F1), (Ω2,F2), . . . respectively. Then, the variable X = (X1, X2, . . . ) with values in

∏∞
i=1 Ωi

is measurable with respect to the product σ-algebra. If, moreover, X1, X2, . . . are independent, then the
distribution µX of X coincides with the direct product

∏∞
i=1 µi, where µi is the disctribution of Xi.

Proof. The product σ-algebra is generated by cylinders, and the preimage of A1 × · · · × AN ×∏∞
i=N+1 Ωi, where Ai ∈ Fi, is

{ω ∈ Ω : X1 ∈ A1, . . . XN ∈ AN} = ∩Ni=1{ω ∈ Ω : Xi(ω) ∈ Ai},
which is measurable because each Xi is measurable. Since cylinders form a π-system, π-λ theorem (more
precisely, Corollary 1.3.5) implies that it suffices to check that µX argees with

∏∞
i=1 µi on cylinders, which

is exactly the definition of independence. �

25
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We need some practical criteria to check independence. Those are provided by the following observation:

Proposition 2.1.8. Let X1, X2, . . . be random variables with values in (Ω1,F1), (Ω2,F2), . . . , and let
A1,A2, . . . be π-systems such that σ(Ai) = Fi. If, for any A1 ∈ A1, A2 ∈ A2, . . . , the events Xi ∈ Ai are
independent, then the random variables X1, X2, . . . are independent.

Proof. The condition says that the distribution µ of the random variable X = (X1, X2, . . . ) agrees
with the product measure on the π-system of all sets of the form A1×· · ·×AN×

∏∞
i=N+1 Ωi, where Ai ∈ Ai

or Ai = Ωi. Since this π-system generates the product σ-algebra, the result follows from Corollary 1.3.5. �

Corollary 2.1.9. Scalar random variables X1, . . . , XN with probability distribution functions FX1 , . . . , FXN
are independent if an only if, for any a1, . . . , aN ∈ R,

P(X1 ≤ a1; . . . ;XN ≤ aN ) = FX1(a1) · · · · · FXN (aN ).

Proof. This follows directly from the previous Proposition, since the sets {(∞; a] : a ∈ R} form a
π-system that generates Borel σ-algebra. �

In the next two criteria, we will use the following very special case of Fubuni’s theorem:

Lemma 2.1.10. Let (Ω1;F1;µ1), . . . , (ΩN ;FN ;µN ) be σ-finite measure spaces, and let fi : Ωi → R be
integrable functions. Then, the function f : Ω→ R, where Ω =

∏N
i=1 Ωi, defined by

f(ω1, . . . , ωN ) = f1(ω1) · . . . · fN (ωN )

is integrable w. r. t. µ = µ1 ⊗ · · · ⊗ µN , and

(2.1.1)
ˆ

Ω

fdµ =

N∏
i=1

ˆ
Ωi

fidµi.

Proof. Let πi : Ω → Ωi denote the natural projection, πi((ω1, . . . , ωN )) = ωi. They are measurable
functions, hence, fi ◦ πi are also measurable functions on Ω, so, their product is measurable. Denote
Ω′ = Ω2 × · · · × ΩN and µ′ = dµ2 ⊗ · · · ⊗ dµN , and ω′ = (ω2, . . . , ωN ). We have

ˆ
Ω

|f1(ω1)| · . . . · |fN (ωN )|dµ =

ˆ
Ω1

(ˆ
Ω′
|f1(ω1)| · . . . · |fN (ωN )|dµ′(ω′)

)
dµ1(ω1) =

ˆ
Ω1

|f1(ω1)|
(ˆ

Ω′
|f2(ω2)| · . . . · |fN (ωN )|dµ′(ω′)

)
dµ1(ω1) =(ˆ

Ω1

|f1(ω1)|dµ1(ω1)

)
·
(ˆ

Ω′
|f2(ω2)| · . . . · |fN (ωN )|dµ′(ω′)

)
,

where the first identity is Tonnelli’s theorem, in the second one we use the |f1(ω1)| does not depend on ω′,
and hence is just a constant that can be taken out of the integral, and in the third one we note that the
inner integral does not depend on ω1. Iterating, we conclude that

ˆ
Ω

|f |dµ =

N∏
i=1

ˆ
Ωi

|fi|dµi <∞

therefore, using Fubini instead of Tonnelli, we can repeat the same computation without absolute values,
which gives (2.1.1). �

Proposition 2.1.11. Scalar random variables X1, . . . , XN are independent if and only if, for any
measurable functions fi : R→ R such that Efi(Xi) exists, one has

E

(
N∏
i=1

fi(Xi)

)
=

N∏
i=1

Efi(Xi).
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Proof. The “if” direction follows from Corollary 2.1.9 by taking fi = I(−∞;ai]. For the “only if”
direction, let µX be a the distribution of the vector X = (X1, . . . , XN ) ∈ RN . Note that by Proposition
2.1.7, we have µX = µX1 ⊗ · · · ⊗ µXN . Then, with the notation x = (x1, . . . , xn),

E

(
N∏
i=1

fi(Xi)

)
=

ˆ
RN

N∏
i=1

fi(xi)dµX(x) =

N∏
i=1

ˆ
R
fi(xi)dµXi(xi) =

N∏
i=1

Efi(Xi),

where the first identity is the by abstract change of variable (Proposition 1.5.9), the second one is Lemma
2.1.10, and the third one is again the abstract change of variable. �

Corollary 2.1.12. If independent scalar random variables X1, . . . , XN have densities f1, . . . , fN , then
the random vector X = (X1, . . . , XN ) has density

(2.1.2) f(x1, . . . xn) = f1(x1) · · · · · fN (xN ).

with respect to the N -dimensional Lebesgue measure λN . Conversely, if the random vector X = (X1, . . . , XN )
has a density f , and there exist integrable functions fi : R→ R≥0 such that (2.1.2) holds almost everywhere,
then X1, . . . , XN are independent.

Proof. Since the variables are independent, for every set A ⊂ RN of the form

(2.1.3) A = [a1; b1)× · · · × [aN ; bN ),

one has

P(X ∈ A) =

N∏
i=1

P(Xi ∈ [ai; bi)) =

N∏
i=1

ˆ
[ai;bi]

f(xi)dxi =

ˆ
A

fdλN ,

where the last equality follows from Lemma 2.1.10. Consequently, the distribution µX of the random vector
X ∈ RN agrees with the measure fdλN on the π-system of the sets of the form (2.1.3) that generates
B(RN ). Once again, Corollary 1.3.5 shows that the two measures coincide.

Conversely, assume that the density of X has the form (2.1.2). First, Lemma 2.1.10 shows that

1 =

ˆ
RN

fdλN =

N∏
i=1

ˆ
R
fidλ =:

N∏
i=1

Qi.

Therefore, replacing each fi with fi/Qi, we may assume that
´
R fidλ = 1 for every i. Then, one more

application of Lemma 2.1.10 shows that

P(Xi ≤ ai) =

ˆ
Ri−1×(−∞;ai]×RN−i

fdλN =

ˆ
(−∞;ai]

fidλ.

Finally, again by Lemma 2.1.10,

P(X1 ≤ a1; . . . ;XN ≤ aN ) =

ˆ
(−∞;a1]×···×(−∞;aN ]

fdλN =

N∏
i=1

ˆ
(−∞;ai]

fidλ =

N∏
i=1

P(Xi ≤ ai),

and we apply Corollary 2.1.9 to conclude. �

2.2. Gaussian random variables

We begin by computing the Euler-Poisson integral.

Lemma 2.2.1. One has ˆ
R
e−

x2

2 dx =
√

2π.
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Proof. The trick is to use Fubini’s theorem and a bit of multi-dimensional calculus. Denote the
integral by I; then we can write, by Lemma 2.1.10,

I2 =

ˆ
R
e−

x2
1
2 dx1

ˆ
R
e−

x2
2
2 dx2 =

ˆ
R2

e−
(x2

1+x2
2)

2 dλ2(x),

where x = (x1;x2) ∈ R2. We now evaluate the integral in polar coordinates. Recall the multi-dimensional
change of variables formula: if Λ and Λ′ are open subsets of Rn, ψ : Λ → Λ′ is a diffeomorphism, and
f : Λ′ → R an integrable function, thenˆ

Λ′
fdλn =

ˆ
Λ

f ◦ ψ|detψ′|dλn,

where |detψ′|(x) denotes the Jacobian of ψ at x (i. e., the determinant of the matrix composed of partial
derivatives). In our case, Λ′ = R2 \ [0;∞), Λ = (0;∞)× (0; 2π), and ψ is defined by

ψ(r, ϕ) =

[
r cosϕ
r sinϕ

]
.

We compute the differential

ψ′(r, ϕ) =

[
cosϕ −r sinϕ
sinϕ r cosϕ

]
,

and the Jacobian |detψ′(r, ϕ)| = r cos2 ϕ+ r sin2 ϕ = r. Consequently,

I2 =

ˆ
(0;∞)×(0;2π)

re−r
2/2dλ2((r, ϕ)) = 2π

ˆ
(0;∞)

re−
r2

2 dr = −2π e−
r2

2

∣∣∣∞
r=0

= 2π.

�

Definition 2.2.2. A scalar random variable with probability density function

f(x) =
1√
2π
e−

x2

2

is called standard Gaussian. A scalar random variable X is called Gaussian if there exist σ > 0 and µ ∈ R
such that X ′ = 1

σ (X − µ) is a standard Gaussian.

Remark 2.2.3. It is easy to see that if a random variable X has density f(x), then X − µ has density
f(x+ µ), and αX has density 1

αf( xα ). Consequently, a Gaussian random variable has distribution

1√
2πσ2

e−
(x−µ)2

2σ2 .

This distribution is denoted by N (µ, σ).

Definition 2.2.4. A random variable X with values in RN is called Gaussian (or Gaussian random
vector) if, for any linear function l : RN → R, l(X) is a Gaussian.

In other words, if (·, ·) denotes a scalar product in RN , the definition says that (X,V ) is a Gaussian
for every fixed V ∈ RN .

2.3. Weak law of large numbers

Theorem 2.3.1. Let X1, . . . , Xn be i. i. d. (independent, identically distributed) random variables
such that E|X1| <∞. Denote Sn := X1 + · · ·+Xn and µ := EX1. Then, any ε > 0,

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
n→∞−→ 0.

We begin with a simple, but fundamental estimate.
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Proposition 2.3.2. Let X1, . . . , Xn be independent1 random variables with σ2 = VarX1 <∞, then

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
≤ σ2

ε2n
.

Proof. Assume without loss of generality that µ = 02; otherwise consider X̃i = Xi − µ and note that∣∣Sn
n − µ

∣∣ > ε if and only if
∣∣∣ 1
n

∑n
i=1 X̃n

∣∣∣ > ε. One has

E
(
Sn
n

)2

=
1

n2
E

(
n∑
i=1

Xi

)2

=
1

n2

n∑
i=1

EX2
i +

1

n2

∑
i 6=j

E(XiXj) =
σ2

n
,

since for i 6= j, EXiXj = EXiEXj = 0. The proposition now follows by Chebyshev inequality. �

We will also need the following elementary result.

Lemma 2.3.3. Assume that X ≥ 0 be a random variable with EX <∞. Then

(2.3.1) aP(X ≥ a)
a→∞−→ 0.

Proof. By Chebyshev’s inequality, for all a > 0,

aP(X ≥ a) ≤ E (XIX≥a) .

The latter quantity tends to zero as a → ∞ by Dominated convergence theorem: XIX≥a → 0 pointwise,
and X is the integrable majorant. �

Proof of Theorem 2.3.1. As above, we assume without loss of generality that µ = 0. The strategy
to prove Theorem 2.3.1 is to truncate the random variables. We write, for L > 0,

X1 + · · ·+Xn =

n∑
i=1

XiI|Xi|≤L +

n∑
i=1

XiI|Xi|>L =: S(≤L)
n + S(>L)

n .

the number L will be chosen later. One has

(2.3.2) P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣S(≤L)
n

n
− µ

∣∣∣∣∣ > ε

)
+ P(∃1 ≤ i ≤ n : Xi > L).

Let µL := EX1I|X1|>L and σ2
L = Var (X1I|X1|≤L). One has

σ2
L ≤ E(X1I|X1|≤L)2 ≤ E (L · |X1|) = LE|X1|.

Therefore, by Proposition 2.3.2, we have

P

(∣∣∣∣∣S(≤L)
n

n
− µL

∣∣∣∣∣ > ε

2

)
≤ 4LE|X1|

nε2
.

The dominated convergence theorem gives µL → µ as L→∞, therefore

(2.3.3) P

(∣∣∣∣∣S(≤L)
n

n

∣∣∣∣∣ > ε

)
≤ 4LE|X1|

nε2

for L large enough. On the other hand, by the union bound,

(2.3.4) P(∃1 ≤ i ≤ n : |Xi| > L) ≤
n∑
i=1

P(|Xi| > L) ≤ nP(|X1| > L).

Taking L = αn, where α > 0 is a small parameter, and combining (2.3.2), (2.3.3) and (2.3.4), we get

P
(∣∣∣∣Snn

∣∣∣∣ > ε

)
≤ α · 4E|X1|

ε2
+

1

α
· (αnP(|X1| > αn))

1In fact, we only use that they are pairwise uncorrelated.
2Random variables with EX = 0 are called centered
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for n large enough. The first term can be made as small as we please by the choice of α, and the second
one goes to zero as n→∞ (2.3.1). Hence, the right-hand side tends to zero. �

2.4. Large deviations.

The previous section presents a qualitative result - the probability for averages of i. i. d. random
variables to deviate from their mean tends to zero. In practice, however, one is usually interested in explicit
estimates on those probabilities. Proposition 2.3.2 provides a polynomial (O(n−1)) rate of convergence in
the finite variance case. As we will see, under stronger, but fairly general assumptions, the convergence is
in fact exponential.

Theorem 2.4.1. Let X1, . . . , Xn be centered i. i. d. such that EeθX1 < ∞ for some θ > 0. Then, for
every a > 0 and every n,

(2.4.1) P

(
n∑
i=1

Xi ≥ na

)
≤ e−γ(a)n,

where

(2.4.2) γ(a) = sup
θ>0

(aθ − ϕ(θ)),

and ϕ(θ) = logEeθX1 .

Proof. One has, for any θ > 0,

P(

n∑
i=1

Xi > na) = P(eθ
∑n
i=1 Xi > eθna) ≤ e−θnaE(eθ

∑n
i=1 Xi) =

e−θna
n∏
i=1

E(eθXi) = e−θna
(
E(eθXi

)n
= e−n(θa−ϕ(θ));

here we have applied Chebyshev inequality. Taking supremum over θ gives the result. �

This theorem already contains everything one needs to start working out examples. But in order to
draw some general conclusions, we need to study general properties of the function ϕ.

Lemma 2.4.2. Let X be any scalar random variable. Then
• The set I := {θ ∈ R : EeθX <∞} is an interval;
• The function f = EeθX is analytic inside the strip I + iR, and its derivatives at any inner point
of the strip are given by f (n)(θ) = EXneθX <∞;

• The function ϕ(θ) = logEeθX is convex on I.

Proof. Clearly, 0 ∈ I. If θ1,2 ∈ I and θ1 < <eθ < θ2, then

E|eθX | = E
(
e<eθXIX≥0

)
+ E

(
e<eθXIX<0

)
≤ E

(
eθ2XIx≥0

)
+ E

(
eθ1XIX<0

)
<∞,

which implies the first assertion, and also the second one by Theorem 1.5.13 . If θ1, θ2 ∈ I, and 0 < λ < 1,
then

λϕ(θ1) + (1− λ)ϕ(θ2) = log(Eeθ1X)λ(Eeθ2X)1−λ ≥ logEeλθ1X · e(1−λ)θ2X = ϕ(λθ1 + (1− λ)θ2).

The inequality is Holder’s inequality with p = 1
λ , q = 1

1−λ . �

Now, if 0 is an interior point of I, then Lemma 2.4.2 implies that ϕ′(0) = EX = 0 and ϕ′′(0) =
EX2 =: σ2 > 0. Therefore, γ(a) = supθ>0(aθ − ϕ(θ)) > 0 for any a > 0 (take θ small enough). This means
that the bound (2.4.1) indeed gives exponential decay (for fixed a). Moreover, for every ε > 0, we have
ϕ(θ) < (σ2 + ε) θ

2

2 for θ small enough; this means that for all a small enough, one has

γ(a) ≥ sup
θ>0

(
aθ − (σ2 + ε)(

θ2

2
)

)
.
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The supremum is attained at θ = a
σ2+ε and equals a2

2(σ2+ε) . Therefore, (2.4.1) becomes

P(

n∑
i=1

Xi > na) ≤ e−
na2

2(σ2+ε) .

for all a small enough. This is small for a � n−
1
2 , and is of order e−

α2

2(σ2+ε) for a ∼ αn−
1
2 , - a glimpse of

the future central limit theorem!
Finally, we show that for a fixed a > 0, the estimate (2.4.1) is, in a sence, sharp. This is done by a

useful techniques called “tilting”.

Lemma 2.4.3. Assume that a > 0 is such that the supremum in (2.4.2) is attained at an interior point
of I. Then

lim
n→∞

1

n
logP(

n∑
i=1

Xi ≥ na)→ −γ(a).

Proof. Note first of all that by (2.4.1), we have

1

n
logP

(
n∑
i=1

Xi ≥ na

)
≤ −γ(a).

Let supθ>0(aθ − ϕ(θ)) = aβ − ϕ(β), where β = βa is an interior point of I. Define the random variable

Y = eβX1 · . . . · eβXn ,

by our assumptions, EY <∞. Define a new probability measure Pβ on the same probability space Ω by

dPβ
dP

=
Y

EY
;

recall (Lemma 1.5.5) that this means that Pβ(A) = E
(
Y
EY IA

)
; denote by Eβ the expectation with respect

to this measure. Note that for any scalrar random variable X defined on Ω, one has

EβX = E
(
Y

EY
X

)
.

This is true for indicator functions by definition; for simple functions by linearity of both sides; for non-
negative functions by monotone convergence theorem (applied on each side), and for general function by
linearity again.

In the special case X = f(Xi), one has

Eβf(Xi) = E
(
Y

EY
X

)
=

1∏n
i=1 EeβXi

E(f(Xi)e
βXi)

∏
j 6=i

EeβXj =
E(f(Xi)e

βXi)

EeβXi
.

In particular, using Lemma 2.4.2, we compute

EβXi =
E(Xie

βXi)

EeβXi
= ϕ′(β) = a,

because the derivative of aθ−ϕ(θ) vanishes at θ = β. Also, Xi are independent under the new probability
measure Pβ . Indeed,

Eβ

(
n∏
i=1

fi(Xi)

)
=

1

EY
E

(
n∏
i=1

eβXifi(Xi)

)
=

1

EY

n∏
i=1

EeβXifi(Xi) =

n∏
i=1

Eβ(fi(Xi)).

Therefore, we can apply weak law of large number to conclude that for any ε > 0,

Pβ(Iε,n) := Pβ

(∣∣∣∣∣
n∑
i=1

Xi − an

∣∣∣∣∣ < εn

)
n→∞−→ 1.
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On the other hand, on the event Iε,n, one has Y ≤ eβ(a+ε)n. Therefore,

Pβ (Iε,n) = E
(
Y

EY
Iε,n

)
≤ eβ(a+ε)n

enϕ(β)
P (Iε,n) ,

which implies that for any ε > 0,

1

n
logP

(
1

n

n∑
i=1

Xi ≥ a− ε

)
≥ 1

n
logP (Iε,n) ≥ ϕ(β)− βa− βε+

logPβ (Iε,n)

n
≥ −γ(a)− (β + 1)ε

for n large enough. Taking ε to zero, we infer that for any a′ < a,

lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

Xi > a′

)
≥ −γ(a).

Now, note that since ϕ(θ) is analytic and convex, it is either linear, or strictly convex (i. e., with ϕ′ strictly
increasing). The linear case is outruled by quadratic behaviour at 0 discussed above (see Exercises for
justification in full generality). Therefore, for β1 ∈ I such that β1 > β, one has ϕ′(β1) > a. Then, for
a′ ∈ (a, ϕ′(β1)), the supremum γ(a′) = sup(θa′ − ϕ(θ)) is attainded in the interval (β, β1), that is, at the
inner point of I. So, we can apply the above argument to get that

lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

Xi > a

)
≥ −γ(a′).

We now take β1 → β, then a′ → a, and, by continuity of ϕ, γ(a′)→ γ(a). �

Remark 2.4.4. With some work, using convexity of ϕ, one can relax the assumption that the supremum
is attained in an interior point of I.

2.5. Strong law of large numbers

The weak law of large numbers is, in a sense, a question about the behaviour of distributions of n-
tuples of random variables. In spirit of a our approach to Alice-Bob problem, we might ask a different
question: first sample the the whole sequence (X1, X2, . . . ), and then ask what happens with averages
Sn/n =

∑n
i=1Xi/n with Xi in this particular sequence.

Theorem 2.5.1. (Strong3 law of large numbers.) Assume that Xi are i. i. d. scalar random variables
with expectation µ, such that EX4

1 <∞. Then, with probability 1,

1

n

n∑
i=1

Xi → µ.

To prove this theorem, we need the following fundamental result:

Theorem 2.5.2. (Borel-Cantelli lemma) Assume that A1, A2, . . . are events on the same probability
spaces such that

(2.5.1)
∞∑
i=1

P (Ai) <∞.

Let N(ω) := #{i : ω ∈ Ai}. Then P(N =∞) = 0.

In words, if the sequence of events satisfies (2.5.1), then with probability 1, only finitely many of them
occur.

3the use of adjective “strong”, as compared to “weak”, will be clarified in Section 2.7



2.6. KOLMOGOROV’S ZERO-ONE LAW 33

Proof. We have

∞ >

∞∑
i=1

P(Ai) =

∞∑
i=1

EIAi = E

( ∞∑
i=1

IAi

)
= EN

Therefore,P(N =∞) = 0. �

Proof of the strong law of large numbers. We assume w. l. o. g. that Xi are centered. Fix
ε > 0. Note that

E

(
n∑
i=1

Xi

)4

=

n∑
i1,i2,i3,i4=1

E(Xi1Xi2Xi3Xi4).

Now, we claim that the majority of terms in this sum are equal to zero. Indeed, if i1 /∈ {i2, i3, i4}, then
E(Xi1Xi2Xi3Xi4) = EXi1 · E(Xi2Xi3Xi4) = 0, and similarly for the cases i2 /∈ {i1, i3, i4} etc. Therefore,
the following are are only cases where E(Xi1Xi2Xi3Xi4) 6= 0:

• i1 = i2 = i3 = i4. In that case, E(Xi1Xi2Xi3Xi4) = EX4
1 ; there are in total n such terms;

• i1 = i2 6= i3 = i4 . In that case, E(Xi1Xi2Xi3Xi4) =
(
EX2

1

)2 ≤ EX4
1 and there are n(n− 1) such

terms: we have n ways to choose i1 and n− 1 ways to choose i3 6= i1.
• i1 = i3 6= i2 = i4 or i1 = i4 6= i2 = i3; the same computation applies.

This discussion leads to

E

(
n∑
i=1

Xi

)4

= (n+ 3n(n− 1))EX4
1 ≤ 3 · EX4

1 · n2,

Applying Chebyshev inequality,

P

( 1

n

n∑
i=1

Xi

)4

≥ ε

 = P

( n∑
i=1

Xi

)4

≤ εn4

 ≤ E (
∑n
i=1Xi)

4

εn4
≤ 3 · EX4

1

εn2
.

Since
∑∞
n=1

1
n2 converges, we conclude by Borel-Cantelli that for every fixed ε, with probability 1,

(
1
n

∑n
i=1Xi

)4
<

ε for all but finitely many n. Then, with probability 1, the same holds true for all ε:

P

( ∞⋃
m=1

{∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > 1

m
for infinitely many n

})
≤
∞∑
m=1

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > 1

m
for infinitely many n

)
= 0.

In other words, 1
n

∑n
i=1Xi → 0 almost surely. �

2.6. Kolmogorov’s zero-one law

In this section, we consider an infinite direct product Ω =
∏∞
i=1 Ωi of probability spaces (Ωi,Fi,Pi).

This product is equipped with the product σ-algebra F and the product measure P.
Let F>N be the σ-algebra generated by the events of the form

N∏
i=1

Ωi ×A×
∞∏

i=M+1

Ωi,

where A ∈ FN+1 × · · · × FM is a cylindrical set.

Definition 2.6.1. The σ-algebra F∞ = ∩∞N=1F>N is called the tail σ-algebra.

Example 2.6.2. Let X1, X2, . . . be independent scalara random variables, and µ ∈ R. Then, the event
A = { 1

n

∑n
i=1Xi → µ} belongs to the tail σ-algebra.

Proof. Let us first show that this event is measurable. Put Am,n = {|Snn − µ| <
1
m}; this measurable

w. r. t. σ(F1 × · · · × Fn) and therefore measurable w. r. t. product measure. But

A = ∩∞m=1 ∪∞n=1 ∩i≥nAm,i,
therefore is is measurable. Demystifying this formula:
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• ∩i≥nAm,i is the event that for every i ≥ n one has |Snn − µ| <
1
m .

• ∪∞n=1 ∩i≥n Am,i is the event that the latter property is satified for some n;
• Finally, ∩∞m=1 ∪∞n=1 ∩i≥nAm,i is the event that for every m, there exists n such that for i ≥ n, one

has |Snn − µ| <
1
m . This is exactly the definition of the limit.

Now note that for every n, the event A can be written in the form

A =

n∏
i=1

Ωi ×An+1,

because the event A is not affected by changing the values of finitely many of Xi. By the same argument,
AN+1 is measurable w. r. t. product σ-algebra on ΩN+1 ×ΩN+2 × . . . , that is, A is F>N -measurable. �

Theorem 2.6.3. Any F∞-measurable event has probability 0 or 1.

Proof. If A has the form A1× · · · ×AN ×
∏∞
i=N+1 Ωi, then it is independent on any cylindrical event

in F≥N+1. Cylindrical events in F≥N+1 form a π-system, and events independent of a given event form
a λ-system (Exercise!). Therefore, A is independent on any event in FN+1≥∞. This implies that if A is
cylindrical, then it is independent on any event A′ ∈ F∞. Since cylindrical events form a π-system and,
once again, the events independent on A′ form a λ-system, this shows that any event A in the product σ-
algebra is independent of any event in A′ ∈ F∞. In particular, A′ is independent of itself:

P(A) = P(A ∩A) = P(A)2.

�

2.7. Various notions of convergence of random variables

We have already seen at least two different ways to assert that two random variables are close to each
other - that of almost sure convergence of the Strong law of large numbers, and Weak law of large numbers.
In this sections, we systematically study these, notions of convergence, and introduce some new ones.

Definition 2.7.1. Let X,X1, X2, . . . be scalar random variables defined on the same probability space
Ω. We say that

• Xi → X a. s.(Xi convergence to X almost surely) if there is an event E of probability 1 such that
Xi(ω)→ X(ω) for each ω ∈ E;

• Xi
P−→ X (Xi converges to X in probability), if for any ε > 0, P(|Xi −X| > ε)→ 0;

• Xi
Lp−→ X, (Xi converges to X in Lp)where p ≥ 1, if E|Xi −X|p → 0. The most common cases

are p = 1 (convergence in mean) and p = 2 (mean-square convergence).

Remark 2.7.2. The notions of almost sure convergence and convergence in probability makes sense for
random variables with values in metric spaces.

Definition 2.7.3. Let X,X1, X2, . . . be random variables with values in the same metric space M
(but not necessarily defined on the same probability space). We say that a sequence of random variables
X1, X2, . . . converges to a random variable in distribution, denoted Xi

D−→ X, if for any bounded continous
function f : M → R, one has

Ef(Xi)→ Ef(X).

Remark 2.7.4. By the abstract change of variable theorem (Proposition 1.5.9), Ef(Xi) =
´
M
fdµXi ,

so, in fact, only distributions µXi and µX are involved in above definition. Therefore, convergence in
distribution may be viewed as a notion of convergence for (Borel) measures on metric spaces. It is also
called weak convergence or vague convergence.

Proposition 2.7.5. (Implications between notions of convergence) There are the following implications
between notions of convergence:

• a. s. convergence implies convergence in probability;
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• convergence in Lp for any p ≥ 1 implies convergence in probability;
• convergence in probability implies convergence in distribution.
• convergence in Lp implies convergence in Lq if p > q.

Remark 2.7.6. There are, in general, no other implications, see Exercises.

Proof. Xi → X a. s. implies Xi
P−→ X. Given ε > 0, denote Ei,ε := {|Xi−X| < ε}. Then, ∩∞i=nEi,ε

is the event that the inequality |Xi − X| < ε holds for all i ≥ n, and ∪∞n=1 ∩∞i=n Ei,ε is contained in the
event that Xi → X. Therefore,

P (∪∞n=1 ∩∞i=n Ei,ε) = 1.

By lower continuity of probability, this means that for any ε > 0

P(En,ε) ≥ P(∩∞i=nEi,ε)→ 1,

which is exactly the definition of convergence in probability.
Xi

Lp−→ X implies Xi
P−→ X. This is a direct consequence of Chebyshev’s inequality:

P(|Xi −X| ≥ ε) ≤
E|X −Xi|p

εp
.

Xi
P−→ X implies Xi

D−→ X. We first note that Xi
a.s.−→ X implies Xi

D−→ X. Indeed, if f is continuous
and bounded, then f(Xi(ω)) converges to f(X(ω)) for almost every ω, and f ◦Xi are uniformly bounded.
So, Dominated convergence theorem implies E(f(Xi))→ Ef(X).

Now we assume by contradiction that Xi
P−→ X, but there is a bounded continuous function f such

that Ef(Xi) 9 Ef(X). By passing to a subsequence, we may assume that |Ef(Xi)−Ef(X)| > ε for some
ε > 0 and all i. But now, by Proposition 2.7.7 below, we can extract further subsequence ik such that
Xik

a.s.−→ X, and thus E(f(Xi))→ Ef(X), which is a contradiction.
Xi

Lp−→ X implies Xi
Lq−→ X if p > q. One has

E|Xi −X|q = E
(
|Xi −X|qI|Xi−X|q≥1

)
+ E

(
|Xi −X|qI|Xi−X|q<1

)
.

The first term tends to zero, because aq ≤ ap for every a ≥ 1. For the second term, note that if 0 ≤ Y ≤ 1,
then for any ε > 0,

εpP(Y > ε) ≤ EY p ≤ EY pIYi≥ε + EY pIYi<ε ≤ P(Y > ε) + εp.

Therefore, if 0 ≤ Yi ≤ 1, then

Yi
Lp−→ 0 if and only if Yi

P−→ 0,

and the last condition does not depend on p. �

The end of the proof shows that under additional conditions there might be additional implications.
Let’s have some more examples.

Proposition 2.7.7. If Xi
P−→ X, then there is a subsequence Xik such that Xik → X almost surely.

Proof. Let εn = 1
n . Since P(|Xi − X| > ε1) → 0, we can choose a subsequence i(1)

k of integers such
that

∑∞
i=1 P(|X

i
(1)
k

−X| > ε1) <∞; Borel-Cantelli then implies that almost surely, |X
i
(1)
k

−X| < ε1 for all

k large enough. Similarly, from this subsequence, we can choose further subsequence i(2)
k such that almost

surely, |X
i
(2)
k

−X| < ε2 for all k large enough, etc. Then, almost surely, the diagonal sequence i(k)
k satisfies

|X
i
(2)
k

−X| < εn for all k large enough, i. e., tends to zero. �
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2.8. More about convergence in distribution.

We start by giving an alternative definition of convergence in distribution for scalar random variables.

Definition 2.8.1. We say that a sequence Xi of scalar random variables converges in distribution to
X if

FXi(a)→ F (a)

for all a ∈ R such that FX is continuous at a.
Before proving the equivalence of two definition, we state a useful result.

Theorem 2.8.2. (Skorokhod representation theorem) Suppose X1, X2, . . . are scalar random variables
such that Xi → X in distribution in the sense of Definition 2.8.1. Then there exist random variables
Y, Y1, Y2, . . . , defined on a common probability space, that agree in distribution with X,X1, X2, . . . respec-
tively, such that

Yi → Y a. s.

Proof. We use the construction of random variables with prescribed p. d. f., as in the proof of Lemma
1.2.11. Let Ω := (0, 1) with Lebesgue measure, and put, for ω ∈ Ω

Yi(ω) = inf{x ∈ R : Fi(x) ≥ ω}; Y (ω) = inf{x ∈ R : FX(x) ≥ ω},
where Fi = FXi . By Lemma 1.2.11, Y, Y1, Y2, . . . agrees with X,X1, X2, . . . , respectively, in disctribution.
We claim that if ω ∈ (0, 1) has no more than one preimage under FX , then Yi(ω)→ Y (ω).

To prove the claim, note that if ω has no more than one preimage under FX , then FX(y) > ω for each
y > Y (ω), and FX(y) < ω for each y < Y (ω). Since the set of discontinuity poitns of a non-decreasing
function is at most countable4, for each ε > 0, we can find continuity points x−, x+ ∈ (Y (ω)− ε;Y (ω) + ε)
such that FX(x−) < ω < FX(x+). Then, we have Fi(x−) < ω < Fi(x+) for i large enough. By definition,
this means that Yi(ω) ∈ [x−;x+] for i large enough. Since ε is arbitrary, this means that Yi(ω)→ Y (ε).

It remailns to note that if the preimage of ω contains more than one point, then it is actually an interval.
Therefore, there are at most countably many such ω. �

Proposition 2.8.3. Definitions 2.7.3 and 2.8.1 of convergence in distribution of scalar random vari-
ables are equivalent.

Proof. Assume that Xi
D−→ X in the sense of Definition 2.8.1. Then, by Theorem 2.8.2, we may

assume that they are defined on the same probability space and converge a. s.. But then

Ef(Xi)→ Ef(X)

by dominated convergence theorem. Indeed, f is continuous, therefore f(Xi) → f(X) whenever Xi → X,
that is, almost surely, and f is bounded, therefore f ◦Xi are uniformly bounded.

Conversely, assume that Xi
D−→ X in the sense of Definition 2.7.3. For δ > 0, and y ∈ R, define a

bounded continuous function fδ by

fy(x) =


1, x ∈ (−∞; y]

0, x ≥ [y + δ;∞)

linear, x ∈ [y; y + δ]

.

We have fy−δ ≤ I(−∞,y] ≤ fy and ; therefore,

(2.8.1) Efy−δ(Xi) ≤ FXi(y) ≤ Efy(Xi).

Similarly,

(2.8.2) FX(y − δ) ≤ Efy−δ(X) ≤ FX(y) ≤ Efy(X) ≤ FX(y + δ).

4Indeed, if FX is discontinuous at x0 ∈ R, then F (x0 − 0) := limx↗x0
FX(x0) < FX(x0). Since FX is non-decreasing,

the open intervals (FX(x0 − 0);FX(x0)) ⊂ (0, 1) are disjoint for different discontinuity points x0; since each interval contains
a rational, there are at most countably many of them.
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Given ε > 0, denote
Iε := (FX(y)− ε;FX(y) + ε).

Since FX is continuous at y, we can choose δ so small that FX(y − δ) ∈ Iε and FX(y + δ) ∈ Iε. Then, by
(2.8.2), Efy−δ(X) ∈ Iε and Efy(X) ∈ Iε. Since Efy−δ(Xi)→ Efy−δ(X) and Efy−δ(Xi)→ Efy−δ(X), this
means that Efy−δ(Xi) ∈ Iε and Efy(Xi) ∈ Iε for i large enough. Combining this with (2.8.1), we get that
FXi(y) ∈ Iε for i large enough, which means that FXi(y)→ FX(y). �

Even if a sequence of probability distribution functions converges at every point, the limit may not be
a probability distribution function (take, e. g., Xi = i with probability 1). To outrule this situation, the
following definition is useful:

Definition 2.8.4. A sequience Xi of scalar random variables is called tight if for any ε > 0, there
exists R > 0 such that for any i,

P(Xi ∈ [−R;R]) > 1− ε.

Theorem 2.8.5. (Helly’s selection theorem)
• If Xi is any sequence of scalar random variables, then there is a subsequence ik and a right-
continuous non-decreasing function F : R→ (0, 1) such that FXi(a)→ F (a) for all a at which F
is continuous.
• If, in addition, Xi is tight, then F is a disctribution function of a random variable X (and thus
Xi

D−→ X).

Proof. Denote Fi := FXi . We can construct a subsequence ik such that limk→∞ Fik(a) =: H(a) ∈
[0, 1] exists for all a ∈ Q5. Clearly, H(a) is non-decreasing, but might not be right-continuous. To fix that,
we put

F (a) := inf
x>a

H(x),

Clearly, F is non-decreasing and right-continuous. Let a be a point of continuity of F . Given ε > 0, let δ
be such that F (a + δ) ≤ F (a) + ε and F (a − δ) ≤ F (a) − ε. Then, for a rational number q+ ∈ (a; a + δ),
we have limk→∞ Fik(q+) = H(q+) ≤ F (q+) ≤ F (a) + ε; similarly, for a rational q− ∈ (a − δ, a), we have
limk→∞ Fik(q−) ≥ F (a)− ε. Consequently, for k large enough,

Fik(a) ∈ (Fik(q−);Fik(q+)) ⊂ (F (a)− ε;F (a) + ε),

that is, Fik(a)→ F (a).
If, in addition, the sequence Xi is tight, then, for any ε > 0, we can find R > 0 such that Fik(a) < ε for

all a < −R. Then H(a) ≤ ε for all a < −R, therefore F (a) ≤ ε for all a < −R. That is to say, F (a) → 0
as a→ −∞. Similarly, F (a)→ 1 as a→ +∞. �

Remark 2.8.6. The above theorem says that the set of probability measures on R is compact with
respect to the topology of convergence in distribution. A similar result for complete separable metric spaces
is known as Prokhorov’s theorem, and for compact metric spaces - as Banach-Alaoglu’s theorem.

2.9. Characteristic functions

In this section, we switch gears and develop an important concept of a characteristic function of a
random variable.

Definition 2.9.1. If X is a scalar random variable, then the characteristic function of X is defined as

ϕX(t) = EeitX , t ∈ R.

5Cantor’s diagonal argument: let a1, a2, . . . be enumeration of Q; since Fi(a1) ∈ [0, 1] for all i, we can choose a subsequence
i
(1)
k such that limk→∞ F

i
(1)
k

(a1) exists; from this subsequence, extract further subsequence i(2)k such that limk→∞ F
i
(2)
k

(a2)

exists, etc. Then ik := i
(k)
k is the required subsequence.
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Since |eitX | = 1, the expectation always exists.
The relevance of characteristic functions to the study of independent random variables is revealed by

in the following proposition:

Proposition 2.9.2. If X and Y are independent, then

ϕX+Y (t) ≡ ϕX(t)ϕY (t).

Proof. ϕX+Y (t) = Eeit(X+Y ) = EeitXEeitY = ϕX(t)ϕY (t). �

The logic behind the use of this formula is that if one knows distributions of X1, . . . , Xn, one can
compute their characteristic functions and multiply them together to obtain the characteristic function of
Sn = X1 + · · ·+Xn, and then recover the distribution of Sn. Our next goal is to show that the distribution
of X is uniquely determined by ϕX .

When written in terms of integral over R, characteristic function reads

ϕX(t) =

ˆ
R
eitxdµX(x).

Indeed, “characteristic function” is just a probabilistic name for the Fourier transform; it is convenient at
this point to switch to the analysis terminology for a while.

Definition 2.9.3. Given an integrable function f : R→ C, the Fourier transform F(f) is defined by

Ff(t) =

ˆ
R
eitxf(x)dx.

We begin with an important lemma.

Lemma 2.9.4. (Riemann-Lebesgue lemma) If f : R→ C is an integrable function, then

Ff(t)→ 0 as t→ ±∞.

Proof. We first prove the lemma for continuous, compactly supported functions f . In that case, sinceˆ
R
f(x)eitxdx = −

ˆ
R
f(x)eit(x+π

t )dx = −
ˆ
R
f(x− π

t
)eitxdx,

we can write
Ff(t) =

1

2

ˆ
R

(
f(x)− f(x− π

t
)
)
eitxdx.

Since f is compactly supported, we can find R > 0 such that the last integral is actually over [−R;R].
Since f is continuous, and therefore uniformly continuous, |Ff(t)| ≤ 2R sup[−R;R] |f(x)− f(x− π

t )| → 0 as
t→ ±∞.

Now, we use the following
Claim: for every integrable function f and for every ε > 0, there exists a continous,
compactly supported function h such that

´
R |f − h| < ε.

The lemma follows immediately, since

|Ff(t)| = |F (f(t)− h(t)) + Fh(t)| ≤
ˆ
R
|f(t)− h(t)|+ |Fh(t)| ,

where the first term can be chosen as small as we please, and the second one tends to zero.
To prove the claim, note that we can find an R > 0 such thatˆ

R\[−R;R]

|f | < ε

2
,

therefore, we may assume that suppf ⊂ [−R;R] for some R > 0. If suffices to prove the claim for f = IA,
with A ⊂ [−R;R] a measurable set, because an integrable f can be approximated by linear combinations of
such functions as in the proof of Proposition 1.5.9. But for such A, the claim follows from regularity of finite
Borel measures (Theorem 1.7.6): given K ⊂ O with K compact and O open, we can define a continuous
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function 0 ≤ h ≤ 1 such that h ≡ 1 on K and h ≡ 0 on R \O6. If KA ⊂ A ⊂ OA with λ(OA)− λ(KA) < ε,
then ˆ

R
|IA − h| =

ˆ
OA\KA

|IA − h| ≤ ε,

and the claim follows. �

Proposition 2.9.5. (Fourier inversion formula) If f is integrable and continuously differentiable, then7

FFf(t) = 2πf(−t).

Proof. We can write

FFf(−t) = lim
R→∞

ˆ
[−R;R]

e−itθ
(ˆ

R
eiθxf(x)dx

)
dθ =: lim

R→∞
IR

Since
´

[−R;R]×R |f(x)|dydx ≤ 2R
´
R |f(x)|dx <∞, Fubini’s theorem readily applies:

IR =

ˆ
R

(
f(x)

ˆ
[−R;R]

e−itθeiθxdθ

)
dx =

ˆ
R
f(x)

ei(x−t)R − e−i(x−t)R

i(x− t)
dx =

ˆ
R
f(x)

2 sin((x− t)R)

x− t
dx.

We can decompose this integral as

IR =

ˆ
R\[t−1;t+1]

f(x)
2 sin((x− t)R)

x− t
dx+

ˆ
[t−1;t+1]

f(t)
2 sin((x− t)R)

x− t
+

ˆ
[t−1;t+1]

f(x)− f(t)

x− t
2 sin((x−t)R).

We claim that the first and the third integrals tend to zero as R → ∞. Indeed, since h(x) := (f(x) −
f(t))/(x− t) is a continuous function on [t− 1; t+ 1], we have

ˆ
[t−1;t+1]

f(x)− f(t)

x− t
2 sin((x− t)R) =

ˆ
R
h(x)I[t−1;t+1]2 sin((x− t)R) = −ie−itRF

(
hI[t−1;t+1]

)
(R) + ieitRF

(
hI[t−1;t+1]

)
(−R),

which tends to zero by Riemann-Lebesgue lemma. Similarly, since |f(x)IR\[t−1;t+1]/(x − t)| ≤ |f(x)| is
integrable, Riemann-Lebesgue lemma shows that the first integral tends to zero. Therefore,

IR = f(t)

ˆ
[t−1;t+1]

2 sin((x− t)R)

x− t
dx+ o(1) = 2f(t)

ˆ R

−R

sin y

y
dy + o(1),

where we have made a change of variable y = (x− t)R. The integral
´∞
−∞

sin y
y dy =: CF converges, therefore

lim
R→∞

IR = 2CF f(t).

�

Remark 2.9.6. The value of the constant CF = π can be computed in a number of ways. We prefer
to derive it from a computation with Gaussian densities (Example 2.10.1).

Corollary 2.9.7. The distribution of a scalar random variable is uniquely determined by its charac-
teristic function.

6E. g., take h(x) := 1 − δ−1 min(dist(x,K); δ) for 0 < δ < dist(K;Oc). Note that the latter distance is positive since K
is compact and Oc is closed.

7If Ff happens to be non-integrable, its Fourier transform is defined to be the limit in the first line of the proof.
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Proof. Let f be a twice continuously differentiable, compactly supported function. By Proposition
2.9.5, we can write

f(x) =
1

2π

ˆ
R
e−itxg(t)dt,

where g = Ff . Assuming the exchange of E and
´

to be legitimate,

(2.9.1) Ef(X) = E
(

1

2π

ˆ
R
e−itXg(t)dt

)
=

1

2π

ˆ
R
Ee−itXg(t)dt =

1

2π

ˆ
R
ϕX(t)g(t)dt;

this means that Ef(X) is uniquely determined by ϕX(t). However, for every interval [a; b] and every ε > 0
we can finde a C2-smooth function fε supported on (a− ε, b+ ε) such that 0 ≤ fε ≤ 1 and fε ≡ 1 on [a, b].
Then

P(X ∈ [a, b]) ≤ Efε(X) ≤ P(X ∈ (a− ε, b+ ε))
ε→0−→ P(X ∈ [a, b]).

Hence P(X ∈ [a, b]) = limε→0 Efε(X) is uniquely determined by ϕX .
It remains to justify (2.9.1). To this end, it suffices to show that

∣∣e−itXg(t)
∣∣ = |g(t)| is integrable over

R× Ω, that is, that g is integrable over R. However,

F(f ′′)(t) =

ˆ
R
eitxf ′′(x)dx = −

ˆ
R

(it) eitxf
′
(x)dx = (it)2

ˆ
R
eitxf(x)dx = (it)2g(t).

Therefore, Riemann-Lebesgue lemma implies that t2g(t)→ 0 as t→ ±∞, that is, g(t) is integrable. �

Remark 2.9.8. The above proof indicates an explicit way to compute Ef(X) in terms of ϕX and Ff .
Although f = I[a,b] is not twice continuously differentiable, one might still try to plug it into the fromula,
and then justify the result directly by adapting the proof of Proposition 2.9.5. This is indeed possibe, albeit
with additional technicalities, and leads to Lévy’s inversion formula; see Willams’ or Durrett’s books.

Corollary 2.9.9. If X is a scalar random variable, and X1, X2, . . . is a tight sequence of scalar
random variables such that ϕXn(t)→ ϕX(t) for all t ∈ R, then Xn

D−→ X.

Proof. Assume, on the contrary, that for some ε > 0, there is a bounded continuous function f and
a subsequence nk of integeres such that for all k,|Ef(Xnk)− Ef(X)| > ε. By Helly’s theorem (Theorem
2.8.5), by passing to further subsequence, we may assume that Xnk

D−→ Y for some random variable Y .
Then Ef(Y ) 6= Ef(X), i. e., Y does not agree in distribution with X.

On the other hand, ϕY (t) = E exp(itY ) = limk→∞ E exp(itXnk) = ϕX(t), that is, X and Y have the
same characteristic functions, and thus they agree in distribution by Corollary 2.9.7. �

Remark 2.9.10. If Xn is a tight sequence and the limit ϕ(t) = limn→∞ ϕXn(t) exists for any t, then
authomatically ϕ = ϕX for some random variable X: just choose a convergent subsequence and take X
to be its limit. A slightly more subtle result (Lévy’s criterion) asserts that if the limit ϕ(t) exists and is
continous at t = 0, then the sequence is tight.

2.10. Explicit computations with characteristic functions

Example 2.10.1. If f(x) = 1√
2π
e−

x2

2 is the Gaussian density, then

Ff(t) =
√

2πe−
t2

2 .

Hence CF = π.

Proof. We have ˆ
R
e−

x2

2 +itxdx = e−
t2

2

ˆ
R
e−

(x−it)2
2 dx.

For purely imaginary t, the last term is just an integral of a shifted Gaussian density, and hence equals
√

2π.
We need to extend this result to real t. Note that |e−

(x−it)2
2 | = e−<e(x−it)

2/2 = e<e(it+t
2/2)e−x

2/2. Since

e<e(it+t
2/2) is bounded in a neighborhood of any t0 ∈ C, Theorem 1.5.13 implies that h : t 7→

´
R e
− (x−it)2

2 dx
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is an analytic function. As noted above, this function is equal to
√

2π on the imaginary axis; therefore it is
equal to

√
2π everywhere. �

Corollary 2.10.2. Let X and Y be independent random variables distributed as N (µ1, σ1) and N (µ2, σ2)

respectively. Then X + Y is distributed as N (µ1 + µ2,
√
σ2

1 + σ2
2).

Proof. We first note some simple properties of ϕX First, for a constant a,

ϕX+µ(t) = Eeit(X+µ) = eitµϕX(t).

Second,
ϕσX(t) = EeitσX = ϕX(tσ).

Since X = σ1X
′ + µ1 and Y = σ1Y

′ + µ2, where X ′, Y ′ are standard Gaussians, we get

ϕX+Y (t) = ϕX(t)ϕY (t) = eit(µ1+µ2)e−
t2(σ2

1+σ2
2)

2 ,

and the result follows. �

2.11. The Central limit theorem

Theorem 2.11.1. (The Central Limit Theorem)Let X1, . . . , Xn be independent, identically distributed
scalar random variables such that EX1 = 0 and EX2

1 = σ2 <∞. Then

Sn√
n

:=

∑n
i=1Xi√
n

D−→ N (0, σ).

The heart of the matter is the followsing estimate.

Lemma 2.11.2. If EX2 <∞, then

ϕX(t) = e−
t2σ2

2 +o(t2) as t→ 0.

Proof. Let us compute the first two derivatives of ϕX(t). Formally,

ϕ′X(t) =
∂

∂t
EeitX = iEXeitX and ϕ′′X(t) =

∂

∂t
iEXeitX = −EX2eitX .

Since for all t, |XeitX | ≤ |X| and |X2eitX | ≤ |X2|, which are both integrable, Proposition 1.5.12 validates
the computations. It follows by Taylor expansion that

ϕX(t) = ϕX(0)− t2

2
ϕ′′X(0) + o(t2) = 1− t2σ2

2
+ o(t2) = elog(1− t2σ2

2 +o(t2)) = e−
t2σ2

2 +o(t2).

�

Another small input is

Lemma 2.11.3. The sequence Sn√
n
is tight.

Proof. This is true for any sequence Yn of random variables such that VarYn is bonded, Indeed, given
ε > 0, Chebyshev’s inequality implies P (|Yn| > R) ≤ VarYn

R2 < ε, provided that R is large enough. This is
exactly the definition of a tight sequence.

It remains to notice that

Var
(
Sn√
n

)
=

∑n
i=1 E

(
X2
i

)
n

=
nσ2

n
= σ2.

�

Proof of the Central Limit Theorem. One has,

ϕSn/
√
n(t) =

(
ϕX1

(
t√
n

))n
= e−

t2σ2

2 +o(1) → ϕN (0,σ)(t).

Since the sequence Sn/
√
n is tight, Corollary 2.9.9 implies that Sn/

√
n
D−→ N (0, σ). �
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2.12. Heavy tails and stable distributions

In this section, we address the question as to whether one can drop the assumption EX2 < ∞ in the
Central Limit Theorem. The answer will be in the negative; moreover, we will discover an infinite family
of laws - the stable laws - that may replace the Gaussian in the statement of CLT. We will not formulate
or prove general statements, but will instead focus on a particular family of examples, which exhibit most
features we are interested in.

Let α ∈ (0, 2), and put

fα(x) =

{
1
2α|x|

−α−1, x ∈ R \ [−1; 1]

0, x ∈ [−1; 1].

It is easy to see that
´
R fα = 1, that is, fα is a probaility density of a random variable. Note that´

R x
2fα(x)dx =∞; this is due the the fact that the “tails”

´∞
R
fα decay too slowly - in Probability jargon,

they are “heavy”.

Proposition 2.12.1. Assume that X1, X2, . . . are i. i. d. with density fα. Then,
Sn
n1/α

D−→ Y,

where Y is a random variable with characteristic function ϕY (t) = exp(−C|t|α) for some C > 0.

Proof. Let us start by computing the characteristic function of X1. We have, for t > 0,

ϕX1
(t) =

ˆ −1

−∞
eitxfα(x)dx+

ˆ ∞
1

eitxfα(x)dx =

ˆ ∞
1

α|x|−α−1 cos(tx)dx = αtα
ˆ ∞
t

|y|−α−1 cos(y)dy,

where the last identity is the change of variable tx 7→ y. As in the proof of the Central Limit theorem, we
are interested in the small t behavior of ϕX(t). Note that

ˆ ∞
t

|y|−α−1 cos(y) =

ˆ 1

t

|y|−α−1 cos(y) +

ˆ ∞
1

|y|−α−1 cos ydy =: I1(t) + I2,

and, because cos y − 1 = O(y2) as y → 0,

I1(t) =

ˆ 1

t

|y|−α−1+

ˆ 1

t

|y|−α−1(cos y−1)dy =
1

α
t−α− 1

α
+

ˆ 1

0

|y|−α−1(cos y−1)dy+o(1) =
t−α

α
+I3+o(1).

Putting everything together, and using that ϕX(−t) = ϕ−X(t) = ϕX(t) for a symmetric random variabe,
we get

ϕX1
(t) = 1 + α(I2 + I3)|t|α + o(|t|α) = elog(1+α(I2+I3)|t|α+o(|t|α)) = eα(I2+I3)|t|α+o(|t|α) =: e−C|t|

α+o(|t|α)

Therefore, for each t,

ϕ
Sn/n

1
α

(t) = exp

(
−n
(
C

∣∣∣∣ tn 1
α

∣∣∣∣α + o

(∣∣∣∣ tn 1
α

∣∣∣∣α))) = exp (−C |t|α + o (1)) .

Therefore, in view of Corollary 2.9.9 and Remark 2.9.10, it remains to check that the random variables Sn
are tight8. As in the proof of the weak law of large numbers, we use truncation:

P
(∣∣∣n− 1

αSn

∣∣∣ > R
)
≤ P

(∣∣∣∣∣
n∑
i=1

XiI|Xi|≤n 1
αR

∣∣∣∣∣ > n
1
αR

)
+ P

(
max

1≤i≤n
|Xi| > n

1
αR

)
=: P1 + P2

By the union bound,

P2 ≤
n∑
i=1

P(|Xi| > n
1
αR) = nα

ˆ ∞
n

1
αR

|x|−1−α = R−α.

8in fact, tightness is authomatic from Lévy’s criterion, but we choose not to prove it here.
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For the first term, we can calculate

Var
(
X1I|X1|≤n

1
αR

)
= α

ˆ n
1
αR

1

x2x−α−1dx ≤ α

2− α
n

2
α−1R2−α.

Therefore, Chebyshev’s inequality gives

P

(∣∣∣∣∣
n∑
i=1

XiI|Xi|≤n 1
αR

∣∣∣∣∣ > n
1
αR

)
≤

α
2−αn

2
αR2−α

n
2
αR2

≤ α

2− α
R−α,

and we get

P1 + P2 ≤
(

1 +
α

2− α

)
R−α → 0

uniformly in n as R→∞, which shows that n−
1
αSn are tight. �

Remark 2.12.2. The distribution of a random variable with characteristic function ϕY (t) = exp(−C|t|α)
is called symmetric stable distribution with parameter α. The only symmetric stable distribution for which
a density is known explicitly is the Cauchy distribution, corresponding to α = 1, and the density given by
x 7→ π−1

1+x2 .

Remark 2.12.3. The behaviour of sums of heavy-tailed random variables is very different from the
finite variance case, in that the maximum of |X1|, . . . , |Xn| is not small compared to

∑n
i=1Xi. For α < 1,

we have n
1
α � n, that is, the typical order of magnitude of the sum grows faster than n; in fact, in that

case the biggest term deteremines most of the sum. See exercise sheet 7 for further details.

2.13. Multi-dimensional characteristic functions and Gaussian vectors

The theory of characteristic functions of random vectors (that is, of d- dimensional random variables)
more or less repeats the theory for scalar random variables.

Definition 2.13.1. Let X be a random variable with values in Rd. Its characteristic function ϕX :
Rd → C is defined as

ϕX(v) := Eei(v;X),

where (v;X) denotes the scalar product of the vectors v and X.

Definition 2.13.2. If f : Rd → C is an integrable function, then its Fourier transorm is defined as

(Ff)(v) =

ˆ
Rd
f(x)ei(v;x)dx.

Theorem 2.13.3. (Fourier inversion formula) If f is integrable, smooth function, then Ff is integrable,
and

(FFf)(v) = (2π)df(−v).

Proof. The proof is similar to the one-dimensional case an will be omited. �

Corollary 2.13.4. If X and Y are random variables with values in Rd such that ϕX ≡ ϕY , then X
and Y agree in distribution.

Proof. Once again, the proof is similar to the one-dimensional case. �

Remark 2.13.5. Note that ϕX is completely determined by the distributions of random variables
(v;X), which is their turn are completely determined by the collection {P((v;X) ≤ a, v ∈ Rd, a ∈ R}, i.
e., a probability measure on Rd is completely determined by its values on half-planes - a result that is not
so easy to prove directly.

Definition 2.13.6. A random variable X with values in Rd is called Gaussian (or Gaussian random
vector) if, for any linear function l : Rd → R, l(X) is a Gaussian.
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In other words, if (·, ·) denotes a scalar product in Rd, the definition says that (X, v) is a Gaussian for
every fixed vector v ∈ Rd. In even more details, a random vector (X1, . . . , Xd) is called Gaussian if, for
any v1, . . . , vd ∈ R, the variable v1X1 + · · ·+ vdXd is Gaussian. In that case, the variables X1, . . . , Xd are
sometimes called jointly Gaussians.

Remark 2.13.7. By linearity of expectation, we have El(X) = l(EX), therefore, if we subtract EX
from X, all l(X) become centered Gaussians.

Example 2.13.8. If X1, . . . , Xd are i. i. d. standard Gaussians, then (X1, . . . , Xd) is a Gaussian vector.

Proof. We calculate the characteristic function:

ϕv1X1+···+vdXd(t) = ϕv1X1
(t) · . . . · ϕvdXd(t)

= ϕX1
(v1t) · . . . · ϕXd(vdt) = e−

v2
1t

2

2 · . . . · e−
v2
dt

2

2 = e−
(v2

1+···+v2
d)t2

2 ,

hence v1X1 + · · ·+ vdXd is a Gaussian with variance v2
1 + · · ·+ v2

d. �

Lemma 2.13.9. If X is an Rd-valued Gaussian vector, and A : Rd → Rd′ is a linear map, then AX is
a Gaussian vector.

Proof. For any v ∈ Rd′ , (AX; v) = (X;A∗v), where A∗ : Rd′ → Rd is the adjoint9 operator. Therefore,
(AX; v) is a Gaussian. �

Definition 2.13.10. (Covariance form) Let X be a random variable with values in Rd such that
E|X|2 <∞. If X is centered (i. e., EX = 0), then its covariance form CovX : Rd × Rd → R is defined by

CovX(v1, v2) = E ((X; v1) · (X; v2)) .

In general, if X is non-centered, we define CovX := CovX−EX .

Remark 2.13.11. If X is a random varaible with values in a finitely-dimensional vector space V , it is
more natural to define the covariance form as a bilinear form on the conjugate space V ∗, given by

CovX(l1, l2) = E(l1(X − EX) · l2(X − EX))

for any pair l1, l2 of linear functions on V . This way, the definition does not depend on the choice of scalar
product in V . We will, however, assume the scalar product to be fixed.

A general result in linear algebra states that to the bilinear form CovX one can associate a linear
operator ΣX : Rd → Rd such that

CovX(v1, v2) = (ΣXv1, v2).

The operator ΣX is called the covariance operator, and its matrix is called a covariance matrix. Plugging
in the basis vectors as v1, v2 in the definition, we get an explicit expression for the matrix elements: if
EX = 0, then

ΣX =

 E(X1X1) . . . E(X1Xn)
...

. . .
...

E(XnX1) · · · E(XnXn)

 ,

where X = (X1, . . . , Xn). In general,

ΣX =

 E((X1 − µ1)(X1 − µ1)) . . . E((X1 − µ1)(Xn − µn))
...

. . .
...

E((Xn − µn)(X1 − µ1)) · · · E((Xn − µn)(Xn − µn))

 ,

9Recall that by definition, the adjoint operator is defined by condition (Av;w) ≡ (v;A∗w). Its matrix is just the transpose
of the matrix of A.
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where µ = EX. As in the one-dimensional case, we can calculate

CovX(v1, v2) = E ((X − µ; v1) · (X − µ; v2)) =

E ((X; v1) · (X; v2))− E(X; v1) · (µ; v2)− E(µ; v1)(X; v2) + E(µ; v1) · (µ; v2) =

E ((X; v1) · (X; v2))− (µ; v1) · (µ; v2).

We note that for any random variable X, the covariance operator ΣX is self-adjoint (that is, Σ∗X = ΣX)
and non-negative definite (that is, (ΣXv; v) ≥ 0 for any v ∈ Rn. Equivalently, all the eighenvalues of Σ are
non-negative).

Proposition 2.13.12. (Classification of Gaussian vectors)
(1) Given a non-negative self-adjoint operator Σ, there exist a centered Gaussian vector X such that

ΣX = Σ;
(2) If X,Y are two centered Gaussian vectors with ΣX = ΣY , then the vectors X and Y have the

same distribution;
(3) If X is a centered Gaussian with values in Rd, such that Σ := ΣX is positive definite10, then X

has a density with respect to the d-dimensional Lebesgue measure given by

(2.13.1) fΣ(v) :=
1

(2π)
d
2 (det Σ)

1
2

e−(Σ−1v;v)/2

Proof. If Σ is a non-negative self-adjoint operator, then it has a square root Σ
1
2 , a non-negative self-

adjoint operator such that (Σ
1
2 )2 = Σ. The square root can be constructed as follows: since Σ is self-adjoint,

it can be diagonalized by an orthogonal transformation, that is, there is a matrix C such that C−1 = C∗

and
Σ = C−1DC,

whereD = diag(λ1, . . . , λd) is a diagonal matrix. Since Σ is non-negative, all λi are non-negative. Therefore,
we can put D

1
2 = diag(λ

1
2
1 , . . . , λ

1
2

d ) and Σ
1
2 = C−1D

1
2C, in which case

Σ
1
2 · Σ 1

2 = C−1D
1
2C · C−1D

1
2C = C−1DC = Σ,

as required.
Now, let Y = (Y1, . . . , Yd) be a Gaussian vector whose components are i. i. d. standard Gaussians, and

put X = Σ
1
2Y. Then, by Lemma 2.13.9, X is a Gaussian vector. Also, by the linearity of the expectation,

EX = EΣ
1
2Y = Σ

1
2EY = 0. We compute

CovX(v1, v2) = E((X, v1) · (X; v2)) = E((Y ; Σ
1
2 v1) · (Y ; Σ

1
2 v2)) = (Σ

1
2 v1,Σ

1
2 v2) = (Σv1; v2),

where we used that Σ
1
2 is self-adjoint, and that the covariance operator of Y is the identity. This concludes

the proof of the first part.
For the second part, note that for every fixed v ∈ Rd, (X; v) and (Y ; v) have the same distribution,

since they are both centered Gaussians with variance (ΣXv; v) = (ΣY v, v). Therefore, ϕX ≡ ϕY , and by
Corollary 2.13.4, they agree in distribution.

For the third part, note that if ΣX is positive, then it is invertible (since all eigenvalues are strictly
positive). In particular, Σ

1
2 is a diffeomorphism of Rd onto itself, with Jacobian identically equal to det Σ

1
2 .

By the second part, X agrees in distribution with Σ
1
2Y , where Y = (Y1, . . . , Yd) and Y1, . . . , Yd are i. i. d.

standard Gaussian. Note that by Corollary 2.1.12, Y as the density

fY (y) =
1√
2π
e−

y2
1
2 · . . . · 1√

2π
e−

y2
d
2 =

1

(2π)
d
2

e−
(y;y)

2 .

Therefore, for every continuous function g with bounded support,

Eg(X) = Eg(Σ
1
2Y ) =

1

(2π)
d
2

ˆ
Rd
g(Σ

1
2 y)e−

(y;y)
2 dλd(y) =

1

(2π)
d
2

ˆ
Rd
g(x)e−(Σ−

1
2 x;Σ−

1
2 x)/2 det Σ−

1
2 dλn(x),

10that is, (Σv; v) = 0 implies v = 0
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where we have used the multi-dimensional change of variables y = Σ−
1
2x. This implies that

f(x) =
1

(2π)
d
2

det Σ−
1
2 e−(Σ−

1
2 x;Σ−

1
2 x)/2 =

1

(2π)
d
2 (det Σ)

1
2

e−(Σ−1v;v)/2,

is the density of X, as required. �

Remark 2.13.13. This, in particular, implies that if (X1, . . . , Xd) is a Gaussian vector, and Xi are
uncorrelated, then they are independent. Warning: it is not enough to assume that they are individually
Gaussians, one does need the “jointly Gaussian” assumption.

2.14. Random walks

Let X1, X2, . . . be i. i. d. random variables with values in Zd. One can view the sum Sn =
∑n
i=1Xi as

a discrete time stochastic process: Sn is a position of a particle at time n, and the next moment of time it
moves to Sn +Xn+1. In this context, one says that Sn is a random walk on Zd. The particular case when
P(Xi = ±ej) = 1

2d , where ej are unit orts, is called the simple random walk. In this case, at each step,
the particle jumps into a lattice neighbor of its current position, chosen uniformly at random among all 1

2d
neighbors.

One of the basic questions one asks about random walks is that of recurrence. Given x ∈ Zd, define τx
to be the (random) time of the first visit of the walk to x:

τx := min{n : Sn = x}.

Definition 2.14.1. A random walks is called recurrent if P(τ0 <∞) = 1, and transient otherwise.

Lemma 2.14.2. A random walks is recurrent if and only if #{n : Sn = 0} = ∞ almost surely. A
random walk is transient if and only if |Sn| → ∞ almost surely.

Proof. The argument is based on the simple observation that from the time τx on, we can view the
random walk Sn as a new random walk launched from x, independent of its past. Let us make a rigorous
proof.

Clearly, if #{n : Sn = 0} > 0, then τ0 < ∞. If P(τ0 < ∞) = 1, define τ (1) := τ0, and, inductively,
τ (k) = min{n > τ (k−1) : Sn = 0} the time of k-th visit to the origin. We have, for all n ∈ N

P(τ (2) − τ (1) = n) =

∞∑
m=1

P(τ (2) − τ (1) = n, τ (1) = m) =

∞∑
m=1

P
(
τ (1) = n

)
P(τ (1) = m) = P(τ (1) = n)

In the second identity, we have used that we can write

{τ (2) − τ (1) = n, τ (1) = m} = {A, τ (1) = m},

where A is the event that
∑m+n
i=m+1Xi = 0, but

∑m+n′

i=m+1Xi 6= 0 for any 1 ≤ n′ < n. This event depends only
on Xm+1, . . . , Xm+n, whereas the event τ (1) = m depends only on X1, . . . , Xm, hence they are independent.
Also, P(A) = P(τ (1) = n).

The conclusion of this computation is that τ (2) − τ (1) has the same distribution as τ (1), in particular,
τ (2) is almost surely finite. Repeating the same argument, we get that, inductively, τ (k+1) − τ (k) all have
the same distribution11, in particular, τ (k) <∞ for all k almost surely, that is, #{n : Sn = 0} =∞ almost
surely.

For the second assertion, first note that if |Sn| → ∞ almost surely, then #{n : Sn = 0} is finite almost
surely, that is, the random walk is not recurrent. Assume now that Sn is transient. Then, for every x ∈ Zd

11a closer examination of the argument shows that they are also independent
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and every m = 1, 2, . . . , and using the same independence observation as above,

P(#{n : Sn = x} = m) =

∞∑
i=1

P(#{n : Sn = x} = m, τx = i) =

= P(#{n : Sn = 0} = m− 1)

∞∑
i=1

P(τx = i) = P(#{n : Sn = 0} = m− 1)P(τx <∞).

Summing over m = 0, 1, . . . we get that

P(#{n : Sn = x} <∞) = P(τx =∞) + P(τx <∞)P(#{n : Sn = 0} <∞) = P(τx =∞) + P(τx <∞) = 1.

This means that almost surely, every lattice cite is visited by Sn only finitely many times, that is, |Sn| → ∞
almost surely. �

Lemma 2.14.3. If µ := EXi 6= 0, then the random walk Sn is transient12.

Proof. If d = 1, then, by the Strong law of large numbers,

| 1
n
Sn − µ| >

|µ|
2

for finitely many n only. This implies that Sn = 0 for finitely many n only, that is, Sn is transient.
If d > 1, then we may view each coordinate of Sn as a 1-dimensional random walk, and at least one of

those walks has steps with non-zero mean. �

In the case µ = 0, the random walk is transient in dimension d ≥ 3 and recurrent in dimensions
d = 1, 2. This result, knowns as Polya’s theorem, will follow (under certain technical conditions) from the
next Lemma and the Local Central limit theorem of the next chapter.

Lemma 2.14.4. The random walk Sn is recurrent if and only if
∞∑
n=1

P(Sn = 0) = +∞.

Proof. Denote pn := P(τ0 = n) and qn := P(Sn = 0). We define the generating functions of these
sequence by

P (t) :=

∞∑
n=1

pnt
n, Q(t) :=

∞∑
n=0

qnt
n.

Since the coefficients are bounded, the radius of convergence of both series is at least 1, that is, they are
well-defined at least for |t| < 1. Now, we compute, for n ≥ 1,

qn = P(Sn = 0) =

n∑
i=1

P(Sn = 0, τ0 = i) =

n∑
i=1

P

 n∑
j=i+1

Xj = 0, τ0 = i


=

n∑
i=1

P

 n∑
j=i+1

Xj = 0

P(τ0 = i) =

n∑
i=1

pn−iqi,

where we once again used the fact that the event τ0 = i is determined by the values of X1, . . . , Xi and is
thus independent of the event

∑n
j=i+1Xj = 0. We multiply the last identity by tn and sum over n. Taking

into account that q0 = 0, we get

Q(t)− 1 =

∞∑
n=1

qnt
n =

∞∑
n=1

tn

(
n∑
i=1

pn−iqi

)
=

∞∑
m=1

∞∑
n=0

pmqnt
n+m = P (t)Q(t),

12Formally, we should assume E|Xi|4 <∞, since the Strong law of large numbers was proven under this assumption only.
This assumption is not necesssary.
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that is,

P (t) = 1− 1

Q(t)
, |t| < 1.

Also, monotone convergence theorem implies that

P(τ0 <∞) =

∞∑
n=1

pn = P (1) = lim
t↗1

P (t)

and
∞∑
n=o

P(Sn = 0) =

∞∑
n=0

qn = Q(1) = lim
t↗1

Q(t).

Therefore, Q(1) =∞ if and only if P (1) = 1, as required. �

With this lemma, Polya’s theorem can be explained as follows. If the variance Var |Xi| is finite, then
Var |Sn| ∼ C ·n, that is, roughly speaking, the distribution of Sn is supported on the area of diameter ≈

√
n

around the origin. There are ≈ n
d
2 lattice points in this area, and if one believes that Sn is more ore less

uniformly distributed over its support, we should have P(Sn = 0) ≈ n− d2 . Thus, the series in Lemma 2.14.4
indeed should converge for d ≥ 3 and diverge for d = 1, 2. In the next section, we make this heuristics
precise.

2.15. Local central limit theorem.

Let X1, X2, . . . be i. i. d., centered scalar random variables taking integer values, such that EXi = 0
and EX2

i =: σ2 <∞. The Central limit theorem asserts that, with the notation Sn =
∑n
i=1Xi,

Sn√
n

D−→ N (0, σ).

In other words, for any a < b,

(2.15.1)
∑

a
√
n≤m≤b

√
n

P(Sn = m)
n→∞−→ 1√

2πσ

ˆ b

a

e−
x2

2σ2 dx

This is a statement about collective behaviour of probabilities of the form P(Sn = m) (i. e., behaviours
of sums of ∼

√
n of these probabilities). It is natural to look into the individual behaviour of each of

these probabilities. What can be said about P(Sn = m)? Assuming that (2.15.1) is a Riemann sum type
approximation of the integral, one could expect

P(Sn = m) ∼ 1√
2πnσ

e−
m2

2nσ2 , n→∞.

The following simple example shows that the reality is slightly more complicated:

Example 2.15.1. Let X1, X2, . . . be i. i. d. with P(Xi = 1) = P(Xi = −1) = 1
2 . Then

P(Sn = 0) = 0

for odd n.
Indeed, the sum of an odd number of ±1 is odd, and thus cannot be equal to zero. The following

theorem states that the algebraic obstructions of these type are the only possible obstructions. For a
random variable X with values in Zd, denote

suppX := {x ∈ Zd : P(X = x) 6= 0}.

Theorem 2.15.2. Let , X,X1, X2, . . . be i. i. d. with values in Zd. Denote by µ := EX their expectation
and by Σ = ΣX the covariance operator. Assume that E|X|3 <∞, and that the set {x− y : x, y ∈ suppX}
generates Zd as an abelian group. Then, for any sequence z1, z2, . . . of points of Zd such that

zn = µn+ a
√
n+ o(

√
n), n→∞
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for some a ∈ Rd, we have
n
d
2 · P(Sn = zn)

n→∞−→ fΣ(a),

where fΣ is the d-dimensional Gaussian density with covariance Σ (see (2.13.1)).

Corollary 2.15.3. (Polya’s theorem) If Sn is a random walk whose steps Xi satisfy the conditions of
Theorem 2.15.2 with µ = 0, then Sn is recurrent in dimensions d = 1, 2 and transient in dimensions d ≥ 3.

Proof. This follows directly from Lemma 2.14.4 and the fact that
∑∞
n=1 n

− d2 diverges for d = 1, 2 and
converges for d ≥ 3. �

Remark 2.15.4. The assumption on suppX , in particular, implies that Σ is positive definite, that is,
that fΣ is well defined. Indeed, assume that there is a non-zero vector v ∈ Rd such that (Σv; v) = 0. This
means that E(X − µ; v)2 = 0, that is, (X − µ; v) = 0 almost surely. Then for every x, y ∈ suppX , we have
(x − y; v) = 0. In that case, the abelian group generated by {x − y : x, y ∈ suppX} is contained in the
hyperplane {w : (w; v) = 0}.

We start the proof of Theorem 2.15.2 with an observation concerning characteristic functions of random
variables with values in Zd.

Lemma 2.15.5. (Fourier inversion for discrete random variables) Let X be a random variable with
values in Zd. Then ϕX is 2π-periodic with respect to each coordinate, that is, ϕX(v) = ϕX(v + 2πw) for
any v ∈ Rd and w ∈ Zd. Moreover,

P(X = x) =
1

(2π)d

ˆ
[−π;π]d

ϕX(v)e−i(v;x)dλd(v).

Proof. We have

ϕX(v + 2πw) = Eei(v+2πw;X) = E
(
ei(v;X) · e2πi(w;X)

)
= E

(
ei(v;X)

)
= ϕX(v),

since both X and w are in Zd and hence (ω;X) ∈ Z. We have

e−i(v;x)ϕX(v) = e−i(v;x)
∑
y∈Zd

ei(v;y)P(X = y) =
∑
y∈Zd

ei(v;y−x)P(X = y).

We are going to integrate this with respect to v over [−π;π]d. In order to justify the interchange of the
sum and the integral, consider the function g : [−π;π]d × Zd defined by g(v, y) = ei(v;y−x)P(X = y), and
note that̂

[−π;π]d×Zd
|g| =

ˆ
v∈[−π;π]d

∑
y∈Zd

|g(v, y)| =
ˆ

[−π;π]d

∑
y∈Zd

P(X = y) =

ˆ
[−π;π]d

1 = (2π)d <∞,

therefore, Fubini’s theorem readily applies, and we getˆ
[−π;π]d

e−(v;x)ϕX(v)dλd(v) =
∑
y∈Zd

P(X = y)

ˆ
[−π;π]d

ei(v;y−x)dλd(v).

It remains to notice thatˆ
[−π;π]d

ei(v;z)dλd(v) =

d∏
m=1

ˆ π

−π
eivmzmdvm =

{
(2π)d, z = 0

0, otherwise.

�

From this, we deduce, in particular, that

(2.15.2) P(Sn = zn) =
1

(2π)d

ˆ
[−π;π]d

ϕSn(v)e−(v;x)dλd(v) =
1

(2π)d

ˆ
[−π;π]d

(ϕX1
(v))

n
e−i(v;zn)dλd(v).

Thus, we are left with the asymptotics of this integral. First, we transform the algebraic assumption on
suppX into an analytic condition on ϕX .
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Lemma 2.15.6. If the set {x − y : x, y ∈ suppX} generates Zd as an abelian group, then |ϕX(v)| < 1
for all v /∈ 2πZd.

Proof. Indeed, assume that

|ϕX(v)| =

∣∣∣∣∣∣
∑
x∈Zd

ei(v;x)P(X = x)

∣∣∣∣∣∣ = 1.

However, in general, ∣∣∣∣∣∣
∑
x∈Zd

ei(v;x)P(X = x)

∣∣∣∣∣∣ ≤
∑
x∈Zd

|ei(v;x)P(X = x)| = 1,

and the equality is possible only if for all x ∈ suppX , the arguments of ei(v;x) are the same. This means that
ei(v;x−y) = 1 for all x, y ∈ suppX , that is, (v;x− y) ∈ 2πZ for all x, y ∈ suppX . Then, we have (v;α) ∈ 2πZ
for all α ∈ Zd, and, taking α to be unit orts, we conclude that v1 ∈ 2πZ, . . . , vd ∈ 2πZ, i. e., v ∈ 2πZd. �

The asymptotics is done by what’s called Laplace’s method. The above Lemma, in particular, implies
that ∣∣∣∣∣

ˆ
[−π;π]d\(−ε;ε)d

(ϕX(v))
n
e−i(v;zn)dλd(v)

∣∣∣∣∣ ≤ (2π)dαn,

where α = sup[−π;π]d\(−ε;ε)d |ϕX | < 1. Since this decays exponentially fast (and we are aiming at much slower
power-law decay in the statement of the theorem), only the integral over an (arbitrary small) vicinity of
v = 0 matters. The idea of Laplace’s method is to make this vicinity shrink with n (that is, to allow ε = εn
depend on n), and use Taylor approximation of ϕX . We start by working out the approximation.

Lemma 2.15.7. Under the condition of Theorem 2.15.2, we have

ϕX(v) = ei(v;µ)−(Σv;v)/2+Θ(v),

where the error term Θ(v) satisfies |Θ(v)| ≤ C|v|3 for all v with |v| small enough.

Proof. Fix a vector v with |v| = 1, and consider the function ψv(t) := ϕX(tv), where t ∈ R. Let us
calculate the derivatives of ψv. We have

ψ′v(t) =
∂

∂t
Eeit(v;X) = E

∂

∂t
eit(v;X) = E

(
i(v;X)eit(v;X)

)
,

where the interchange of the differentiation and the expectation is justified Theorem 1.5.12∣∣∣i(v;X)eit(v;X)
∣∣∣ = |(v;X)| ≤ |v| · |X| = |X|,

which is integrable and does not depend on t. Similarly,

ψ′′v (t) = −E
(

(v;X)2eit(v;X)
)
.

and
ψ′′′v (t) = −E

(
i(v;X)3eit(v;X)

)
,

justified similarly. Note that the first three derivatives of ψv are bounded by E|X|, E|X|2 and E|X|3,
respectively. Since ψv(0) = 1, the bound on the first derivartives implies that |ψv(t)| > 1

2 for |t| < ε, where
ε = 1

2E|X| . It follows that for |t| < ε, the logarithm logψv(t) is well-defined, and its derivatives

(logψv)
′

=
ψ′v
ψv

; (logψv)
′′

=
ψ′′vψv − (ψ′v)

2

ψ2
v

, (logψ′′′v ) =
Polynomial(ψv, ψ′v, ψ′′v , ψ′′′v )

ψ4
v

are bounded by some constant (that can be expressed in terms of E|X|, E|X|2 and E|X|3). By Taylor
formula, this implies that, for |t| < ε,

logψv(t) = logψv(0) + t (logψv)
′
(0) +

t2

2
(logψv)

′′
(0) + Θ(t),
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where Θ(t) ≤ C|t3| with C = 1
6 sup|t|<ε (logψv)

′′′
. It remains to do the computations:

logψv(0) = log 1 = 0;

(logψv)
′
(0) =

ψ′v(0)

ψv(0)
= E (i(v;X)) = i(v;µ);

(logψv)
′′

(0) =
ψ′′vψv − (ψ′v)

2

ψ2
v

(0) = −E(v;X)2 + (v;µ)2 = −E(v;X − µ)2 = −(Σv; v).

Therefore, for all v ∈ Rd with |v| = 1 and t ∈ R with |t| < ε,

ϕX(tv) = eit(µ;v)− (Σv;v)
2 t2+Θ(t) = ei(µ;tv)− (Σtv;tv)

2 +Θ(t),

as required. �

We are now in the position to prove Theorem 2.15.2.

Proof of Theorem 2.15.2. . We first note there is a constant c > 0 such that

(2.15.3) sup
[−π;π]d\(−ε;ε)d

|ϕX | ≤ e−cε
2

for all ε small enough. Indeed, since Σ is positive definite, we can find c > 0 such that (Σv; v) ≥ 4c|v|2 for
all v ∈ Rd. We then can find ε′ > 0 such that |Θ(v)| ≤ c|v|2 for all v ∈ (−ε′; ε′)d. Denote

M := sup
[−π;π]d\(−ε′;ε′)d

|ϕX |;

we have M < 1 by Lemma 2.15.6. If ε < ε′, then for all v ∈ [−ε′; ε′]d \ (−ε; ε)d, we have

|ϕX(v)| = e−
(Σv;v)

2 +<eΘ(v) ≤ e−2c|v|2+c|v|2 ≤ e−c|v|
2

≤ e−cε
2

.

If ε is so small that
e−cε

2

> M,

then |ϕX(v)| < e−cε
2

for all v ∈ [−π;π]d \ (−ε; ε)d, which proves (2.15.3).
This gives us a hint for the choice of the sequence εn. We have, for ε small enough,

e−i(v;zn) (ϕX(v))
n

= e−i(v;zn)+i(nµ;v)−n (Σv;v)
2 +nΘ(v)

for v ∈ (−ε; ε)d, and ∣∣∣e−i(v;zn) (ϕX(v))
n
∣∣∣ ≤ e−cnε2

for v /∈ (−ε; ε)d. We want both the error term |nΘ(v)| ≤ Cnε3 and the last bound to be small. Therefore,
we should choose εn so that nε3

n → 0, but nε2
n →∞. We put εn := n−

2
5 . Write

ˆ
[−π;π]d

(ϕX(v))
n
e−i(v;zn)dλd(v) =

ˆ
[−εn;εn]d

(ϕX(v))
n
e−i(v;zn)dλd(v)

+

ˆ
[−π;π]d\[−εn;εn]d

(ϕX(v))
n
e−i(v;zn)dλd(v)

The second integral is bounded above by (2π)de−cnε
2
n = (2π)de−cn

1
5 , which decays smaller that any power

of n, and thus is negligible for our analysis. The first integral is
ˆ

[−εn;εn]d
(ϕX(v))

n
e−i(v;zn)dλd(v) =

ˆ
[−εn;εn]d

e−i(v;zn)+i(nµ;v)−n (Σv;v)
2 +nΘ(v)dλd(v) =

ˆ
[−εn;εn]d

e−i(z
′
n;
√
nv)− (Σ(

√
nv);(

√
nv))

2 +nΘ(v)dλd(v),
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where z′n = (zn − µn)/
√
n = a+ o(1). Now, by the change of variable

√
nv := w, the last integral is equal

to
n−

d
2 ·
ˆ

[−
√
nεn;
√
nεn]d

e
−i(a+o(1);w)− (Σw;w)

2 +nΘ( w√
n

)
dλd(w).

Since |nΘ( w√
n

)| ≤ Cnε3
n ≤ Cn−

1
5 → 0, the function under the integral tends pointwise to

e−i(a;w)− (Σw;w)
2 ;

also, for n large enough (so that |eCn
− 1

5 | < 2), its absolute value is bounded from above by

2e−(Σw,w)/2.

Therefore, we apply the dominated convergence theorem to conclude that

n
d
2 P(Sn = zn)→ 1

(2π)d

ˆ
Rd
e−i(a;w)− (Σw;w)

2 dλn(w).

Making a change of variable u := Σ
1
2w, the integral can be computed:ˆ

Rd
e−i(a;w)− (Σw;w)

2 dλn(w) =
1

(det Σ)
1
2

ˆ
Rd
e−i(Σ

− 1
2 a;u)e−

(u;u)
2 dλd(u)

=
1

(det Σ)
1
2

d∏
j=1

ˆ
R
e−i(Σ

− 1
2 a)juj−

u2
j
2 =

(2π)
d
2

(det Σ)
1
2

d∏
j=1

e−(Σ−
1
2 a)2

j/2

=
(2π)

d
2

(det Σ)
1
2

e−(Σ−
1
2 a;Σ−

1
2 a)/2,

as claimed. �



CHAPTER 3

Markov chains and the Poisson process

3.1. Markov chains: key definitions

Definition 3.1.1. A discrete (respectively, continuous) time stochastic process is a sequence of random
variables Xt, t ∈ Z≥0 (respectively, t ∈ R≥0)1 defined on the same probability space (Ω,F ,P) and taking
value in the same measurable space S. The space S is calles the space of states of the process Xt.

A stochastic process can be thought of as a random quantity evolving in time. We will restrict our
attention to the case when

S is a finite or countable space
(with a σ-algebra 2S); such stochastic processes are called discrete.

Little can be said about stochastic processes in general. Markov chains form a simple yet very general
class.

Definition 3.1.2. A discrete time stochastic processXt is called aMarkov chain if for any x0, . . . , xt+1 ∈
S such that

P(Xt+1 = xt+1|Xt = xt, . . . , X0 = x0) = P(Xt+1 = xt+1|Xt = xt)

for every x0, . . . , xt+1 ∈ S such that P(Xt = xt, . . . , X0 = x0) > 0.

The last condition allows one to treat the conditional expectations in the elementary way; recall that
by definition

P(A|B) =
P(A ∩B)

P(B)
.

The intuitive meaning of the definition is that the distribution of a Markov chain in the future (that
is, on step t+ 1) only depends on its present state (i. e., on its state at step t) and not on its past.

We let µ(t), t = 0, 1, . . . denote the distribution of Xt, that is2,

µ(t)(x) := P(Xt = x), for all x ∈ S.
The most important quantity pertaining to a Markov chain is the transition matrix

Definition 3.1.3. A transition matrix of a Markov process at time t = 1, 2, . . . is defined as

P (t)
xy := P(Xt = y|Xt−1 = x), x, y ∈ S.

Thus, the transition matrix is an |S| × |S| matrix whose rows and columns are indexed by elements of S.

A transition matrix satisfies the following obvious properties: first,

(3.1.1) P (t)
xy ≥ 0 for all x, y ∈ S,

because the entries of the matrix are probabilities, and second,

(3.1.2)
∑
y∈S

P (t)
xy = 1, for all x ∈ S,

simply because the event Xt ∈ S has probability 1 and is a disjoint union of the events {Xt = y}, y ∈ S.

1sometimes t ∈ Z or t ∈ R
2naturally identifying probability measures on S with functions µ : S → R≥0 such that

∑
x∈S µ(x) = 1

53
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The transition matrices allow one to compute µ(t) inductively.

Lemma 3.1.4. (Kolmogorov-Chapman equations) We have, for all t ≥ 1,

µ(t)(y) =
∑
x∈S

µ(t−1)(x)P (t)
xy for all x ∈ S,

or, in a matrix form,

(3.1.3) µ(t) = µ(t−1)P (t),

where µ(t) is viewed as a row vector. More generally,

(3.1.4) µ(t) = µ(0)P (1) · · · · · P (t).

Proof. We have, as required,

µ(t)(y) = P(Xt = y) =
∑
x∈S

P(Xt = y and Xt−1 = x) =
∑
x∈S

P(Xt = y|Xt−1 = x)P(Xt−1 = x)

=
∑
x∈S

µ(t−1)(x)P (t)
xy .

The equation (3.1.4) is obtained from (3.1.3) by iteration. �

This shows that all µ(t) are determined by µ(0) and the transition matrices. In fact, the same data
determine uniquely the entire law of the Markov chain:

Proposition 3.1.5. For every x0, . . . , xt ∈ S, we have

P(X0 = x0, . . . , Xt = xt) = µ(0)(x0)P (1)
x0x1
· · · · · P (t)

xt−1xt ,

in particular,3, the law of (X0, X1, . . . , Xt) is uniquely determined by P (1), . . . , P (t) and µ(0). Conversely,
given a probability measure µ on S and a sequence P (t) of S × S matrices satisfying (3.1.1) and (3.1.2),
there is a Markov chain X0, X1, . . . such that P(X0 = x) = µ(x) and P(Xt = y|Xt−1 = x) = P

(t)
xy for all

x, y ∈ S and t ≥ 1.

Proof. We have, as required,

P(Xt = xt, . . . , X0 = x0) = P(Xt = xt|Xt−1 = xt−1, . . . , X0 = x0)P(Xt−1 = xt−1, . . . , X0 = x0)

Markov property
= P(Xt = xt|Xt−1 = xt−1)P(Xt−1 = xt−1, . . . , X0 = x0)

= P (t)
xt−1xtP(Xt−1 = xt−1, . . . , X0 = x0) = · · · = P(X0 = x0)P (1)

x0x1
· · · · · P (t)

xt−1xt .

For the converse part, define a measure µ[t] on St+1 = {(x0, . . . , xt) : xi ∈ S} by

µ[t]({(x0, . . . , xt)}) = µ(x0)P (1)
x0x1
· · · · · P (t)

xt−1xt .

Conditions (3.1.1) and (3.1.2) ensure that this is a probability measure, and, moreover, that µ[t] is a
consistent family of measures: indeed, µ[t] is positive, and for all A ⊂ St,

µ[t+1](A× S) =
∑

(x0,...,xt)∈A

∑
xt+1∈S

µ(x0)P (1)
x0x1
· . . . · P (t)

xtxt+1
=

∑
(x0,...,xt)∈A

µ(x0)P (1)
x0x1
· . . . · P (t)

xt−1xt = µ[t](A).

Therefore, by Kolmogorov extension theorem, there exists a probability measure µ[∞] on the set of infinite
sequences SZ≥0 := {x = (x0, x1, . . . ) : xi ∈ S} that coincides with µ[t] on cylindrical sets. Taking Xt :
SZ≥0 → S to be the the coordinate function Xt(x) = xt provides the required Markov chain. �

Definition 3.1.6. A Markov chain is called homogeneous if the transition matrix P = P (t) does not
depend on t.

3This implies that the distribution of the infinite vector (X0, X1, . . . ), restricted to the product σ-algebra, is uniquely
determined by µ(0) and P (t).
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From now on, we will restrict our attention to homogeneous Markov chains. In that case, Kolmogorov-
Chapman equations (3.1.4) take a particularly simple form:

(3.1.5) µ(n) = µ(0)Pn.

We will often consider Markov chains with the same transition matrix P , but different initial conditions.
In that case, we will abuse terminology and say “the Markov chain P (with initial conditions µ(0))”. If
the initial conditions are such that P(µ(0) = x) = 1 for some x (that is, the chain starts from a certain
non-random state x), we will write Ex and Px for expectation and probability pertaining to a Markov chain
P with initial state µ(0) = δ(x = 0).

3.2. Examples of Markov chains

The first example of a Markov chain has already been discussed: a random walk on Zd. Indeed, if
X1, X2, . . . are i. i. d. with values in Zd, then Sn =

∑n
i=1Xi is a Zd-valued stochastic process. Let us

check from the definition that it is Markov:

P(Sn+1 = xn+1|Sn = xn, . . . , S0 = x0) = P(Xn+1 = xn+1 − xn|Sn = xn, . . . , S0 = x0)

independence
= P(Xn+1 = xn+1 − xn) = P(Sn+1 = xn+1|Sn = xn).

Remark 3.2.1. This argument can be generalized as follows. A Markov chain in a random mapping
representation consists of a measurable space Λ, a measurable map f : Λ × S → S, a sequence of i. i. d.
random variables ξ1, ξ2, . . . with values in Λ, and a random variable X0 with values in S, independent of
ξ1, ξ2, . . . . Define, inductively, Xn := f(ξn, Xn−1). Then

P(Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = P(f(ξn+1, Xn) = xn+1|Xn = xn, . . . , X0 = x0)

= P(f(ξn+1;xn) = xn+1|Xn = xn, . . . , X0 = x0)
independence

= P(f(ξn+1;xn) = xn+1)

= P(Xn+1 = xn+1|Xn = xn),

that is, Xi is a Markov chain. Conversely, let P be any transition matrix, and let ξi be i. i. d. uniformly
distributed in (0; 1). Choose, for each x ∈ S, a partition (0; 1) = ty∈SAxy with λ(Axy) = Pxy, and define
f(ξ, x) := y if ξ ∈ Axy. Then,

P(f(ξn+1, Xn) = xn+1|Xn = xn+1) = P(f(ξn+1, xn) = xn+1) = λ(Axy) = Pxy,

that is, Xn has transition matrix P . In practice, random mapping representations are used to simulate
Markov chains.

The next two famous Markov chains turn out also to be examples of random walks, this time with
values in groups.

Example 3.2.2. (Card shuffling) Let µ be any probability measure on the set πn of transpositions on
n elements. Let σ1, σ2, . . . be independent random variables with values in πn, distributed according to µ.
Then Xn := σn · . . . · σ1 is a πn -valued Markov chain. Each σi corresponds to one iteration of shuffling,
and its distribution µ depends on the shuffling method. One (rather inefficient) way to toss the deck is to
take the top card and put it at a uniform random position in the deck, then repeat. In this case, we have

µ(123 . . . n) = µ(213 . . . n) = µ(231 . . . n) = · · · = µ(234 . . . n1) =
1

n
.

Example 3.2.3. (Ehrenfest diffusion model). Consider N particles divided into two chambers. There
is a small hole between the chambers, and at each discrete instant of time, one particle, chosen uniformly
among all of them, diffuses from its current chamber to the other one. If the left chamber has k particles,
then the probability that the particle will jump from left to right is k

N . The state space of the chain is
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{0, 1, . . . , N}, and the transition matrix is given by

Pxy =


x
N , y = x− 1;
N−x
N , y = x+ 1;

0, else.

The Ehrenfest model can also be constructed from random walk on (Z/2Z)N . The elements of (Z/2Z)N

are strings of bits (e.g, (1, 0, 1, 1, 0, . . . , 1)). Let σ1, σ2, . . . be i. i. d. elements of (Z/2Z)N with distribution

µ((1, 0, 0, . . . , 0)) = µ((0, 1, 0, . . . , 0)) = · · · = µ((0, 0, 0, . . . , 1)) =
1

N
,

and consider Xn = σ1⊕ σ2⊕ · · · ⊕ σn, where ⊕ is the addition in (Z/2Z)N (or bit-wise XOR). The passage
from Xn to Xn+1 amounts to choosing a bit uniformly at random and switching it, so, if we only keep track
of the number of 1’s, we are back to the Ehrenfest’s diffusion model.

Example 3.2.4. (Branching processes aka Galton-Watson processes) This is an (oversimplified) model
for dynamics of population. We start with one individual, who produces a random number of children (dis-
tributed according to some distribution µ on Z≥0). Each child then produces her own offspring, distributed
according to µ and independently of each other (and of the number of her sisters). The process continues
in the same way; we are interested in the number of individuals in n-th generation. Formally, consider a
double array of i. i. d. random variables

ξ
(1)
1 ξ

(1)
2 . . .

ξ
(2)
1 ξ

(2)
2 . . .

...
...

. . .

distributed according to µ, and put X1 := 1, and Xn+1 = ξ
(n)
1 + · · ·+ ξ

(n)
Xn

for n = 1, 2, . . .

The state space of the chain is given by Z≥0, and we have

Pxy = P(

x∑
i=1

ξi = y),

where ξ1, . . . , ξx are i. i. d. distributed according to µ.

Example 3.2.5. (Queing processes) In this example, the state space is Z≥0, and the states correspond
to the number of customers in a queue. At each instant of time, a new customer arrives with probability p,
and, independently of that, the first customer in the queue (should there be any) is served and leaves with
probability q. The transition matrix is given by

Pxy =


p(1− q), y = x+ 1;

q(1− p), y = x− 1;

pq + (1− p)(1− q), y = x;

0, else,

for x > 0, and P0y =


1− p, y = 0

p, y = 1

0 else

3.3. Stationary distributions

The main question about the Markov chains is the asymptotic behaviour of the measures µ(n), that is,
the existence of the limit µ = limn→∞ µ(n). If such a limit exists, then, from the condition µ(n) = µ(n−1)P ,
we must have

µ = µP.

Definition 3.3.1. A measure µ on S satisfying the equation µ = µP is called a stationary measure.
If µ is a probability measure, then it is called a stationary distribution.

Our first task will be to study stationary distributions. We d
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Definition 3.3.2. A Markov chain P is called irreducible if, for every x, y ∈ S, there is a number
n ∈ N such that (Pn)xy > 0.

Since we have (Pn)xy = P(Xt+n = y|Xt = x), a Markov chain is irreducible if and only if, starting from
any state, it has positive probability to pass through any other state.

Theorem 3.3.3. Let P be a finite4 Markov chain. Then

(1) P has a stationary distribution µ;
(2) If P is irreducible, then µ is unique. In this case,

µ(x) =
1

Exτx
,

where τx = min{t > 0 : Xt = x} is the time of the first return of the chain to 0.

The intuition behind the last equation is as follows. Since we expect µ to be the limit of µ(n) for large
n, we can think of µ(x) as the proportion of time that the chain, eventually, spends at the state x. It is
then natural to expect that this proportion, multiplied by the average time between visits to x, should give
1.

A topological proof of (1). Denote by P(S) the set of all probability measures on S, that is, the
set of all function µ : S → R such that µ(x) ≥ 0 for all x ∈ S and

∑
x∈S µ(x) = 1. Let µ ∈ P(S). Then,

(µP )(y) =
∑
x∈S µ(x)Pxy ≥ 0 for all y. Also,∑

y∈S
(µP )(y) =

∑
y∈S

∑
x∈S

µ(x)Pxy =
∑
x∈S

µ(x)
∑
y∈S

Pxy
(3.1.2)

=
∑
x∈S

µ(x) = 1.

This means that the map ψ : µ 7→ µP maps the set P(S) into itself. The set P(S) is a closed |S| − 1
dimensional simplex, homeomorphic to a closed ball. Since ψ is linear, it is continuous. Therefore, by
Brouwer’s theorem, ψ has a fixed point, as required. �

A probabilistic proof of (1). Take any state z ∈ S, and let ρ(x) be the average time5 the chain
spends at x between two concequtive visits to z:

ρ(x) := E(#{t < τz : Xt ∈ x}) = E

( ∞∑
t=0

I{t<τz and Xt∈x}

)
=

∞∑
t=0

P(t < τz and Xt ∈ x),

where E = Ez and P = Pz (that is, we are assuming that the initial state of the chain is z). We claim that
ρ = ρP , i. e., that ρ is a stationary measure. Indeed,

∑
x∈S

ρ(x)Pxy =
∑
x∈S

∞∑
t=0

P(t < τz and Xt ∈ x)P(Xt+1 = y|Xt = x).

Since the condition t < τz is determined by values of X0, . . . , Xt, the Markov property allows us to insert
it into the last probability:

P(t < τz and Xt ∈ x)P(Xt+1 = y|Xt = x)

= P(Xt+1 = y|Xt = x and t < τz)P(t < τz and Xt ∈ x)

= P(Xt+1 = y,Xt = x and t < τz).

4i. e., with finite state space S
5possibly infinite. Our choice of z in the end of the proof will guarantee that ρ(x) <∞ for all x.
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Therefore,∑
x∈S

ρ(x)Pxy =

∞∑
t=0

∑
x∈S

P(Xt+1 = y,Xt = x and t < τz) =

∞∑
t=0

P(Xt+1 = y and t < τz)

=

∞∑
t=1

P(Xt = y and t ≤ τz) = E(#{t ∈ {1, . . . , τz} : Xt ∈ y}).

Since X0 = Xτz = z, we have, for all y ∈ S,
#{t ∈ {1, . . . , τz} : Xt ∈ y} = #{t ∈ {0, . . . , τz − 1} : Xt ∈ y} almost surely,

i. e., ρP = ρ.
We now wish to normalize ρ to make it a probability measure. We have,∑

x∈S
ρ(x) = Ez

(∑
x∈S

#{t < τz : Xt ∈ x}

)
= Ez(#{t : t < τz}) = Ez(τz).

Now, by Lemma 3.3.7 below, we can choose choose z so that Ezτz < ∞, so, putting µ = ρ
E(τz) concludes

the proof.
Motivated by the proof above, we introduce the following terminology. �

Definition 3.3.4. A state x of a chain S is called recurrent if Px(τx < ∞) = 1. A state is called
positive recurrent or non-null recurrent if Ex(τx) <∞.

We now observe that in the Probabilistic proof of (1), we never used that S is finite. What we have in
fact proven can be summarized as follows:

Proposition 3.3.5. If a Markov chain has at least one positive recurrent state, then it has a stationary
distribution.

Remark 3.3.6. It is possible to show that the converse is also true. Simple random walk on Z (or Z2)
provides an example of a chain in which all states are recurrent, but not positive recurrent.

The final piece, referred to in the proof above, is the following:

Lemma 3.3.7. Any finite Markov chain has a positive recurrent state. If a finite chain is irreducible,
then, in fact, all states are positive recurrent.

Proof. We start with the second assertion. Let T := maxx,y∈S min{m : (Pm)xy > 0}+1; since the
chain is irreducible, the minimum is finite for every x, y, and since the chain is finite, the maximum is finite.
Then, there exists a number p > 0 such that

Px(τy ≤ T ) > p.

Indeed, for any x and y, there is a positive probability to get from x to y in no more than T steps, so, we
take p to be the minimum of these probabilities.

This, in particular, means that Px(τy > T ) < 1 − p, for all x, y. If this event occurs, then we may
think of the future evolution of the chain as a new chain (started from a random state XR) and deduce
that P(τy > 2T ) ≤ (1− p)2, and so on. Formally, for any k ∈ N and R ∈ N, we have, for all z and y,

Pz(τy > R+ T ) = Pz(τy > R and XR+1 6= y, . . . , XR+T ≤ y) =

=
∑
x∈S

Pz(XR+1 6= y, . . . , XR+T 6= y and τy > R and XR = x)

=
∑
x∈S

Pz(XR+1 6= y, . . . , XR+T 6= y|XR = x)P(τy > R and XR = x)

≤ (1− p)
∑
x∈S

P(τy > R and XR = x) ≤ (1− p)P(τy > R).
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In the third equality, we used once again that conditioning on τz > R andXR = x is the same as conditioning
on XR = x alone, by Markov property. Iterating, we get Pz(τy > kT ) ≤ (1− p)k, and

Ez(τy) =

∞∑
t=1

tPz(τy = t) =

∞∑
k=0

(k+1)T∑
t=kT+1

tPz(τy = t) ≤
∞∑
k=0

(k+1)TPz(τy ≥ kT+1) ≤
∞∑
k=0

(k+1)T (1−p)k <∞.

To extend the proof to the general case, consider the oriented graph whose vertices are states of S, and
two vertices x, y are connected by an edge if and only if Pxy > 0. Let us say that a vertex x communicates
with y if (Pn)xy > 0 for some n ≥ 0, or, equivalently, that we can pass from x to y by following edge
in the graph. Note that “x communcates with y and y communicates with x” is an equivalence relation.
Identifying equivalent vertices, we obtain a factor-graph. Note that the factor-graph has a node without
outgoing edges: just take any node and follow the arrows; since we cannot form a loop (otherwise the nodes
along the loop would be identified), the process must terminate.

So, let S′ ⊂ S be the set of equivalent vertices in S that form a node of the factor-graph without
outgoing edges. Then, for every x ∈ S′, we have

∑
y∈S′ Pxy =

∑
y∈S Pxy = 1. This means that we can

define a Markov chain with state space S′ and the transition matrix Pxy restricted to S′ (that is to say,
simply, that if the original chain starts in S′, it will remain there forever); this new chain is irreducible, and
hence Ezτz <∞ for all z ∈ S′. �

Proof of (2). Note that if z is any state and ρ is as in the proof of (1), then µ(z) = ρ(z)/Ez(τz), and
ρ(z) = E(#{t < τz : Xt = z}) = 1. So, the identity follows once we prove uniqueness.

We call a function f : S → R harmonic if Pf = f , where f is viewed as a column vertor, that is,∑
y∈S

Pxyf(y) = f(x) for all x ∈ S.

We claim that for a finite Markov chain, f is harmonic if and only if f is constant. Indeed, let f be
harmonic, and x be a vertex where f attains its maximal value. We have

f(x) =
∑
y∈S

Pxyf(y) ≤
∑
y∈S

Pxyf(x) = f(x)
∑
y∈S

Pxy = f(x),

therefore, the inequality in the middle is in fact equality, and we conclude that f(y) = f(x) for all y such
that Pxy > 0. Applying the same agrument to these y instead of x, we show that f(z) = f(x) for all z such
that Pxy > 0 and Pyz > 0 for some y. Continuing this way, we will eventually prove that f(w) = f(x) for
all w such that x communicates with w, that is, for all w ∈ S, since the chain is irreducible.

Now, what we have proven is

rank(P − I) = |S| − dim ker(P − I) = |S| − 1.

Since the rank of a matrix is the same as the rank of its transpose, this implies that

dim{µ : µ(P − I) = 0} = 1,

as required. �

Remark 3.3.8. The necessary and sufficient condition for the uniqueness of the stationary measure is
that the factor-graph discussed in the proof of Lemma 3.3.7 has only one node without outgoing edges.

3.4. Aperiodicity and convergence results

The measure µ(n) may fail to have a limit because of the periodicity phenomenon: consider the chain
with just two states x, y, with transition matrix given by Pxy = Pyx = 1 and Pxx = Pyy = 0. Then

Px(Xt = x) =

{
1, t is even,
0, t is odd,

which does not converge to any limit as t → ∞. To exclude such a situation, we adopt the following
definition.
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Definition 3.4.1. Denote T (x) := {t > 0 : (P t)xx > 0} = {t > 0 : Px(Xt = x) > 0} the set of possible
return times to x. We call a state x aperiodic if gcd(T (x)) = 1. A chain is called aperiodic if all its states
are aperiodic.

We will use the following elementary number theoretic fact:

Lemma 3.4.2. If the state x is aperiodic, then T (x) contains all but finitely many natural numbers.

Proof. We shall prove that any set T ⊂ N closed under addition and with gcd(T ) = 1 contains all
but finitely many natural numbers.

First, note that we can choose finitely many t1, . . . , tM ∈ T such that gcd(t1, . . . , tM ) = 1. Indeed, take
t1 = min T (x), and let

t1 = qk1
1 · · · q

kl
l

be its factorization into primes. For each j = 1, . . . , l, we can choose a tj ∈ T that is not divisible by qj ;
then gcd(t1, . . . , tl) = 1, and it remains to get rid of repetitions.

Now, basic number theory (Euclid’s algorithm) says that there are integer number β1, . . . , βM such that

β1t1 + · · ·+ βM tM = 1.

Therefore, for every n ∈ N, we can find α1, . . . , αM ∈ Z such that

α1t1 + · · ·+ αM tM = n.

We claim that if n > Mt1 · · · · · tM , then we can choose αj ≥ 0 for all j, and then n ∈ T since t1, . . . , tM ∈ T
and T is closed under addition. Assume that there is an i such that αi < 0. We can find j such that
αjtj ≥ n

M (otherwise
∑
αjtj < n). Replace αi 7→ αi + tj and αj 7→ αj − ti; the sum α1t1 + · · · + αM tM

will not change. But αjtj ≥ t1 · · · · · tM ≥ titj , therefore, αj − ti > 0, so, this operation does not create new
negative coefficients. Iterating, we will eventually make all the coefficient non-negative.

Clearly, T (x) is closed under addition (since (P t1+t2)xx ≥ P t1xxP t2xx > 0 whenever P t1xx > 0 and P t1xx > 0),
hence the Lemma follows. �

To state and prove the convergence result, we need an appropriate notion of convergence. Given a
function ν : S → R, we define its l1 norm as

||ν||1 :=
∑
x∈S
|ν(x)|.

This norm is also called a total variation norm, especially when used to measure distance between two
probability measures:

dTV (ν1, v2) = ||ν1 − ν2||1.

Theorem 3.4.3. Let P be an aperiodic, irreducible Markov chain that has at least one positive recurrent
state, and let µ be its stationary measure. Then, for any initial state µ(0)

||µ(n) − µ||1
n→∞−→ 0.

Informally speaking, the proof goes as follows. We run simultateously two copies Xn and Yn of the
Markov chain, one with initial distribution µ(0), and another one with initial distribution µ. They evolve
independently until the first time τ they visit the same state at the same time, and from that point on,
they evolve together. At time n, the distribution of the second chain is µ, and on the event τ < n, we have
Xn = Yn. So, if τ < n with high probability, then the distribution of Xn is close to that of Yn, i. e., to
µ. This construction is called a coupling of two Markov chains. For technical reasons, we will not actually
construct a coupling, but instead will work with two independent copies of the chain all the way through.

Proof. Consider the Markov chain Zn = (Xn;X ′n) with state space S × S, initial state ν(x1, x2) :=

µ(0)(x1)µ(x2), and transition matrix P̃(x,x′)(y,y′) = PxyPx′y′ . This is indeed a transition matrix:∑
(y,y′)∈S×S

PxyPx′y′ =
∑
y∈S

∑
y′∈S

PxyPx′y′ =
∑
y∈S

Pxy
∑
y′∈S

Px′y′ = 1.
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Since

P(Xn = xn, . . . , X0 = x0, X
′
n = xn, . . . , X

′
0 = x′0) =

= µ(0)(x0)µ(x′0)Px0x1
Px′0x′1 . . . Pxn−1xnPx′n−1x

′
n

=(
µ(0)(x0)Px0x1

. . . Pxn−1xn

)(
µ(x′0)Px′0x′1 . . . Px′n−1x

′
n

)
,

we see that Xn and Yn are Markov chains with transition matrix P . The heart of the matter is the following
two Lemmas:

Lemma 3.4.4. We have, for all y ∈ S and all n ∈ N,
P(Xn = y, τ ≤ n) = P(X ′n = y, τ ≤ n).

Proof. Indeed,

P(Xn = y, τ ≤ n) =

n∑
t=1

P(Xn = y, τ = t) =

n∑
t=1

∑
x∈S

P(Xn = y,Xt = x, τ = t)

=

n∑
t=1

∑
x∈S

P(Xn = y|Xt = x, τ = t)P(Xt = x, τ = t).

By Markov property, we can remove τ = t from the conditioning. Also, on the event τ = t, we have
Xt = X ′t. Therefore,

P(Xn = y, τ ≤ n) =

n∑
t=1

∑
x∈S

P(Xn = y|Xt = x)P(X ′t = y, τ = t) =

n∑
t=1

∑
x∈S

(Pn−t)xyP(X ′t = x, τ = t)

=

n∑
t=1

∑
x∈S

P(X ′n = y|X ′t = x)P(X ′t = x, τ = t) = P(X ′n = y, τ ≤ n).

�

Lemma 3.4.5. We have
||µ(n) − µ||1 ≤ 2P(τ > n).

Proof. Indeed,

||µ(n) − µ||1 =
∑
x∈S
|P(Xn = x)− P(X ′n = x)| ≤

∑
x∈S
|P(Xn = x, τ > n)− P(X ′n = x, τ > n)|

≤
∑
x∈S

P(Xn = x, τ > n) +
∑
x∈S

P(X ′n = x, τ > n) = 2P(τ > n),

as required. �

With this Lemma, it remains to prove that P(τ ≥ n) → 0 as n → ∞, that is, that τ is finite almost
surely. The first step is to prove that Zn is irreducible. Indeed, for each x, x′ and y, y′, there exist nxx′ and
nyy′ such that

(Pnxy )xy > 0 and (Pnx′y′ )x′y′ > 0.

By Lemma 3.4.2, there exist a number T such that (PT−nxy )xx > 0 and (PT−nx′y′ )x′x′ > 0. Then,

(PT )xy(PT )x′y′ ≥ (PT−nxy )xx(Pnxy )xy(PT−nx′y′ )x′x′(P
nx′y′ )x′y′ > 0,

which shows that Zn is irreducible.
Now, let us note that for a finite chain, the proof is already complete, since we have shown in the course

of the proof of Lemma 3.3.7 that for a finite irreducible chain,

Px(τy > kT ) ≤ αk

for some α < 1. This also shows that in this case, convergence of µ(n) to µ is exponential.
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In the inifinite case, we have to work a bit harder. We first note that the chain Zn has a stationary
distribution, given by µ(x, y) = µ(x)µ(y), and µ(x, x) > 0 for any x with µ(x) > 0. The result then follows
from Lemma 3.4.6 below. �

Lemma 3.4.6. If an irreducible chain Xn has a stationary measure µ, then

Px(τy <∞) = 1

for all x and all y with µ(y) > 0, where τy = min{n > 0 : Xn = y}.

Proof. We first show that Py(τy <∞) = 1 for any y ∈ S with µ(y) > 0. Indeed, let µ be a stationary
measure, and consider the Markov chain with initial distribution µ. Then, if µ(y) > 0, then the expected
number of visits to y is infinite, because

Eµ(#{t ≤ N : Xt = y}) =
∑
x∈S

µ(x)

N∑
t=1

P txy =

N∑
n=1

(µP t)y = Nµ(y).

Now, assume that Py(τy <∞) = α < 1, and let τ (k)
y be the time of k-th return to y:

τ (k)
y = min{n > τ (k−1)

y : Xn = y}.
Then, the probability the it is finite is exponentially small in k:

P(τ (k)
y <∞) =

∞∑
t=1

P(τ (k−1)
y = t,Xt = y,∃t′ > t : Xt′ = y)

=

∞∑
t=1

P(∃t′ > t : Xt′ = y|Xt = y, τ (k−1)
y = t)P(τ (k−1)

y = t,Xt = y)

=

∞∑
t=1

P(∃t′ > t : Xt′ = y|Xt = y)P(τ (k−1)
y = t)

= (1− α)P(τ (k−1)
y = t) = · · · ≤ (1− α)k.

This means that
Eµ(#{t ≤ N : Xt = y}) = Eµ(max{k : τ (k)

y <∞}) <∞,
a contradiction. So, Py(τy <∞) = 1.

Now, assume that there is an x ∈ S such that Px(τy > 0) < 1. Informally speaking, because of
irreducibility, we have a positive chance to get to x before the first return to y, and once we are there, there
is a positive chance to never return to y, a contradiction. Formally,

Py(τx < τy) = Py(τy <∞, τx < τy) =

∞∑
t=1

Py(∃t′ > t : Xt′ = y, τx = t, τy > t,Xt = x)

=

∞∑
t=1

Py(∃t′ > t : Xt′ = y|Xt = x)P(τx = t, τy > t) ≤ Px(τy > 0)P(τx < τy),

from which P(τx < τy) = 0. Similarly, one can show that P(τx < τ (k)) = 0 for all k, and taking the limit
k →∞, we get that P(τx <∞) = 0, a contradiction with the irreducibility. �

Remark 3.4.7. In this secion, we did not pusrue a complete treatment of the subject, instead taking
a shortest possible path to the convergence theorem. In fact, it is possible to show that for an irreducible
chain the following are true:

(1) A stationary distribution, if exists, is unique;
(2) If a stationary distribution µ exists, then all states are positive recurrent and µ(x) > 0 for any

state x;
(3) Either all states are transient, or all are recurrent.
(4) If the stationary measure does not exist, then µ(n)(x)→ 0 for all x.
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3.5. Alternative proof of convergence (optional)

In this optional section, we give another proof of convergence for finite chains, based on the fact that
a transition matrix is non-expanding in l1 norm.

Corollary 3.5.1. If a finite Markov chain is irreducible and aperiodic, then there is a number N > 0
such that

(PN )xy > 0

for all x, y ∈ S.

Proof. By irreducibility, for each x, y, we can choose Mxy ∈ N such that (PMxy )xy > 0. Take
M := maxMxy. By Lemma 3.4.2, we can find R ∈ N such that (P r)xx > 0 for all r ≥ R. Then we take
N := M +R. We have

(PN )xy ≥ (PN−Mxy )xx(PMxy )xy > 0,

since N −Mxy ≥ N −M = R. �

The || · ||1 norm is expecially useful in the study of Markov chains because of the following Lemma.

Lemma 3.5.2. Assume that Q is an S×S matrix such that Qxy ≥ 0 for all x, y ∈ S, and
∑
y∈S Qxy ≤ r

for all x ∈ S. Then,
||νQ||1 ≤ r||ν||1

for any row vector ν.

Proof. If ν(x) ≥ 0 for all x ∈ S, then also (νQ)(x) ≥ 0 for all x ∈ S. Then,

||νQ||1 =
∑
x∈S

(νQ)(x) =
∑
x∈S

∑
y∈S

ν(y)Qyx =
∑
y∈S

ν(y)
∑
x∈S

Qyx ≤ r
∑
y∈S

ν(y) = r||ν||1.

Generally, let ν+ and ν− be the positive and negative parts of ν, that is, ν+(x) := max(ν(x); 0) and
ν−(x) := min(ν(x); 0). Then,

||νQ||1 = ||(ν+ + ν−)Q||1 ≤ ||ν+Q||1 + ||ν−Q||1 ≤ r(||ν+||1 + ||ν−||1) = r||ν||1.
�

Proof of Theorem 3.4.3 for finite chains. Let N be such as in Lemma 3.5.1, and denote P̃ :=
PN . We define a matrix M by

Mxy = µ(y)

for all x. Then, for any probability measure ν on S, we have

(νM)(y) =
∑
x∈S

ν(x)Mxy = µ(y),

that is, νM = µ. By Lemma 3.5.1, we can find a number c > 0 such that

P̃xy − cMxy > 0.

for all x, y ∈ S. We can write, for any probability measure ν,

νP̃ − µ = (ν − µ)P̃ = (ν − µ)(P̃ − cM + cM) = (ν − µ)(P̃ − cM).

Plugging in ν = µ(0)P̃n−1 and iterating, we get

µ(0)P̃n − µ = (µ(0)P̃n−1 − µ)(P̃ − cM) = · · · = (µ(0) − µ)(P̃ − cM)n.

We now can apply Lemma 3.5.2 to get

||µ(0)P̃n − µ||1 ≤ (1− c)n||µ(0) − µ||1.
Generally, if n = kN + r, where 0 ≤ r < N , we have

||µ(n)−µ||1 = ||µ(0)P rP̃ k−µ||1 ≤ (1− c)k||µ(0)P r−µ||1 = (1− c)k||(µ(0)−µ)P r||1 ≤ (1− c)k||(µ(0)−µ)||1.
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If n > N , then k > 0, and we write

(1− c)k =
(

(1− c)
k

kN+r

)n
≤
(

(1− c) 1
2N

)n
=: αn,

which completes the proof. �

3.6. Poisson process

The Poisson process is a prime example of a Markov process in continuous time. Poisson process is
ubiquitious in Probability and its applications. It is used to model, e. g., a number of clicks or the Geyger’s
counter, the number of customers arriving in a shop by time t, etc. We start by discussing exponential
random variables:

Definition 3.6.1. An exponential random variable with parameter λ is a scalar random variable that
has density

λe−λxIx>0.

Equivalently, it is a random variable X satrisfying P(X > x) = e−λx, x ≥ 0.
The importance of exponential random variables is revealed in the following proposition:

Proposition 3.6.2. (Lack of memory of exponential random variables) Let X be a random variable
with values in R≥0. Then, the following are equivalent:

(1) X is an exponential random variable;
(2) for every t > 0 such that P(X > t) > 0, conditionally on X > t, the variable X − t has the same

distribution as X. In formulas,

P(X > t+ s|X > t) = P(X > s), s, t > 0.

(3) for any random variable Y ≥ 0 independent of X, and any s > 0,

P(X > Y + s|X > Y ) = P(X > s)

Proof. (3) =⇒ (2) is trivial (take Y = t almost surely). To prove (2) =⇒ (1), denote G(t) = 1−FX(t).
Note that since P(X > 2ε|X > ε) = P(X > ε), we have, inductively, P(X > kε) > 0 for all k ∈ N and ε
such that P(x > ε) > 0. Thus, either X = 0 a. s., or G(t) > 0 for all t > 0. For all t, s ≥ 0, G satisfies the
following functional equation:

G(t+ s) = P(X > t+ s) = P(X > t+ s,X > t) = P(X > t+ s|X > t)P(X > t) = G(t)G(s).

Taking logarithms, we arrive at
logG(t+ s) = logG(t) + logG(s).

Then, n logG( 1
n ) = logG(1), and logG( kn ) = k

n logG(1) for all k, n ∈ N. Since logG(x) is decreasing, this
implies

logG(x) = x logG(1)

for all x ∈ R, or G(x) = P(X > x) = e−λx, where λ = logG(1).
Finally, we prove (1) =⇒ (3). Let µY denote the distribution of Y ; then the distribution of (X;Y ) is

given by the direct product of measures λe−λxIx>0dλ(x)⊗ µY . We have, for any s ≥ 0,

P(X > Y + s,X > Y ) = P(X > Y + s) =

ˆ
R2

Ix>y+sλe
−λxdλ(x)⊗ dµY (y)

Fubini
=

ˆ
R

(ˆ ∞
y+s

λe−λxdλ(x)

)
dµY (y) = e−λs

ˆ
R
e−λydµY (y) = P(X > x)P(X > Y ),

as required. �

If we think of an exponential random variable as a waiting time before some event happens (e. g., a
radioactive atom decays, a first customer of the day walks into a shop, etc.), the lack of memory property
means that the distribution of the remaining waiting time does not depend on the time that we have already
waited.
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Definition 3.6.3. The Poisson process with intensity λ is a stochastic process on R≥0 with values in
Z≥0, defined as

Xt := max{n : ξ1 + · · ·+ ξn ≤ t},
where ξ1, ξ2, . . . are i. i. d. exponential random variables with parameter λ.

This way, Poission process is a collection of integer-valued random variablesXt (almost surely increasing
etc.). Another way to think about it is that of a random function t 7→ Xt, that is, a random variable with
values in a space of functions. (For a moment, we ignore the questions about the target space of functions,
its σ-algebra etc.). Yet another useful way to view it is that of a point process, that is, a random collection
of points ξ1, ξ1 + ξ2, ξ1 + ξ2 + ξ3, · · · ∈ R, where the above-mentioned function has jumps.

This point process is stationary, in that its restriction to a ray [a; +∞) looks the same as the process
itself:

Proposition 3.6.4. If Xt is a Poisson process, then, for every a > 0, the process Yt := Xa+t − Xa

is again a Poisson process. Moreover, for each t > 0 and each a1, . . . , ak ≤ a, Yt is independent of
Xa1 , . . . , Xak .

Proof. Denote Sn :=
∑n
i=1 ξi. Fix t > 0 and n,m ∈ Z≥0, and let us look at the event

{Yt = n,Xa = m} = {Sm ≤ a, Sm+1 > a, Sn+m ≤ t+ a, Sn+m+1 > t+ a}.
Denote ξ̃m+1 := Sm+1 − a = ξm+1 + Sm − a. Then, we rewrite the above event as

{Sm ≤ a, ξm+1 > (a− Sm), ξ̃m+1 + ξm+2 + · · ·+ ξm+n ≤ t, ξ̃m+1 + · · ·+ ξm+n+1 > t}.
We first remark that ξ̃m+1 is independent of ξm+2, . . . , ξm+n+1. Also, by Proposition 3.6.2 (applied to
X = ξm+1 and Y = (a− Sm)Ia−Sm≥0, which is non-negative and independent of X), conditionally on the
events Sm ≤ a and ξm+1 > (a− Sm), the variable ξ̃ka+1 is exponentially distributed (and, of course, since
these events are formulated in terms of ξ1, . . . , ξm+1, they are indepentent of ξm+2, . . . ). Therefore,

P(Yt = n,Xa = m) =

= P(ξ̃m+1 + ξm+2 + · · ·+ ξm+n ≤ t, ξ̃m+1 + · · ·+ ξm+n+1 > t|Sm ≤ a, ξm+1 > a− Sm)×
× P(Sm ≤ a, ξm+1 > a− Sm)

= P(Xt = n)P(Xa = m).

This shows that Yt is a Poisson process independent of Xa. In fact, assuming that Xa = m, the events of
the form Xai = mi, where ai ≤ a and mi ≤ m, can be expressed in terms of ξi, i ≤ m. Thus, they can be
inserted into the above probability, without changing the conditional distribution of ξ̃m+1, . . . , ξm+n. This
proves the “moreover” claim. �

Remark 3.6.5. We have shown, in particular, that for any m1 ≤ · · · ≤ mk and 0 = a0 ≤ a1 ≤ · · · ≤ ak,
we have

P(Xak = mk, . . . , Xa1
= m1) = P(Xak −Xak−1

= mk −mk−1)P(Xak−1
= mk−1, . . . , Xa1

= m1).

Iterating, we conclude that the increments Xai −Xai−1
are independent random variables.

Moreover, we can strengthen the independence statement a little bit. Observe that for a fixed a, the
events of the form

Xa1
= m1 and . . . and Xak = mk

with varying a1 ≤ · · · ≤ ak ≤ a, form a π- system. This π-system generates a σ-algebra

F≤a := σ(Xt : t ≤ a) = σ({Xt = m} : t ≤ a,m ∈ Z≥0).

Since, as discussed in the proof of Kolmogorov’s 0-1 law, the events independent of a given event form a
λ- system, we conclude that any event of the form Yt = m is independent of (any event in) F≤a. Arguing
similarly, we conclude that any event in

FY := σ(Xa+t −Xa : t ∈ R≥0)

is independent of any event in F≤a.



3.6. POISSON PROCESS 66

Example 3.6.6. Consider the event

E(0;1) := {∃a, b ∈ (0; 1) : b− a > 1

2
, Xa = Xb}

that in (0; 1), there is a subinterval of length greater than 1
2 without jumps. Consider a similar event

E(1;2) := {∃a, b ∈ (1; 2) : b− a > 1

2
, Xa = Xb}.

The above considerations show that E(0,1) and E(1;2) are independent. We leave the details (check that
these events indeed belong to relevant σ-algebrae) to the reader.

We proceed by the study of distributions of the increments of the Poisson process.

Proposition 3.6.7. Let Xt be a Poisson process. Then, its increments have Poisson distribution with
mean λ(b− a):

P(Xb −Xa = m) = e−λ(b−a) (λ(b− a))
m

m!
.

Proof. By Proposition 3.6.4, it is enough to consider the case a = 0. Fix b > 0. Although we
could compute the distribution of Xt directly using properties of Gamma distributions, we prefer another
approach. First, note that

P(Xt ≥ 2) = P(ξ1 + ξ2 ≤ t) ≤ P(ξ1 ≤ t)P(ξ2 ≤ t) = (1− e−λt)2 = O(t2), t→ 0.

P(Xt = 1) = P(ξ1 < t)− P(Xt ≥ 2) = 1− e−λt +O(t2) = λt+O(t2), t→ 0.

Partition the interval (0; b) into n equal sub-intervals, and denote by Yi := Xb in
−Xb i−1

n
the corresponding

increments of the process. Then, Yi are indepdendent random variables. Denote

Ŷi := min(Yi; 1) =

{
1, Yi ≥ 1;

0, Yi = 0,

then

Xb =

n∑
i=1

Yi =

n∑
i=1

Ŷi +

n∑
i=1

(Yi − Ŷi).

Note that Ŷi are Bernoulli random variables: pn := P(Ŷi = 1) = 1− P(Ŷi = 0) = λ bn +O
(

1
n2

)
. Also,

P

(
n∑
i=1

(Yi − Ŷi) 6= 0

)
≤ P(∃i : Yi > 1) ≤

n∑
i=1

P(Yi > 1) = O

(
1

n

)
.

Therefore,

P(Xb = m) = P

(
n∑
i=1

Ŷi = m

)
+O(n−1),

so, the question is reduced to one about independent Bernoulli random variables. Consider, for y > 0, the
generating function

n∑
m=1

ymP

(
n∑
i=1

Ŷi = m

)
= Ey

∑n
i=1 Ŷi = EyŶ1 · · · · · EyŶn = ((1− pn) + pny)n =: ψn(y)

From here, we can compute

m!P

(
n∑
i=1

Ŷi = m

)
=

(
∂m

∂ym
ψn

)
(0) = (pn · n) . . . (pn(n−m))(1− pn)n−m,

Because pn ∼ λb
n , we see that each of the terms pnn, . . . , pn(n−m) tends to λb, and

(1− pn)n−m =
(

(1− pn)
1
pn

)(n−m)pn
→ e−λb.
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So, plugging everuthing together, we get

P

(
n∑
i=1

Ŷi = m

)
→ e−λb

(λb)m

m!
,

as required. �

Remark 3.6.8. It follows from this result that the sum of indepdenent Poisson random variables with
parameters λ1 and λ2 is Poisson with parameter λ1 + λ2.

Remark 3.6.9. The statement about Bernoulli random variables that we have proven along the way is
called Poisson limit theorem, aka “weak law of small numbers” or “law of rare events”. The argument above,
actually, indicates a way to refine and generalize this result, as follows. Let Y ′1 , Y ′2 , . . . , Y ′n be independent
Bernoulli, such that P(Y ′i = 1) = pi. Let Xt be a Poisson process with parameter 1, and this time, we
choose a partitioin t1 ≤ t2 ≤ · · · ≤ tn so that Ŷi := min(Yi; 1) is distributed as Y ′i , where Yi := Xti −Xti−1

.
Since we know that Yi are Poisson with parameter εi := ti − ti−1, we infer that εi should be chosen from
the condition

P(Ŷi = 0) = e−εi = 1− pi,

or εi = − log(1 − pi). If this condition is met, then, if the denote the distribution of Ŝn :=
∑n
i=1 Ŷn by µ,

and the distribution of Sn =
∑n
i=1 Yn by Poisson(λ), where λ := −

∑n
i=1 log(1− pi), we have

||µ− Poisson(λ)||1 =

∞∑
m=1

∣∣∣∣∣P (Sn = m)− P

(
n∑
i=1

Ŝn = m

)∣∣∣∣∣ =

=

∞∑
m=1

∣∣∣P(Sn = m,Sn 6= Ŝn

)
− P

(
Ŝn = m,Sn 6= Ŝn

)∣∣∣
≤ 2P(Sn 6= Ŝn) ≤ 2

n∑
i=1

P(Yn > 1)

≤ 2

n∑
i=1

(1− e−εi − εie−εi) = 2

n∑
i=1

(pi + (1− pi) log(1− pi)) ≤ 2

n∑
i=1

p2
i

since log(1− p) ≤ −p. This inequality is called Le Cam’s (1960) inequality6

We now investigate the following question: let Xt be a Poisson process, and assume that we know
Xa, that is, the number of points in [0; a]. What is the conditional distribution of these points? A rather
striking answer is the they are indepdent of each other, uniform on [0; 1]. We prefer to put is other way,
namely:

Proposition 3.6.10. Let N,Y1, Y2, . . . be independent random variables, where N is Poisson with
parameter λa, and Y1, Y2, . . . are uniformly distributed on (0; a). Denote

Xt := #{i ≤ N : Yi ≤ t}.

Then, Xt is а Poisson process with intensity λ.

Proof. We will check that for 0 = a0 < a1 < a2 < · · · < an = a, the variables Xai − Xai−1
are

indepdendent Poisson random variables. To illustrate the computation, we start with the case n = 2. Let
m1,m2 ∈ N, and denote m = m1 +m2, I = {1, . . . ,m}. We have

pm1,m2
= P(Xa1

−Xa0
= m1, Xa2

−Xa1
= m2) = P(N = m, exacty m1 of Y1, . . . , Ym belong to (a0; a1)).

6it is possible to replace λ =−
∑n

i=1 log(1 − pi) by
∑n

i=1 pi in the statement, by choosing a slightly different coupling
that has no direct relation to the Poisson process.
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Now, we can break this probability into a sum according to different possibilities as to which of Yi belong
to (a0, a1); there are Cm1

m = m!
m1!m2! possible choces. We encode these choices by functions σ : {1, . . .m} →

{1, 2} and denote J1 := (a0; a1) and J2 = (a1; a2). Then

pm1,m2
=

∑
σ:I→{1,2}
|σ−1(1)|=m1

P(N = m,Y1 ∈ Jσ(1), . . . , Yn ∈ Jσ(n))

independence
=

m!

m1!m2!
e−λa

(λa)m

m!

(
|J1|
a

)m1
(
|J1|
a

)m2

=
(λ|J1|)m1

m1!
e−λ|J1| (λ|J2|)m2

m2!
e−λ|J2|,

which shows that Xa2
− Xa1

and Xa1
− Xa0

are independent Poisson with parameters λ(a2 − a1) and
λ(a1 − a0), respectively.

For general n, the proof similar, except that now one has to compute the number of ways to decompose
I as I = I1 t · · · t In with |Ii| = mi for all i. There are Cm1

m ways to choose I1, given that choice, there are
Cm2
m−m1

ways to choose a subset I2 of I \ I1, etc. All in all, the number of terms is

Cm1
m · Cm2

m−m1
· · · · · Cmnm−m1−···−mn−1

=
m!

m1!(m−m1)!
· (m−m1)!

m2!(m−m1 −m2)!
· · · · · (m− · · · −mn−1)!

mn!0!

=
m!

m1! . . .mn!
.

(this number is called multinomial coefficient). We conclude that

P(Xa1
−Xa0

−m1, . . . , Xan −Xan−1
= mn) =

m!

m1! . . .mn!
e−λa

(λa)m

m!

n∏
i=1

(
|Ji|
a

)mi
=

n∏
i=1

(λ|Ji|)mi
mi!

e−miλ.

Now, if we consider ξi := min{t : Xt = i}−min{t : Xi = i−1}, the events of the form a1 ≤ ξ1 ≤ b1, . . . , a1 ≤
ξn ≤ bn can be expressed in terms of the values of Xt for finitely many t, therefore, their probabilities are
the same as that for the gaps in the Poisson process, which shows that ξi are independent exponentials. �

Remark 3.6.11. The above Proposition suggests an alternative definition of the Poisson process, that
generalises nicely to the notion of Poisson processes on arbitrary (σ-finite) measure spaces.



CHAPTER 4

Conditional expectations and martingales

4.1. Conditional expectation: motivation and definition

To motivate what follows, suppose one wants to extend the theory of Markov process to the case of
uncountable state space S, for example, S = R. One runs into an immediate problem: the Markov property

P(Xt+1 = xt+1|Xt = xt, . . . , X0 = x0) = P(Xt+1 = xt+1|Xt = xt)

does not make sense any more, because the event Xt = xt typically has zero probability for a contin-
uous random variable Xt. Therefore, we need a more advanced theory of conditional expectation (and
probability).

First of all, let us give (or recall) the definition of elementary conditional expectation. Given events
A,B with P(A) > 0, the conditional probability was defined as

P(B|A) =
P(A ∩B)

P(A)
=

E(IAIB)

P(A)
.

The general definition of elementary conditional expectation is just replacing IB by arbitrary random
variable

E(X|A) =
E(XIA)

P(A)
.

In other words, this is just the expectation with respect to the original probability measure, restricted to
A and normalized to be a probability measure again.

Let Y be a scalar random variable (e. g., IA for an event A), and let X be a random variable with
values in a finite or countable space S. When studying Markov chain, conditional expactations typically
arose in formulae like this:

E(Y ) =
∑
x∈S

E(Y,X = x) =
∑
x∈S

E(Y |X = x)P(X = x).

This suggests that we are interested in the whole collection {E(Y |X = s)}s∈S rather than in individual
numbers E(Y |X = s). Moreover, the expression in the right-hand side of the above formula looks like an
expectation of a random variable: E(h(X)) =

∑
x∈S h(x)P(X = x). We can define E(Y |X) to be that

random variable; the last formula becomes

EY = E(E(Y |X)).

An intuitive way to think about E(Y |X) is that after an experiment is performed (that is, some outcome
ω ∈ Ω has realized), we are told the value of X(ω), and we are trying to guess the value of Y (ω); E(Y |X)
is our best guess. Of course, our best guess depends on the outcome ω (through the value X(ω) that we
are told), that is, it in itself is a random variable.

Note that the random variable E(Y |X) is a function of X; equivalently, it is constant on each set
{X = x}. Yet another way to spell out this property is as follows. Define σ(X) ⊂ F to be the smallest
σ-algebra G such that X is G-to-2S-measurable. Then, we have the following

Claim. A scalar random variable Z is a function of X if and only if it is σ(X)-to-B(R)-measurable.

69
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Proof. Indeed, the “only if” condition follows from the fact that any function is 2S-to-anything mea-
surable, and composition of two measurable functions is measurable. For the “if” part, note that σ(X) has
the following structure:

σ(X) = {{ω : X(ω) ∈ S′}}S′⊂S .

(All “atoms”, or “level sets of X” {ω : X(ω) = x} belong to σ(X); therefore, all (disjoint) unions of such
atoms belong to σ(X), since S is at most countable). Let t ∈ R, and consider Z−1({t}) ∈ σ(X). Since
Z−1({t}) ∩ {ω : X(ω) = x} is measurable for any x, it is either empty, or coincides with {ω : X(ω) = x}.
In other words, Z is constant on each atom {X = x}, therefore, h(x) := Z(ωx), where ωx is any element of
{ω : X(ω) = x}, is well-defined and satisfies h(X) ≡ Z. �

The conclusion of this discussion is that

(4.1.1) E(Y |X) is σ(X)-measurable.

This condition encompasses the property that E(Y |X) is a constant on {X = x}, but doesn’t yet take into
account which constant it is. In fact, we know by definition that

IX=xE(Y |X) = IX=xE(Y |X = x) = IX=x
E(Y IX=x)

P(X = x)
.

Taking expectation, we get
E(IX=xE(Y |X)) = E(IX=xY ).

By linearity, we can replace IX=x with IX∈S′ =
∑
x∈S′ IX=x in the above formula. Therefore,

(4.1.2) E(IAE(Y |X)) = E(IAY ) for every A ∈ σ(X).

In fact, we will see in a moment that the properties (4.1.1) and (4.1.2) characterize the conditional ex-
pectation uniquely1. For now, we remark that these two conditions only depend on σ(X) and not on X.
Therefore, in our general definition, we will define the conditional expectation conditionally on a σ-algebra
rather than on a random variable.

Definition 4.1.1. Suppose (Ω,F ,P) is a probability space, X a random variable satisfying E|X| <∞,
and G ⊂ F is a σ-algebra. Then, E(X|G) is any random variable that is G -measurable and statisfies

E(IAE(X|G)) = E(IAX)

for any A ∈ G. We also write E(Y |X) for E(Y |σ(X)).

Remark 4.1.2. Taking A = Ω in the definition, we note that by definition, E(X|G) is integrable
(E|E(X|G)| <∞).

Once again, intuitively, the σ-algebra G is supposed to represent the knowledge given to us (for every
A ∈ G, we know whether A happened or not), while E(X|G) is our best guess given that knowledge.

Before proving existence and uniqueness, we collect the following facts about conditional expectation
(similar to the properties of the usual expectation, cf. Proposition 1.5.1)

Proposition 4.1.3. The conditional expectation satisfies the following properties:

(1) (Linearity) If E(X|G) exists and E(Y |G) exists, then E(αX +βY |G) exists and equals αE(X|G) +
βE(Y |G) almost surely;

(2) (Monotonicity) If X ≥ 0 almost surely, then E(X|G) ≥ 0 almost surely;
(3) (Monotone convergence) If Xi ≥ 0, Xi ↗ X almost surely, E(Xi|G) exists for all i, and E(|X|) <
∞, then E(X|G) exists and is equal to limi→∞ E(Xi|G) almost surely.

1up to set of probability 0
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Proof. (1) Clearly, αE(X|G) + βE(Y |G) is G-measurable, and for any A ∈ G,

E(IA(αE(X|G) +βE(Y |G))) = αE(IAE(X|G)) +βE(IAE(Y |G)) = αE(IAX) +βE(IAY ) = E(IA(αX+βY )).

(2) Let Aε := {E(X|G) < ε < 0}, then A ∈ G, and

−εP(Aε) ≥ E(IAεE(X|G)) = E(IAεX) ≥ 0,

which means that P(Aε) = 0 for any ε > 0, and hence P(E(X|G) < 0) = P(∪n∈NA 1
n

) = 0.

(3) By (1) and (2), the sequence E(Xi|G) is almost surely increasing. Define Y := lim supE(Xi|G),
then Y is G-measurable, and E(Xi|G)↗ Y almost surely. For any A ∈ G, monotone convergence theorem,
applied twice, implies

E(IAY ) = lim
i→∞

E(IAE(Xi|G)) = lim
i→∞

E(IAXi) = E(IAX),

as required. �

Corollary 4.1.4. Suppose that Y and Y ′ are two random variables satisfying the definition of E(X|G).
Then, Y = Y ′ almost surely.

Proof. Since X ≥ X, monotonicity implies Y ≥ Y ′ almost surely and Y ′ ≥ Y almost surely. �

Remark 4.1.5. Since conditional expectation, in general, is only defined up to a set of measure 0, one
usually says that a variable Y satisfying Definition 4.1.1 is a version of the conditional expectation of X,
or Y = E(X|G) almost surely.

4.2. Examples and some properties of conditional expactation

To get accustomed with the definitions, let us consider some simple examples.
First, consider G = F . Informally, this means that we are given all possible information about the

outcome ω of the experiment, which means that, in particular, we know X(ω). Clearly, in this case our
best guess about the value of X must be X itself. And indeed, since G = F , X is G-measurable, and it
clearly satisfies the identity E(IAX) = E(IAX). Therefore, E(X|F) = X. The same applies whenever X is
G-measurable.

Second, consder the case G = {∅,Ω} (we are given no information about the outcome of the experiment).
Then the only functions that are measurable w. r. t. G are constants. Among those constants, EX should
be our best guess about the value of X. And indeed, we have

E(I∅EX) = 0 = E(I∅X); E(IΩEX) = E(EX) = EX = E(IΩX),

so that E(X|{∅; Ω}) = EX.
This example can be generalized. Assume that G is independent ofX, that is, IA andX are independent

for any A ∈ G. We claim that in this case also E(X|G) = EX. (This is very natural: if the information we
are given is independent of what we are interested in, it is as if we are given no information at all.) Since
EX is constant, it is G-measurable for any G. Then, if IA is independent of X, then

E(IAEX) = EXEIA = E(IAX),

as required.
We collect these and some more properties in the following proposition:

Proposition 4.2.1. The conditional expectation satisfies the following properties:
(1) If X is G-measurable, then E(X|G) = X a. s.
(2) If X is independent of G, then E(X|G) = EX a. s.
(3) (Tower property) If G1 ⊂ G2, then

E(E(X|G2)|G1) = E(X|G1).

In particular, E(E(X|G)) = EX.
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(4) (Taking out what is known) If Y is a bounded, G-measurable random variable and E(X|G) exists2,
then

E(Y X|G) = Y E(X|G).

The same is true Y is unbounded, but EX2 <∞ and EY 2 <∞.

Proof. The first two properties are already proven above. For the fourth property, observe first that
if Z is bounded and G-measurable, then

(4.2.1) E(ZE(X|G)) = E(ZX).

Indeed, for Z = IA with A ∈ G, this follows from the definition; by linearity, it is true for all simple Z, and
by monotone convergence, for all bounded Z. Note that if Z is bounded and EX exists, then E(ZX) exists.

Using this identity, we check that Y E(X|G) satisfies the definition of E(XY |G). Indeed, it is G-
measurable as a product of two G-measurable functions, and for any A ∈ G, applying (4.2.1) to Z = IAY ,
we get

E(IAY E(X|G)) = E(IAY X),

as required. The boundedness of Y was only used to ensure existence of E(XY ), which also holds true
whenever EX2 <∞ and EY 2 <∞.

To deduce the tower property, we first note that the “in particular” claim follows readily by taking
A = Ω ∈ G in the definition of conditional expectation. Further, by definition, E(E(X|G2)|G1) is G1-
measurable, and

E(IAE(E(X|G2)|G1))
(1)
= E(E(IAE(X|G2)|G1))

(2)
= E(IAE(X|G2))

(3)
= E(IAX).

In (1), we used that IAE(Y |G) = E(IAY |G) for a G-measurable A, applied to Y = E(X|G2) and G = G1

(“taking what is known out of conditional expectation”). In (2), we use that E(E(Y |G)) = EY , applied
to Y = IAE(X|G2) and G = G1. In (3), we use the definition of E(X|G2); note that since A ∈ G1, also
A ∈ G2. �

We now connect the our definition of conditional expectation with the classical one. One approach to
defining the conditional expectation would be to use a limiting procedure. Assume that X,Y are scalar
random variables, so that (X;Y ) is a random vector with a (nice enough) density f(x, y). For a measurable
function h : R→ R, we can then try to define the conditional expectation as a limit:

E(h(X)|Y = t) := lim
ε→0

E(h(X)|Y ∈ Iε),

where Iε = (t− ε, t+ ε). Using the formula for the density of (X,Y ), we obtain

E(h(X)|Y ∈ Iε) =
E(h(X)IY ∈Iε)
P(Y ∈ Iε)

=

´
R2 Iy∈Iεh(x)f(x, y)dλ2(x, y)´

R2 Iy∈Iεf(x, y)dλ2(x, y)

Fubini
=

´
R h(x)

(´ t+ε
t−ε f(x, y)dy

)
dx

´
R2

(´ t+ε
t−ε f(x, y)dy

)
dx

.

If f is continuous, then 1
ε

´ t+ε
t−ε f(x, y)dy → f(x, t). Therefore, multiplying the numerator and the

denominator by 1
ε , we get

lim
ε→0

´
R h(x)

(´ t+ε
t−ε f(x, y)dy

)
dx

´
R2

(´ t+ε
t−ε f(x, y)dy

)
dx

=

´
R h(x) limε→0

1
ε

(´ t+ε
t−ε f(x, y)dy

)
dx

´
R limε→0

1
ε

(´ t+ε
t−ε f(x, y)dy

)
dx

=

´
R h(x)f(x, t)dx´

R f(x, t)dx
,

provided that
´
R f(x, t) 6= 0. (Exercise: justify the exchange of the integral and the limit!). So, we arrive

at a putative formula

E(h(X)|Y = t)
?
=

´
R h(x)f(x, t)dx´

R f(x, t)dx
.

Let us check that this formula indeed gives the conditional expectation in the sense of our general
definition above.

2in the next section, we will prove that it always exists



4.3. L2(Ω) AND EXISTENCE OF CONDITIONAL EXPECTATION 73

Example 4.2.2. Suppose a random vector (X,Y ) has a Borel-measurable density f(x, y), and let
h : R→ R be a Borel measurable function such that E|h(X)| <∞. Define

H(t) :=

{ ´
R h(x)f(x,t)dx´

R f(x,t)dx
, if

´
R f(x, t)dx > 0

0, else.

Then, almost surely,
E(h(X)|σ(Y )) = H(Y ).

To check this, we need the following technical lemma:

Lemma 4.2.3. H is Borel measurable.

Taking this lemma for granted, we first note that H(Y ) is σ(Y )-measurable. Then, we note that

σ(Y ) = {{ω : Y (ω) ∈ A}|A ∈ B(R)}
(check this!) Therefore, thr following computation justifies the result:

E(IY ∈AH(Y )) =

ˆ
(x,y)∈R×A

H(y)f(x, y)dλ2(x, y) =

ˆ
A

H(y)

(ˆ
R
f(x, y)dx

)
dy

=

ˆ
A

(ˆ
R
h(x)f(x, y)dx

)
dy = E(IY ∈Ah(X)).

Proof of Lemma 4.2.3. It suffices to do the case h ≥ 0 (otherwise use linearity). Since h and f are
assumed Borel measurable, hf is also Borel measurable, and the subgraph

S = {(t;x; y) : 0 ≤ t < h(x)f(x, y)} = ∪q∈Q≥0
[0; q)× {(x, y) : h(x)f(x, y) > q}

is a Borel measurable set. Therefore, Cavalieri’s principle (non-complete version) implies that the function

y 7→
ˆ
R
h(x)f(x, y)dx = λ2({(t, x) : (t;x; y) ∈ S})

is Borel measurable. Similarly, y 7→
´
R f(x, y)dx is Borel measurable, and, from this it is not hard to check

from definition that if g is a measurable function, then

y 7→

{
1

g(y) , g(y) 6= 0

0, otherwise,

is also measurable. Since product of two measurable functions is measurable, this implies the desired
result. �

4.3. L2(Ω) and existence of conditional expectation

We will first construct conditional expectation for square-integrable random variables. Denote

L2(Ω,F ,P) := {X ∈ F ,EX2 <∞}.
Hereinafter the notation X ∈ F means that X is F-to-B(R)-measurable.

The idea behing the construction of the conditional expectation can be illustrated on the trivial case
G = {∅,Ω}. In that case, Y is G-measurable if and only if Y is constant, and the conditional expectation
is just the usual expectation (Exercise: check that!).

Let X ∈ L2(Ω,F ,P). Then, E(X − c)2 = EX2 − 2cEX + c2 is a quadratic function of c that attains
its minimum at c = EX. Therefore, we can characterize EX as the function Y ∈ G such that E(X − Y )2 is
minimal among all G-measurable functions Y .

This argument extends to arbitrary G:

Lemma 4.3.1. Let X ∈ L2(Ω,F ,P), and assume that Y ∈ L2(Ω,G,P) is such that

E(X − Y )2 ≤ E(X − Y ′)2

for any G ∈ L2(Ω,G,P). Then, Y is a version of E(X|G).
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Proof. Let A ∈ G. Consider the quadratic function

c 7→ E(X − Y − cIA)2 = E(X − Y )2 − 2cE(IA(X − Y )) + c2P(A).

Since Y + cIAis G-measurable, and E(Y + cIA)2 < ∞, this quadratic function chould have a minimum at
c = 0, that is,

E(IA(X − Y )) = 0,

as required. �

It remains to assure that the minY ∈L2(Ω,G,P) E(X − Y )2 is always attained. To this end, we need a bit
of functional analysis. First, we remark that L2 has a scalar product

E(XY ).

By Cauchy-Scwarz inequality, this is always ≤ (EX2)
1
2 (EY 2)

1
2 (and, in particular, it is finite for all

L2(Ω,G,P)). This scalar product defines a semi-norm ||X||2 :=
√
EX2; ||X||2 = 0 if and only if X = 0

almost surely. This is indeed a semi-norm:

||X+Y ||22 = E(X+Y )2 = EX2+2EXY +EY 2
Cauchy-Schwarz

≤ EX2+2
√
EX2

√
EY 2+EY 2 = (||X||2+||Y ||2)2.

This semi-norm can be made into a norm by identifying functions that agree almost surely; however, we
will not do it here for technical reasons related to the fact that underlying σ-algebras need not be complete.

Anyway, recall that, given X ∈ L2(Ω,F ,P) and a sequence Xi ∈ L2(Ω,G,P), we say that

Xi → X in L2

if ||X −Xi||2 → 0 as i → ∞. We say that a sequence Xi is Cauchy if for every ε > 0, there exists N such
that ||Xi −Xj ||2 < ε for all i, j ≥ N . The following important Proposition shows that Cauchy sequences
converge:

Proposition 4.3.2. (Completeness of L2) Let Xi ∈ L2(Ω,F ,P) be a Cauchy sequence. Then, there
exists X ∈ L2(Ω,F ,P) such that Xi → X in L2.

Proof. First, we prove that if Yi is such that
∑∞
i=1 ||Yi||2 <∞, then there exists Y ∈ L2(Ω,F ,P) such

that
N∑
i=1

Yi → Y in L2.

Indeed, consider instead the sequence
∑N
i=1 |Yi|. We have, by monotone convergence theorem,∥∥∥∥∥ lim

N→∞

N∑
i=1

|Yi|

∥∥∥∥∥
2

= lim
N→∞

∥∥∥∥∥
N∑
i=1

|Yi|

∥∥∥∥∥
2

≤ lim
N→∞

N∑
i=1

||Yi||2 =

∞∑
i=1

||Yi||2 <∞,

in particular, the series
∑∞
i=1 |Yi(ω)| converges to a finite limit for almost all ω. Then, the series

∑∞
i=1 Yi(ω)

converges to a finite limit for almost all ω. Now, if we define Y := lim supYi, then Y is F-measurable,3 and
Yi − Y → 0 almost surely. Moreover, almost surely,∣∣∣∣∣

N∑
i=1

Yi − Y

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
i=1

Yi

∣∣∣∣∣+ |Y | ≤ 2

∞∑
i=1

|Yi| ∈ L2,

which means that, by Dominated convergence theorem, ||
∑N
i=1 Yi − Y ||2 → 0, as required.

To deduce the Proposition, we choose a subsequence in such that ||Xi−Xj ||2 ≤ 2−n for i, j ≥ in. Then,
put Yn := Xin+1

−Xin ; certainly,
∑∞
n=1 ||Yn||2 ≤

∑∞
n=1 2−n <∞, hence

Xin+1
= Xi0 +

N∑
i=1

Yi → Xi0 + Y =: X in L2

3because Y < c if and only if ∃N : Yi < c∀i ≥ N , that is, {ω ∈ Ω : Y (ω) < c} = ∪N∈N ∩∞i=N {Yi < c}, which is
measurable.
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Moreover, if r > in, then

||Xr −X||2 ≤ ||Xr −Xin ||2 + ||Xin −X||2 ≤ 2−n + ||Xin −X||2 → 0,

as n→∞, that is, Xi → X in L2. �

Proposition 4.3.3. Let X ∈ L2(Ω,F ,P). Then, for any σ-algebra G ⊂ F , there exists E(X|G) ∈
L2(Ω,G,P).

Remark 4.3.4. Note that L2(Ω,G,P) ⊂ L2(Ω,F ,P) only differ in that they contain functions measur-
able with respect to different σ-algebras.

Proof. Let Y1, Y2, · · · ∈ L2(Ω,G,P) be such that ||X − Yi||2 → infY ∈L2(Ω,G,P) ||X − Yi||2 =: M. Let us
check that Yi is a Cauchy sequence. To this end, we use polarization identity, proved simply by expanding
the squares:

||F +G||22 + ||F −G||22 = 2||F ||22 + 2||G||22
for all F,G ∈ L2(Ω,F ,P). Given ε > 0, we take N such that ||X − Yi||2 ≤ M + ε for all i ≥ N . Then,
plugging F = X − Yi and G = X − Yj with i, j ≥ N , we obtain

1

2
||Yi − Yj ||2 = ||X − Yi||2 + ||X − Yj ||2 − 2

∥∥∥∥X − Yi + Yj
2

∥∥∥∥
2

≤ 2(M + ε)2 − 2M2 ≤ 4εM + 2ε2.

Here we used that Yi+Yj
2 ∈ L2(Ω,G,P), and hence

∥∥∥X − Yi+Yj
2

∥∥∥
2
≥ M by definition of M . Therefore, Yi

is indeed a Cauchy sequence, and hence by Proposition 4.3.2 it converges in L2 to Y ∈ L2(Ω,G,P). Then,
also ||X − Yi||2 → ||X − Y ||2, so ||X − Y ||2 = M , and hence Y = E(X|G) by Lemma 4.3.1. �

From this, it is not hard to derive existence of conditional expectations in the general case.

Theorem 4.3.5. Let X be a random variable on a probability space (Ω,F ,P), such that E|X| < ∞,
and let G ⊂ F be a σ-algebra. Then, a conditional expectation E(X|G) exists.

Proof. Since we can write X = XIX≥0 + XIX≤0, Proposition 4.1.3 (1) implies that we may assume
X ≥ 0. Then, XN := XIX≤N ↗ X, and E(X2

N ) ≤ N2 < ∞. Therefore, by Proposition 4.3.3, E(XN |G)
exist, and Proposition 4.1.3 allows to conclude. �

4.4. Regular conditional distribution

Given a random variable X and a sub-sigma-algebra G ⊂ F , the existence of conditional expectation
allows one to define E(h(X)|G) for every nice enough (say, bounded and measurable) function h. In this
section, we explore the question as to whether it makes sense to speak about a conditional distribution of
a random variable X given G, that encapsulates these conditional expectations for all h simultaneously.

Definition 4.4.1. Given a probability space (Ω,F ,P), a measurable space (Ω′,F ′), a random variable
X : Ω → Ω′ and a sigma-algebra G ⊂ F , we say that a function µ : Ω × F ′ 7→ R is a regular conditional
distribution (RCD) of X given G if

(1) for every fixed A ∈ F ′, we have that µ(·, A) = E(IX∈A|G) almost surely;
(2) for almost every fixed ω ∈ Ω, we have that µ(ω, ·) is a probability measure on F ′.

Remark 4.4.2. The second condition asserts, in particular, that
Almost surely, for every sequence A1, A2, · · · ∈ F ′ of disjoint sets, µ(ω,t∞i=1Ai) =∑∞
i=1 µ(ω,Ai).

This is not the same as
For every sequence A1, A2, · · · ∈ F ′ of disjoint sets, almost surely µ(ω,t∞i=1Ai) =∑∞
i=1 µ(ω,Ai).
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The two properties are not the same because the set of sequences A1, A2, . . . is (usually) uncountable.
Note that the latter statement would follow readily from µ(·, A) = E(IX∈A|G) a. s. and the properties of
conditional expectation (Proposition 4.1.3):

E(IX∈t∞i=1Ai
|G) = E( lim

N→∞
IX∈tNi=1Ai

|G)
Monotone convergence

= lim
N→∞

E(IX∈tNi=1Ai
|G) = lim

N→∞

∞∑
i=1

E(IX∈Ai |G)

almost surely.
The R. C. D. do not always exist, but they do exist in most practical cases. Here we prove that they

do exist for scalar random variables.

Theorem 4.4.3. If (Ω′,F ′) = (R,B(R)), then the regular conditional distribution exists, and it is unique
in the following sense: if µ and ν are two R. C. D., then, for almost every ω, almost surely, µ(ω, ·) ≡ ν(ω, ·).

Proof. Define, for every q ∈ Q, a random variable Gq : Ω 7→ R≥0 by

Gq = E(Ix∈(−∞,q]|G).

Further, for every x ∈ R, define
F (x, ω) = inf

q∈Q,q>x
Gq(ω).

Note that F (x, ·) is measurable because as an infimum of countably many measurable random variables.
By monotonicity of conditional expectation (Proposition 4.1.3), we have that for all q1 < q2, we have

Gq1 ≤ Gq2 almost surely.

Since there are only countably many pairs (q1, q2) : q1,2 ∈ Q, from this we deduce that for almost all
ω, Gq(ω) is increasing in q. Also, by monotone convergence theorem for conditional expectations, almost
surely

lim
q→+∞

Gq = lim
q→+∞

E(Ix∈(−∞,q]|G) = E( lim
q→+∞

Ix∈(−∞,q]|G) = E(1|G) = 1,

and, similarly, limq→−∞Gq = 0.
From this, we see that for almost every ω ∈ Ω, F (·, ω) is increasing, right-continuous, and has limit 1

(resp. 0) at plus infinity (resp., minus infinity).Therefore, it is a distribution function of a Borel probability
measure on R. We define

µ(ω, ·)
to be that probability measure. Then, the second condition in the definition of the R. C. D. is satisfied.

To check the first one, define

A := {A ∈ B(R) : µ(·, A) = E(IA|G) almost surely}.
It follows that from the properties of conditional expectation (Proposition 4.1.3) that A is a λ-system.
However, almost surely,

µ(·, (−∞;x]) = F (x, ·) = lim
q↘x

Gq(·) = lim
q↘x

E(IX∈(−∞;q]|G) = E( lim
q↘x

IX∈(−∞;q]|G) = E(IX∈(−∞;x]|G).

Therefore, A contains the π-system {(∞, x] : x ∈ R} that generates B(R), and so, by π-λ theorem,
A ⊃ B(R).

To see the uniqueness, note that by the uniqueness of conditional expectation, for every q ∈ Q, we
have µ(·, (−∞, q]) = ν(·(−∞, q]) almost surely. Since Q is countable, this implies that almost surely,
µ(·, (−∞, q]) = ν(·, (−∞, q]) for all q ∈ Q. Since {(−∞; q] : q ∈ Q} is a π-system that generates B(R), this
implies that for almost all ω ∈ Ω, µ(ω, ·) ≡ ν(ω, ·) on B(R). �

Remark 4.4.4. Informally, a way to think about the regular conditional distribution is that it is a
random variable with values in the space of probability measures on F ′: of an experiment is performed and
we are told the information contained in G, we view X as distributed according to a certain law, which in
itself is random since it depends on the information we are told. Note, however, that to make this point of
view rigorous, one would need to show that this measure-valued function is measurable in a suitable sense,
which may not be true in general.
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Remark 4.4.5. Two measurable spaces (Ω′,F ′) and (Ω′′,F ′′) are said to be (Borel-)isomprphic if
there is a measurable bijection f : Ω′ → Ω′′ with a measurable inverse. It is clear that R. C. D. exists also
whenever (Ω′,F ′) is isomorphic to (R;B(R)). It turns out that in fact, if M is any uncountable4 compete
separable metric space, then (M ;B(M)) is isomorphic to (R;B(R)).

Finally, we connect the RCD with conditional expectations:

Lemma 4.4.6. If X is a scalar random variable and h : R 7→ R is any measurable function such that
E|h(X)| <∞, then, almost surely,

E(h(X)|G) = EX|G(h(X)) =

ˆ
R
h(x)dµ(·, x),

where µ is the R. C. D. of X given G.

Proof. Indeed, for h = IA, A ∈ B(R), the identity holds true by the definition of R. C. D. Therefore, by
linearity, it holds for all simple functions; by monotone convergence theorem, it holds for any non-negative
h with Eh(X) <∞, and by linearity again, it holds for any measurable h such that E|h(X)| <∞. �

This lemma explains in a natural way why many properties of expectation (e. g., Holder, Chebyshev,
Jensen inequalities) extend to conditional expectations. Let us do in detail the Jensen case:

Proposition 4.4.7. (Conditional Jensen inequality) If h is any convex function, and X is any scalar
random variable such that E|X| <∞ and E|h(X)| <∞, then

E(h(X)|G) ≥ h(E(X|G)) almost surely.

Proof. Since E|X| = E(E(|X||G)) < ∞, we infer that E(|X||G) is finite almost surely. Similarly,
E(|h(X)|G) < ∞ almost surely. Therefore, applying Jensen inequality to the probability measure µ(ω, ·),
we get

E(h(X)|G) = EX|G(h(X)) ≥ h(EX|G(X)) = hE(X|G)

almost surely, as required. �

4.5. Martingales: simple properties and the optional stopping theorem

Let ξ1, ξ2, . . . be indepdenent scalar random variables, and put Xn = ξ1 + · · · + ξn. We can consider
this as a model for betting on several games in succession; ξi is a gain at game i, and Xn is a net gain after
n games. If Eξi ≥ 0 (resp. Eξi ≤ 0) for all i, then each individual game is favourable (resp. unfavourable)
for us; linearity of expectation then implies that the whole gamble will be favourable (resp., unfavourable).

In this setup, ξn is independent of ξ1, . . . , ξn−1, that is, the game we are playing at stage n is chosen in
advance and does not depend on the outcomes of the previous games. We would like to generalize this setup
to allow the player to have a gambling system, that is, to choose the game at stage n based on the outcomes
of the previous games; still preserving the condition that all the games available are favourable (resp.,
unfavourable or even). This leads naturally to the definition of martingales and sub/supermartingales.

Definition 4.5.1. A filtered probability space is a probability space (Ω,F ,P) equipped with a filtration,
that is, with an increasing sequence F0 ⊂ F1 ⊂ · · · ⊂ F of σ-algebras. A distrete time stochastic process
X0, X1, . . . is called adapted to a filtration {Fn} if Xn is Fn-measurable for all n = 0, 1, . . .

Informally, Fn represents the information available at time n; the amount of information increases with
n. If Xnis a stochastic process, then Fn = σ(X0, . . . , Xn) is called the natural filtration of Xn; it is the
minimal filtration to which Xnis adapted. In this case, the only “sourse of information” is the observation
the process Xn.

Definition 4.5.2. Let Xn be a stochastic process adapted to a filtration {Fn}, such that E|Xn| <∞
for all n. We say that

• Xn is a submartingale if E(Xn+1|Fn) ≥ Xn a. s. for all n = 0, 1, . . . ;

4in the case of a countable or finite M , the existence of RCD is fairly easy to show.
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• Xn is a supermartingale if E(Xn+1|Fn) ≤ Xn a. s. for all n = 0, 1, . . . ;
• Xn is a martingale if E(Xn+1|Fn) = Xn a. s. for all n = 0, 1, . . . .

Example 4.5.3. If ξ1, ξ2, . . . are indepdenent scalar random variables such that E|ξi| <∞ for all i, put
Xn = ξ1 + · · ·+ ξn, Fn = σ(ξ1, . . . , ξn) = σ(X0, X1, . . . , Xn). Then, using linearity and Proposition 4.2.1

E(Xn+1|Fn) = E(Xn|Fn) + E(ξn+1|Fn) = Xn + E(ξn+1).

Therefore, if Eξi ≥ 0 for all i (respectively, Eξi ≤ 0, Eξi = 0), then Xn is a submartingale (respectively,
supermartingale, martingale)

Remark 4.5.4. Since Xn is adapted to Fn, we have E(Xn|Fn) = Xn. Therefore, the condition for
being a submartingale (resp., supermartingale) is equivelent to

E(Xn+1 −Xn|Fn) ≥ 0 ( respectively, E(Xn+1 −Xn|Fn) ≤ 0).

Remark 4.5.5. Clearly, Xn is a submartingale iff −Xn is a supermartingale. Therefore, many result
stated below for submartingales have natural counterparts of supermartingales and martingales.

Remark 4.5.6. If Xn is a (sub-)martingale and a is a constant, then Xn + a is a (sub-)martingale.
If X1, X2, . . . is a (sub-)martingale, then EX1, X1, X2 is also a (sub-)martingale. Therefore, one typically
does not lose generality by considering only (sub-)martingales with X0 = 0 almost surely.

We will prove several versions of the statement that on average, a person betting on a submartingale
does not lose. The simplest one is as follows:

Lemma 4.5.7. If Xn is a submartingale (respectively, martingale), then, for any m > n,

E(Xm|Fn) ≥ Xn almost surely,

respectively,

E(Xm|Fn) = Xn almost surely.
In particular, EXm ≥ EX0 (resp., EXm = EX0) for all m ≥ 0.

Proof. Indeed, by tower property and monotonicity of conditional expectation (Propositions 4.2.1
and 4.1.3), we have

E(Xm|Fn) = E(E(Xm|Fm−1)|Fn) ≥ E(Xm−1|Fn) ≥ · · · ≥ E(Xn|Fn) = Xn,

and in the martingale case we have equalities instead of inequalities. For the “in particular” statement, put
n = 0 and take the expectation. �

We will now extend this result slightly.

Definition 4.5.8. A process Hn, n = 1, 2, . . . , is called predictable (w. r. t. a filtration Fn) if for all
n = 1, 2, . . . Hn is Fn−1 -measurable. Given a stochastic process Xn and a predictable process Hn, define

(H •X)n :=

n∑
i=1

Hi(Xi −Xi−1).

Informally, assume that every day at noon, the price Xn of a stock is announced, after which we are
allowed to buy (or sell) any amount of stock at this price. The quantity Hn then corresponds to the amount
of stock we choose to possess in the interval from day n− 1 to day n, and Hn(Xn−Xn−1) is our monetary
gain during that interval. The next theorem shows that if the overall trend is upwards, on average we will
gain money whatever we do.

Proposition 4.5.9. (Gambling systems) If Hn is any bounded predictable process and Xn is a matirtin-
gale, then (H • X)n is a martingale. If Hn is bounded and non-negative (respectively, non-positive) pre-
dictable process and Xn is a submartingale, then (H•X)n is a submartingale (respectively, supermartingale).
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Proof. We have

E((H •X)n+1|Fn) = E((H •X)n|Fn) + E(Hn+1(Xn+1 −Xn)|Fn).

Since (H • X)n is Fn -measurable, the first term is just (H • X)n. Since Hn+1 is Fn -measurable and
bounded, it can be taken out of the conditional expectation. Therefore,

E((H •X)n+1|Fn) = (H •X)n +Hn+1E(Xn+1 −Xn|Fn),

from which all the cases readily follow. �

Definition 4.5.10. A random variable τ ∈ Z≥0 ∪{∞} is called a stopping time if for each n, the event
τ ≤ n is Fn-measurable.

Informally, the stopping time is the moment we may choose to stop gambling. The decision as to
whether to do it at time n must be based on the information available at that time, hence the definition.

Proposition 4.5.11. If Xn is a (sub-)martingale and τ is a stopping time, then Xτ∧n is a (sub-
)martingale.

Here and below we use the notation a ∧ b = min(a, b).

Proof. We define a process

Hn :=

{
1, τ ≥ n
0, otherwise.

Since the event τ < n is Fn−1-measurable, Hn is indeed predictable. We have

(H •X)n =

{
Xn −X0, τ > n

Xτ −X0, τ ≤ n
= Xτ∧n −X0.

Since X0 is Fn -measurable for all n, we have E(X0|Fn) = X0, therefore, the result follows from Proposition
4.5.9. �

Corollary 4.5.12. If Xn is a submartingale and a stopping time τ is almost surely bounded, then
EXτ ≥ EX0.

Proof. If τ ≤ N for some N , then τ ∧N = τ almost surely, so, the result follows from Lemma 4.5.7
and Proposition 4.5.11. �

The most interesting stopping time, however, are unbounded. For example, let Xn be a simple random
walk on Z, that is, Xn = ξ1 + · · · + ξn, where ξi are independent and P(ξi = 1) = P(ξi = −1) = 1

2 . Then,
for b ∈ Z>0 and −a ∈ Z<0, we can define

τ := min{n : Xn = −a or Xn = b}.

If we were able to extend the above Corollary to τ (which we eventually will), its application would imply
that

aP(Xτ = a) + bP(Xτ = b) = EXτ = EX0 = 0,

or

P(Xτ = a) =
b

b+ a
,

a result obtaind in a different way in the exercises. Moreover, it is also easy to see (see Exercises) that
X2
n − n is also a martingale, which implies that

0 = EX2
0 − E0 = EX2

τ − Eτ =
ba2

b+ a
+

ab2

b+ a
= ab,

also a result obtained in the exercises.
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Remark 4.5.13. Corollary 4.5.12 cannot hold true for any stopping time (even almost surely finite).
Let Xn be a simple random walk, and define τ = min{n : Xn = −1}. Then, as it follows from recurrence,
τ <∞ almost surely. But

EXτ = −1 6= 0 = EX0.

Theorem 4.5.14. (Optional stopping theorem)Let Xn be a submartingale, and τ be an almost surely
finite stopping time. Assume that

• either Xn is almost surely bounded (that is, there is a constant C > 0 such that |Xn| ≤ C for all
n almost surely), or
• Eτ <∞ and there is a constant C > 0 such that |Xn+1 −Xn| < C almost surely.

Then, E|Xτ | <∞, and
EXτ ≥ EX0.

Applying the theorem to −Xn, we see that it also holds for supermartingales with the inequality
reversed, and for martingales with equality instead for inequality.

Proof. Note that since τ < ∞ almost surely, we have Xτ∧n → Xτ almost surely. Proposition 4.5.11
and Lemma 4.5.7 imply that EXτ∧n ≥ EX0. Therefore, the theorem follows once we justify the exchange
of the expectation and the limit:

EXτ = E lim
n→∞

Xτ∧n
?
= lim
n→∞

EXτ∧n ≥ EX0.

If Xn are bounded, then |Xτ∧n| are bounded, this is just the Dominated convergence theorem. If the second
contition holds true, we note that

|Xτ∧n| ≤ |X0|+
τ∧n∑
i=1

|Xi −Xi−1| ≤ |X0|+ Cτ,

which is integrable. So, the dominated convergence theorem applies. �

Remark 4.5.15. Since the condition |Xn+1−Xn| < C is satisfied if Xn is a random walk with bounded
increments, we must have Eτ =∞ for τ = min{n : Xn = −1} (See solution to Exercise set I for a different
proof.) To see that the condition |Xn−Xn−1| < C is needed, consider betting on a coin flip, starting from a
unit stake, doubling the stakes as long as we lose, and stopping after the first win. Then, τ is geometrically
distributed (P(τ = k) = 2−k), hence Eτ <∞, but E(Xτ ) = 1 6= 0 = EX0.

4.6. Almost sure convergence of supermartingales.

We start with some definition. Given an adapted process Xn, and a < b ∈ R, define inductively the
stopping times τ1, τ2, . . . , by

τ1 = min{n ≥ 0 : Xn ≤ a} τ2 = min{n > τ1 : Xn ≥ b}
τ3 = min{n ≥ τ2 : Xn ≤ a} τ4 = min{n > τ3 : Xn ≥ b}

. . . . . .

An interval [τ2k−1, τ2k) is called an upcrossing of the strip (a, b). We are interested in extimating the number
of upcrossing completed up to time n: define

Ua,bn = max{k : τ2k ≤ n}.

Lemma 4.6.1. (Upcrossing lemma) Let Xn be a supermartingale. Then, for all a < b ∈ R,

(b− a)EUa,bn ≤ E ((a−Xn)Ia≥Xn) .
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Proof. The proof is based on the gambling system theorem. Viewing Xn as a stock price, consider
the following strategy: wait until Xn gets below a, buy a unit amount of stock, wait until Xn gets above
b, sell, repeat. Each completed upcrossing of (a, b) by Xnwill give us a profit of at least b− a. Proposition
4.5.9 tells us that however natural this strategy looks, the game will still be unfavourable. The reason is
the last incompleted upcrossing (at some point, one may enter a losing streak one does not survive.)

Formally, define a proceess Hn by

Hn+1 :=

{
1, τ2k−1 ≤ n < τ2k for some k
0, else.

Observe that the event {Hn+1 = 1} is determined by X0, . . . , Xn, so, Hn is predictable. If we denote
U = Ua,bn , then

(H •X)n =

n∑
i=1

Hi(Xi−Xi−1) =

U∑
k=1

(Xτ2k −Xτ2k−1
) + (Xn−Xτ2U+1

)Iτ2U+1≤n ≥ (b−a)U − (a−Xn)Ia≥Xn .

The logic behind the last inequality is as follows: the last uncompleted upcrossing (if it has started by time
n) starts with some value Xτ2U+1

< a and ends with Xn. So, if Xn ≤ a, we lose at most (a −Xn) during
that upcrossing, and if Xn > a, we actually win (so we extimate the loss from above by 0).

Proposition 4.5.9 implies that
E(H •X)n ≤ E(H •X)0 = 0,

so,
(b− a)EUa,bn − E((a−Xn)Ia≥Xn) ≤ 0,

as required. �

Theorem 4.6.2. Let Xn be a supermartingale which is bounded in L1, that is, supn E|Xn| <∞. Then
there exists a scalar random variable X with E|X| <∞ , such that Xn → X almost surely.

Before going into the proof, we prove Fatou’s lemma:

Lemma 4.6.3. (Fatou) If Xn ≥ 0, then

lim inf EXn ≥ E lim inf Xn.

Proof. Observe that Yn := infm≥n{Xm} is a non-decreasing sequence of non-negative random vari-
ables, therefore, by monotone convergence theorem,

E lim inf Xn = E lim
n→∞

Yn = lim
n→∞

EYn = lim inf EYn

On the other hand, for any n, we have Xn ≥ Yn, hence EXn ≥ EYn, and therefore,

lim inf EXn ≥ lim inf EYn.

�

Proof of Theorem 4.6.2. We define X(ω) := lim inf Xn(ω), which is measurable as a lim inf of
countably many measurable functions. Now, note that for all a ∈ R,

E(a−Xn)Ia≥Xn ≤ E|a−Xn| ≤ E|a|+ E|Xn| ≤ C <∞,

where C = |a|+supn |Xn| does not depend on n. Therefore, for all a, b ∈ R, if we define Ua,b := limn→∞ Ua,bn ,
then, by monotone convergence theorem and the upcrossing lemma,

EUa,b = lim
n→∞

EUa,bn ≤ C <∞.

In particular, for any fixed a < b ∈ R, we have Ua,b < ∞ almost surely. Since the number of pairs
(a; b) : a, b ∈ Q is countable, we deduce that almost surely, Ua,b <∞ for any a < b ∈ Q.
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On the other hand, Xn(ω) 9 X(ω) if and only if lim inf Xn(ω) < lim supXn(ω). This happends if and
only if there exist a, b ∈ Q such that lim inf Xn < a < b < lim supXn, which happends if and only if there
exist a < b ∈ Q such that Ua,b =∞. Thus, P(Xn(ω) 9 X(ω)) = 0.

Now, Fatou’s lemma implies that

E|X| = E lim inf |Xn| ≤ lim inf E|Xn| ≤ sup
n

E|Xn| <∞

in particular, X is almost surely finite. �

Corollary 4.6.4. Let Xn ≥ 0 be a supermartingale. Then Xn converges almost surely.

Proof. In that case, E|Xn| = EXn ≤ EX0, so, the conditions of the above theorem are satisfied. �

4.7. Doob’s inequality and convergence in Lp for p > 1.

Theorem 4.6.2, although very general, leaves some questions unanswered. Namely, we would often
like to have a generalization of the optional stopping theorem: say, for a martingale Xn, we would like to
conclude that

E(limXn) = EX0

(Optional stopping theorem is a particular case of this setup, Xτ∧n being a (sub-)martingale converging
almost surely to Xτ ).

One particularly nice class of martingales for which the assertion is true is martingales and non-negative
submartingales bounded in Lp.

Theorem 4.7.1. Assume that p > 1, and let Xn be a martingale (or a non-negative submartingale)
such that supE|Xn|p < ∞. Then there exists a random variable X with E|X|p < ∞ such that Xn → X
almost surely and in Lp.

Remark 4.7.2. Clearly, E|X|p < ∞ implies that X is almost surely finite, andE|X| < ∞. Also,
convergence in Lp for p > 1 implies convergence in L1 (see Proposition 2.7.5), therefore, |EX − EXn| ≤
E|X − Xn| → 0. Thus, if Xn is a martingale bounded in Lp, then EX = EXn = EX0 (respectively,
EX ≥ EX0 if Xn is a non-negative submartingale). So, for martingales bounded in Lp, p > 1, the above
questions are answered in the positive.

We start with a lemma revealing the relation between martingales, submartingales, and convex func-
tions.

Proposition 4.7.3. Let h be a convex function, and assume that E|h(Xn)| <∞ for all n. If
• either Xn is a martingale,
• or Xn is a submartingale and h is non-decreasing,

then h(Xn) is a submartingale.

Proof. The proposition follows easily from conditional Jensen’s inequality (Proposition 4.4.7):

(4.7.1) E(h(Xn)|Fn−1) ≥ h(E(Xn|Fn−1)).

If Xn is a martingale, then E(Xn|Fn−1) = Xn−1, so the right-hand side is equal to h(Xn−1). If Xn is a
submartingale, then E(Xn|Fn−1) ≥ Xn−1, so, when h is non-decreasing, the right-hand side of (4.7.1) is
≥ h(Xn−1). �

Remark 4.7.4. If h ≥ 0 is convex and E|h(XN )| < ∞ for some N , then the above proposition still
holds true, with the conclusion that h(X0), . . . , h(XN ) is a submartingale. Indeed, the same proof as above
shows that h(XN−1) ≤ E(h(XN )|FN−1), and, taking expectations, we infer that Eh(XN−1) ≤ E(h(XN )).
Repeating, we show by induction that E(h(Xn)) ≤ Eh(xN ) <∞ for all n ≤ N .

Example 4.7.5. Let p ≥ 1, and let Xn be a martingale or a non-negative submartingale such that
E|Xn|p < ∞ for all n. Then, |Xn|p is a submartingale. If Xn is a submartingale, then, for any a ∈ R,
max{a;Xn} is a submartingale.
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Proof. Apply Proposition 4.7.3 to the convex function h(x) = |x|p, non-decreasing convex function
h(x) = xpIx≥0, and non-decreasing convex function h(x) = max{a;x}. �

Proposition 4.7.6. (Doob’s inequality) Let Xn be a non-negative submartingale, and denote X̄n :=
max{X0, X1, . . . Xn}. Then, for any a > 0,

P(X̄n > a) ≤
E(XnIX̄n>a)

a
≤ E(Xn)

a
.

Remark 4.7.7. Observe that the inequality looks similar to Chebyshev’s inequality, but is stronger
(because Xn ≥ a implies X̄n ≥ a).

Proof. Denote τ = min{n : Xn ≥ a}. Then X̄n > a if and only if τ ≤ n. We have

E(XnIτ≤n) =

n∑
k=0

E(XnIτ=k)
(1)
=

n∑
k=0

E(E(XnIτ=k|Fk))

(2)
=

n∑
k=0

E(Iτ=kE(Xn|Fk))
(3)

≥
n∑
k=0

E(Iτ=kXk)
(4)

≥ a

n∑
k=0

E(Iτ=k) = aP(τ ≤ n),

as required. Above, (1) is EE(Y |G) = EY , (2) is “taking out what is known” (see Proposition 4.2.1, we use
that τ is a stopping time and hence {τ = k} is Fk-measurable), (3) uses that Xn is a submartingale, and
(4) uses that if τ = k, then Xk ≥ a. �

Corollary 4.7.8. (Kolmogorov’s inequality) If ξ1, . . . , ξn are independent centered random variables
with Eξ2

i <∞, and Sn = ξ1 + · · ·+ ξn, then

P(max{|S1|, . . . |Sn|} > a) ≤ VarSn
a2

.

Proof. Since Sn is a martingale and x2 is convex, Sn2 is a submartingale by Proposition 4.7.3. Ap-
plying Doob’s inequality to that submartingale give the result. �

Theorem 4.7.9. (Maximal inequality for Lp) Let Xn be a non-negative submartingale, and let p > 1.
Then

E(X̄p
n) ≤

(
p

p− 1

)p
EXp

n.

Proof. We assume EXp
n <∞, for otherwise there is nothing to prove. We have

E(X̄p
n) = E

(ˆ
R
I0≤a≤X̄pnda

)
Tonnelli

=

ˆ ∞
0

(
EI0≤a≤X̄pn

)
da =

ˆ ∞
0

P(X̄p
n > a)da

a=λp
=

ˆ ∞
0

pλp−1P(X̄n > λ)dλ

Doob
≤
ˆ ∞

0

pλp−2E(XnIX̄n>λ)dλ
Tonnelli

= E(Xn

ˆ ∞
0

pλp−2Iλ<X̄ndλ) =
p

p− 1
E
(
XnX̄

p−1
n

)
.

Applying Hölder’s inequality with parameters p and q = p
p−1 , we get from this that

E(X̄p) ≤ p

p− 1
(EXp

n)
1
p
(
E
(
X̄p
n

))1− 1
p .

Multiplying both parts by
(
E
(
X̄p
n

)) 1
p−1 and taking to the power p gives the desired result, once we know

that E
(
X̄p
n

)
< ∞. But since xpIx>0 is convex and increasing, Proposition 4.7.3 and Remark 4.7.4 imply

that Xp
0 , X

p
1 , . . . , X

p
n is a non-negative submartingale, in particular,

EX̄p
n ≤ E(Xp

1 + · · ·+Xp
n) ≤ nEXp

n <∞.

�

We are now in a position to prove Theorem 4.7.1.
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Proof of Theorem 4.7.1. Since by Jensen’s inequality, |E|Xn||p ≤ E|Xn|p, we have that supE|Xn| <
∞, and therefore, by Theorem 4.6.2, Xn → X almost surely. Now, note that for each ω, ¯|X|pn(ω) is increas-
ing. Since |Xn| is a submartingale, it follows from the maximal inequality and the monotone convergence
theorem that

E sup
n≥0
|Xn|p = E lim

n→∞
¯|X|pn = lim

n→∞
E ¯|X|pn ≤

(
p

p− 1

)p
sup
n≥0

E|Xn|p <∞.

Therefore, E|X|p = E lim sup |X|pn ≤ E sup |X|pn <∞. Moreover, almost surely, |X −Xp
n| ≤ ||X|+ |Xn||p ≤

2 sup |Xn|p, which has finite expectation. Therefore, by dominated convergence theorem,

E|X −Xp
n| → 0.

�

4.8. Unifrom integrability and convergence in L1.

We start by a remark that theorem 4.7.1 is false for p = 1. The example is provided by the “doubling
the stakes” betting strategy as described in Remark 4.5.15. Indeed, in that case,

Xτ∧n =

{
1− 2n, τ > n,

1, τ ≤ n,

and the probability that τ > n is 2−n. Therefore, E|Xτ∧n| = 1− 2−n + 1 · (1− 2−n) = 2− 2−n−1, which is
bounded. However, we have seen that Xτ∧n 9 Xτ in L1.

The notion that captures the difference between almost sure convergence and convergence in L1 is the
uniform integrablity. Note that a single random variable X is integrable if and only if

E|X|I|X|>M → 0

as M →∞: the “if” part follows from the identity

E|X| = E|X|I|X|>M + E|X|I|X|≤M ≤ E|X|I|X|>M +M,

and the “only if ” part follows from dominated convergence theorem, for

Definition 4.8.1. A family {Xα}α∈A of random variables (indexed by arbitrary set A) is called
uniformly integrable (UI) if E

(
|Xα|I|Xα|>M

)
→ 0 as M →∞ uniformly over α ∈ A. That is,

sup
α∈A

E
(
|Xα|I|Xα|>M

) M→∞−→ 0.

Theorem 4.8.2. Assume that Xn → X in probability. Then, the following are equivalent:
(1) Xn → X in L1;
(2) Xn are uniformly integrable;
(3) E|Xn| → E|X| and E|X| <∞.

Proof of Theorem . (2) =⇒ (1) Assume that E|Xn −X|9 0. Then, by passing to a subsequence,
we may assume that E|Xn −X| > ε > 0 for all n. Using Proposition 2.7.7, we may, by passing to a further
subsequence, assume that Xn → X almost surely. We first show that X is integrable. Indeed, there is an
M such that E|Xn|I|Xn|>M < C for all n. By Fatou’s lemma (Lemma 4.6.3),

E|X|I|X|>M = E lim inf |Xn|I|Xn|>M ≤ lim inf E|Xn|I|Xn|>M ≤ C <∞,
so that X is integrable.

Choose M so that E|Xn|I|Xn|≥M < ε
4 for all n and E|X|I|X|≥M < ε

4 . Then,

E|Xn−X| ≤ E
∣∣XnI|Xn|<M −XI|X|<M

∣∣+E|Xn|I|Xn|≥M+E|X|I|X|≥M ≤ E
∣∣XnI|Xn|<M −XI|X|<M

∣∣+ε

2
→ ε

2
,

by dominated convergence theorem, which is a contradiction.
(1) =⇒ (3) We have |E|Xn| − E|X|| = |E(|Xn| − |X|)| ≤ E|Xn −X|.
(3) =⇒ (2). Put Yn,M := |Xn|I|Xn|≥M . Assume that Xn are not uniformly integrable, that is,

supn≥0 EYn,M > ε > 0 for all M. In that case, for every k = 1, 2, . . . , there is an index nk such that
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E(Ynk,k) > ε. Since Ynk+m,k ≥ Ynk+m,k+m > ε, the property E(Ynk,k) > ε for all k is preserved under pass-
ing to subsequences, if k(i) is a further subsequence, then ki ≥ i and hence E(Ynk(i),i) > ε. By Proposition
2.7.7, we can pick such a subsequence so that the convergence is almost sure. We will drop a subscript k
and assume that Xn → X almost surely and EYn,n > ε for all n.

Now, fix an integer M such that E|X|I|X|≥M < ε
2 . Then, we have

E|Xn|I|Xn|≥M = E(|Xn| − |X|)− E(|Xn|I|Xn|<M − |X|I|X|≤M )− E|X|I|X|≥M
By dominated convergence theorem, the second term converges to zero as n → ∞. Therefore, the right-
hand side is less than ε for n large enough. But if n > M , then E|Xn|I|Xn|≥M ≥ E|Xn|I|Xn|≥n > ε, which
is a desired contradiction. �

Remark 4.8.3. Informally, if a sequence Xn converges to X in probability, and E|X| < ∞, then the
only obstruction to L1 convergence is “mass escaping to infinity”. The proof of the implication (3) =⇒ (2)
shows that if this happends, then the limit |X| of |Xn| will necessarily have a “deficiency of mass”.

Remark 4.8.4. Note that since E|Xn|I|Xn|>M ≥ MP(|Xn| ≥ M), the uniform integrability condition
is stronger than the tightness condition.

We now explore some examples of UI families.

Example 4.8.5. Assume that for all α, |Xα| ≤ Y , where Y is an integrable random variable. Then,
{Xα} is UI.

Proof. Indeed, supE|Xα|I|Xα|>M ≤ EY IY >M → 0. �

Thus, Theorem 4.8.2 in fact generalized dominated convergence theorem.

Example 4.8.6. Assume that there exist a function ϕ : R≥0 → R≥0 with ϕ(x)/x→∞ as x→∞ and
a constant C > 0 such that Eϕ(|Xα|) ≤ C for all α. Then, {Xα} is UI. In particualr, if Xα are uniformly
bounded in Lp for p > 1, then {Xα} is UI.

Proof. For every α, we have

E|Xα|I|Xα|>M ≤ E
(
ϕ(|Xα|)

|Xα|
ϕ(|Xα|)

I|Xα|>M
)
≤ sup
x≥M

(x/ϕ(x))Eϕ(|Xα|) ≤ C sup
x≥M

(x/ϕ(x))→ 0.

�

The next example is especially important in the context of martingales.

Proposition 4.8.7. Let X be an integrable random variable on a probability space (Ω,F ,P), and define

XG := E(X|G),

a family indexed by the set of all sigma-algebras G ⊂ F . Then, {XG} is UI.

Proof. We can write, using conditional Jensen’s inequality,

E(|E(X|G)|I|XG |≥M ) ≤ EE(|X||G)|I|XG |≥M ).

SinceXG is G-measurable, by definition of conditional expectation the right-hand side is equal to E(|X|IA(G,M)),
where A(G,M) = {|XG | > M}. We can easily estimate the probability of A(G,M) from above by Cheby-
shev’s inequality:

P(A(G,M)) ≤ E(|E(X|G)|)
M

Jensen
≤ EE(|X||G)

M
=

E|X|
M

.

We conclude that
E|XG |I|XG |≥M ≤ sup

A:P(A)<δM

E(|X|IA),

where δM = E|X|
M . The right-hand side does not depend on G, so we only need to check that it goes to zero

as δM goes to zero. We do this as a separate lemma 4.8.8 below. �
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For future references, the lemma will be stated in a more general form. Let µ, ν be two measures on
the same measurable space (Ω,F). Recall that µ is called absolutely continuous with respect to ν (written
µ � ν) if ν(A) = 0 implies µ(A) = 0. Clearly, if P is a probability measure and X is an integrable random
variable, then µ(A) = E(IA|X|) defines a measure such that µ � ν.

Lemma 4.8.8. (“Absolute continuity”) Let ν be a probability measure, and µ � ν for every ε > 0, there
exists δ > 0 such that ν(A) < δ implies µ(A) < ε.

Proof. Assume that this is not the case. Then, there exists ε > 0 and a sequence A1, A2, . . . of sets
with ν(An)→ 0, but µ(An) ≥ ε for all n. By passing to a subsequence, we may assume that ν(An) < 2−n.
Define Bn := ∪∞i=nAi. Then B1 ⊃ B2 ⊃ . . . , µ(Bn) ≥ µ(An) > ε and ν(Bn) ≤

∑∞
i=n µ(An) ≤ 2−n+1,

therefore, by lower continuity of measures, µ(∩∞n=1Bn) ≥ ε > 0 and ν(∩∞n=1Bn) = 0, which is a impossible
since µ � ν. �

Definition 4.8.9. (Lévy martingale a. k. a. Doob martingale) Let Y be a random variable wnth
E|Y | <∞, and let {Fn} be a filtration. Then,

Yn = E(Y |Fn)

is called a Lévy martingale (associated to Y ).
That this is a martingale is an easy consequence of the tower property. Proposition 4.8.7 shows that

this martingale is in fact UI. A remarkable fact is that in fact, all UI martingales have this form:

Theorem 4.8.10. Let Xn be a uniformly integrable martingale, and let X = limn→∞Xn almost
surely5. Then, Xn = E(X|Fn). Conversely, if Xn = E(X|Fn) and X is measurable with respect to
F∞ := σ(∪∞n=0Fn), then X = limn→∞Xn almost surely and in L1.

Remark 4.8.11. In general, if Xn is a Lévy martingale associated to X, then, by tower property,

E((E(X|F∞)|Fn) = E(X|Fn) = Xn,

so that Xn is also the Lévy martingale associated to E(X|F∞). The latter is F∞ measurable, therefore,

lim
n→∞

Xn = E(X|F∞).

Proof. Let us check by the definition of conditional expectation that Xn = E(X|Fn). Clearly, Xn ∈
Fn. Pick A ∈ Fn, and note that IAXn, IAXn+1, . . . is a martingale: A is measurable with respect to Fr,
r ≥ n, and thus can be pulled out of all the conditional expectations. Therefore,

E(IAXn) = E(IAXr), r > n.

However, since Xn are UI, Xn → X in L1, therefore,

E(IAX) = E(IA(X −Xr)) + E(IAXn)
r→∞−→ E(IAXn).

This completes the proof that Xn = E(X|Fn).
For the “conversely” part, we know that Xn is a UI martingale. Define X ′ = limn→∞Xn. Since

X = E(X|F∞), it suffices to check that X ′ = E(X|F∞) almost surely. By construction, X ′ is F∞-
measurable. If A ∈ Fn for some n, then the first part shows that

E(IAX ′) = E(IAXn) = E(IAE(X|Fn)) = E(IAX).

The collection {A : E(IAX) = E(IAX ′)} is a λ-system, and we just have showed that it contains the
π-system ∪nFn that generates F∞. Hence, it contains F∞. �

5and hence in L1 since Xn is UI
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4.9. Backward martingales and the strong law of large numbers

Definition 4.9.1. A backward martingale is a martingale indexed by negative integers. That is, given
a sequence of σ-algebras · · · ⊂ G−2 ⊂ G−1 ⊂ G0, a backward martingale is a sequence . . . , X−2, X−1, X0 of
integrable random variables such that Xn is Fn-measurable and E(Xn+1|Fn) = Xn for all n = −1,−2, . . .

The theory of backward martingales is much simpler than that of martingales. While martingales can
“blow up” as n → ∞, backward martingales are always controlled by X0. For example, Proposition 4.7.3
implies that for any p ≥ 1, |X−n|p, . . . , |X0|p is a submartingale, thus E|X−n|p ≤ E|X0|p for all n ∈ N, that
is, backward martingales are always bounded in L1, and if E|X0|p <∞, they are bounded in Lp. Moreover,
applying the definition several times, we see that E(X0|F−n) = X−n for all n ∈ N, that is, {X−n} are
always uniformly integrable. Also, if Ua,b−n denotes the number of upcrossings of (a, b) in the interval [−n, 0],
the upcrossing lemma gives the bound

(b− a)EUa,b−n ≤ Emax(a−X0, 0) ≤ |a|+ E|X0|.

This means that almost surely, the expected total number of upcrossings of any (a, b) with (a, b) ∈ Q is
finite, so that X−n converges almost surely as n → ∞. Since, as we have mentioned, X−n are UI, the
convergence also holds true in L1. Finally, if E|X0|p <∞, then the maximal inequality (theorem 4.7.9)

E sup
n
|X−n|p = E

(
lim
n→∞

sup{|X−n|p, . . . , |X0|p}
)

= lim
n→∞

E (sup{|X−n|p, . . . , |X0|p}) ≤ C · E|X0|p,

so that E|X|p < ∞, where X = limn→∞X−n, and |X −Xn|p is dominated by an integrable function. So,
the convergence actually holds in Lp. We collect this discussion in the following theorem:

Theorem 4.9.2. If X−n is an inverse martingale, then there is a random variable X such that Xn → X
almost surely and in L1. If, in addition, E|X0|p <∞ is bounded, then the convergence holds in Lp.

A striking application of this result is the strong law of large numbers (without moment assumptions):

Theorem 4.9.3. Let X1, X2, . . . be i. i. d. scalar random variables with EXi = 0. Denote Sn :=
X1 + · · ·+Xn. Then, n−1Sn → 0 almost surely and in L1.

Proof. Define F−n := σ(Sn, Xn+1, Xn+2, . . . ). Since Sn+1 = Sn + Xn+1, we have that Sn+1 is
measurable with respect to σ(F−n), i. e F−n−1 ⊂ F−n for all n. The key observation is that 1

nSn is a
backward martingale with respect to this (inverse) filtration. Indeed,

E(X1|Sn) + · · ·+ E(Xn|Sn) = E(X1 + · · ·+Xn|Sn) = E(Sn|Sn) = Sn.

By symmetry, the expectations of E(X1|Sn), . . . ,E(Xn|Sn) must be all equal. (Formally,

E(X2|X1 +X2 · · ·+Xn) = E(X1|X2 +X1 + · · ·+Xn) = E(X1|X1 +X2 + · · ·+Xn),

where the first identity is just reindexing). Therefore, we conclude that

E(Xi|Sn) = n−1Sn, i = 1, . . . , n

In fact, this result does not change if we add information about Xn+1, . . . :

E(Xi|F−n) = n−1Sn, i = 1, . . . , n.

To check it rigirously, observe that n−1Sn is F−n measurable, and for any A ∈ σ(Xn+1, . . . ), we do have,
by independence,

E(XiIA) = IAE(Xi) = IAE(n−1Sn) = E(n−1SnIA).

Therefore, this identity holds for every A in the π-system σ(Sn)∪ σ(Xn+1, . . . ), therefore, by π-λ theorem,
it holds true for all A ∈ F−n.

From this, we compute

E((n− 1)−1Sn−1|F−n) =
n− 1

(n− 1)n
Sn =

1

n
Sn,
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that is, 1
nSn is a backward martingale. Therefore, there is a random variable S such that 1

nSn → S almost
surely and in L1 (and therefore in probability). But we know from weak law of large numbers that 1

nSn → 0
in probability, therefore, S = 0. �

4.10. Martingale proof of Radon-Nikodym theorem

Let µ, ν be two measures on the same measurable space (Ω,F). Recall that µ is called absolutely
continuous with respect to ν (written µ � ν) if ν(A) = 0 implies µ(A) = 0. Clearly, if dµ = fdν (that is,
by definition, µ(A) =

´
IAfdν for any A ∈ F) with f ≥ 0,

´
fdν <∞, then µ � ν. The following theorem

shows that the converse is also true:

Theorem 4.10.1. (Radon-Nikodym) If (Ω,F ,P) is a probability measure and µ is a finite measure on
F such that µ � P, then there exists an F-measurable function X ≥ 0 with EX <∞ such that dµ = XdP.

Proof. Step 1: assume that F = σ(A1, . . . , An) for some sets A1, . . . , An. In that case, the theorem
is elementary. Indeed, Ω can be partitioned into a disjoint union of sets Ω = Ω1 t · · · tΩ2n , where each Ωi
has the form Ωi = B1 ∩ · · · ∩ Bn with Bi = Ai or Bi = Aci . In fact, F will be then an atomic σ-algebra6

with atoms Ω1, . . . ,Ω2n , that is,
F = {ti∈I′Ωi : I ′ ⊂ I}.

The F-measurable functions are just functions that are constants on atoms. Given ω ∈ Ω, let i(ω) be such
that ω ∈ Ωi. If we now define by

X(ω) =

{
µ(Ωi(ω))

P(Ωi(ω))
, if ν(Ωi(ω)) 6= 0,

0, else.

Then, µ(A) = E(XIA) when A = Ωi for some i, and, therefore, by linearity, for any A ∈ F .
Step 2: assume that F = σ(A1, A2, . . . ) for a sequence A1, A2, . . . of sets. This is where martingale

theory enters the game. Define Fn = σ(A1, . . . , An), and let Xn be the corresponding Radon-Nikodym
derivative. Then, for any A ∈ Fn, we have

E(Xn+1IA) = µ(A) = E(XnIA).

that is,
Xn = E(Xn+1|Fn),

that is, fn is a martingale. In order to apply the martingale convergence theorem, we will check that Xn is
UI. This is done much as in the proof of Proposition 4.8.7: first,

E(XnIXn>M ) = µ({Xn > M}).
Second, by Chebyshev’s inequality,

P(Xn > M) ≤M−1EXn = M−1µ(Ω).

Therefore, uniform integrability follows from the absolute continuity (Lemma 4.8.8).
We conclude that there is a random variableX such thatXn → X almost surely and in L1, and it follows

from Theorem 4.8.10 that Xn = E(X|Fn). Therefore, if A ∈ Fn for some n, then E(IAX) =E(IAXn) =
µ(A). Therefore, the measures µ and XdP agree on the π-system ∪Fn, so they agree on σ(∪Fn) by Corollary
1.3.5.

Step 3: arbitrary F . This part hinges on the theory of nets (a. k. a. generalized sequences, or
Moore-Smith sequences). We come back to the proof after recalling the key notions of that theory. �

Definition 4.10.2. A directed set is a partially ordered set (S,�) such that any two elements have a
common upper bound (that is, for any a, b ∈ S, there exist c ∈ S such that a � c and b � c). A net is a
map f : S 7→ M , where S is a directed set and M is a topological space. A net is said to converge to an
element x ∈M , if for any neighborhood U of x, there exists a ∈ S such that f(b) ∈ U for all b � a.

Example 4.10.3. The following are examples of nets:

6see Exercise set 1 of Probability theory I course
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(1) A usual sequence is a net with (S,�) = (N,≤), and the convergence is the usual convergence of
sequences.

(2) A function f : R → R can be viewed as a net with (S,�) = (R,≤), and the convergence of this
net is equivalent to the usual convergence of f as t → +∞. If we define the directed set to be
S = R \ {a} the order by x � y if and only if |x− a| ≥ |y − a|, then the convergence of this net is
equivalent to convergence of f(x) as x→ a.

(3) Given an interval [a, b] and a function f : [a, b] :7→ R, define

S := {a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tk = b, k ∈ N},
the set of partitions of [a, b] into finitely many intervals [t0, t1), . . . , [tk−1, t2), where each partition
is equipped with points ξ1 ∈ [t0, t1], . . . ξk ∈ [tk−1, tk]. For two such partitions T and T ′, we say
that T � T ′ if {t0, . . . , tk} ⊂ {t′0, . . . , t′k′} (that is, T ′ is a refinement of T . The points ξi are
irrelevant for the order.) Define

fT =

k∑
i=1

f(ξi)(ti − ti−1).

This is a net, and its limit is the Riemann integral of f .

The main motivation behing the study of nets is as follows: in the setting of metric spaces, certain
key notions can be expressed in terms of sequences: e. g., a function is continuous iff it maps convergence
sequences to convergent sequences, a space is compact if any sequence contain convergent subsequence, etc.
For topological spaces, this is no more true, but the analogous statements are true if the sequences are
replaced by nets.

Let us say that a σ-algebra G is separable if it is as in Step 2 of the proof of theorem 4.10.1, and denote
the set of all such σ-algebras by S. Note that if G = σ(A1, A2, . . . ) and G′ = σ(A′1, A

′
2, . . . ) are separable,

then σ(G1,G2) = σ(A1, A
′
1, A2, . . . ) is also separable. That is to say, (S,⊂) is a directed set. The uniformly

integrable collection XG of the Radon-Nikodym derivatives, constructed in Step 2, is a net with values in
L1(P). Moreover, if G1 ⊂ G2, then, for every A ∈ G1, we have

E(IAXG1
) = µ(A) = E(IAXG2

),

so XG1 = E(XG2 |G1). It is natural to call this structure a uniformly integrable martingale net.

Proposition 4.10.4. Let (S,⊂) be a directed set of σ-algebras, and let XG ,G ∈ S, be a UI martingale
net. Then there exists a random variable X ∈ L1 such that XG → X in L1.

Proof. We first claim that for every ε > 0, there exists a σ-algebra G ∈ S such that if G ⊂ G′ then
E|XG −XG′ | < ε (“the net is a Cauchy net”). Indeed, assume the contrary. Then, there is an ε > 0 and a
sequence of σ-algebras G1 ⊂ G2 ⊂ . . . such that E|XGk −XGk−1

| > ε. But we know that XG1 , XG2 , . . . is a
UI martingale, therefore, it converges in L1, which is a contradiction.

Now, let G1,G2, . . . be σ-algebrae as above, corresponding to ε1 = 1
1 , ε2 = 1

2 etc., that is, for every
G ⊃ Gk, we have E(|XG−XGk |) ≤ 1

k . By replacing Gk with σ(G1, . . . ,Gk), we may assume that G1 ⊂ G2 ⊂ . . . .
Then XG1

, XG2
, . . . is a UI martingale, and let X denote its limit. If G′ ⊃ Gk, then

E|X −XG′ | ≤ E|XGk −XG′ |+ E|XGk −XG | ≤
2

k
.

That is to say, XG → X in the sense of convergence of nets. �

Remark 4.10.5. What we have essentially proved here is that if f is a net with values in a metric
space, then f converges if and only if the sequence f(a1), f(a2), . . . converges for every a1 � a2 � . . . .

Proof of Step 3 of Theorem 4.10.1. Let X be the limit of the net XG , G ∈ S. We have to show
that for any A ∈ F , we have µ(A) = E(IAX). Pick ε > 0 and let G ∈ S be such that E(|XG′ −X| < ε) for
all G′ ⊃ G. Define G′ := σ(A,G); clearly, G′ ∈ S, and

|E(IAX)− µ(A)| = E(|X −XG′ |+ |E(IAXG′)− µ(A)| < ε,
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since A ∈ G′ and hence E(IAXG′) = µ(A). Since ε is arbitrary, we are done. �


